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1 Data

1.1 Features Selection

From the demographic, behavioural and psychological data, we selected 160 features as

potentially relevant to our analysis (Suppl. Tab. 2, 3). Features containing information of

primary diagnosis for affective and non-affective psychosis, such as the Positive and Negative

Symptom Score (panss01) and the Clinical Assessment Interview for Negative Symptoms

(cains01) were not included in the analysis. Furthermore, we dropped 105 features (Suppl.

Tab. 2) that had too few entries (more than 80% missing entries), which resulted in the

selection of 54 final features (Suppl. Tab. 3 for a complete list of all features and tests).

Many of the 54 selected features contained missing data, hence, the goal was to obtain a

data-set with as many subjects as possible, allowing for a similar distribution of controls

and patients, while keeping the number of missing values small. The optimal trade-off was

achieved when excluding subjects that were missing more than four entries of the selected

features. Using this trade-off, we were able to maintain a high number of subjects - 217

(55 healthy controls, 51 affective psychosis group, 111 non-affective psychosis group) of the

original 251 (68 healthy controls, 57 affective psychosis group, 126 non-affective psychosis

group). The distribution of the remaining subjects reflected the distribution of the original

data.

For those individuals who had a sufficient number of entries, missing data were imputed

using the mean for continuous and mode for categorical features (Suppl. Tab. 1). Since the

ratio of patients and controls was not balanced, mean and mode were calculated separately

for patients and controls. Both patient groups were combined in order to minimise the bias

of classical group membership based on diagnosis regarding cognitive impairments. The

maximal number of missing entries was 25 of 217 subjects for ”age-adjusted fluid cognition

composition score” (Suppl. Tab. 1).

The released brain imaging data contain structural magnetic resonance imaging (MRI),

resting state functional MRI, and diffusion MRI data. Here, we selected the T1-weighted

structural image of all 183 individuals. Structural images were recorded at a 3T SIEMENS

MAGNETOM Prisma scanner using a MPRAGE sequence (TR=2400ms, TE=2.22ms, FoV

read=256mm, FoV phase=93.8%, flip angle=8 deg, slices per slap=208, slice thickness=0.8mm).
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Suppl. Table 1: Features with number of missing individuals. Missing values for continuous
features were replaced by the mean according to the group of patients or controls. For
categorical data, the mode was used to replace the missing value. W stands for ’white’, for
Socio-Economic Status, 2 for a SES score of 20 to 29 and in the Mother/Father Educational
Scale a 4 for High School Graduation or GED and a 6 for Completed 7th through the 9th
grades.

Feature Missing Controls Patients
mean(std)/mode mean(std)/mode

Auditory continuous performance test
auditory t2 12 -0.48 (0.87) 0.15 (0.99)
auditory t4 2 0.39 (0.59) -0.13 (1.08)
auditory t5 2 -0.31 (0.76) 0.11 (1.05)
auditory t10 2 -0.19 (0.89) 0.07 (1.03)
auditory t12 22 -0.72 (1.06) 0.21 (0.88)

Cognition Composite Scores
Fluid Cognition - Age adjusted 25 0.71 (0.74) -0.24 (0.96)
Crystal Cognition - Age adjusted 24 0.44 (0.80) -0.15 (1.02)
Pattern Comparison Processing Speed - 1 0.43 (0.88) -0.15 (1.00)
Age adjusted

Parental SES Hollingshead-Rendlich
Socio-Economic Status 2 2 2
Mother Educational Scale 7 6 6
Father Educational Scale 35 6 4

Demographics
Race 8 W W

1.2 Clustering of Mixed Data Types

The cognitive, psychological and demographic data consisted of continuous or numeric

and categorical features, hence discrete data (Suppl. Tab. 3), while brain data were con-

tinuous. However, mixed continuous and discrete data types create problems for classical

clustering algorithms, which work only on a single data type. Clustering algorithms rely

on a well-defined distance or similarity measure in a continuous space. This does not apply

to categorical data, as there is no inherent ordering or distance measure [1]. Thus, clus-

tering data of mixed types require specifically designed clustering algorithms or mapping

of categorical data onto a continuous space [2, 3]. One simple approach is to re-code vari-

ables, specifically to one-hot-encode categorical features to binary variables. This is not

always the best choice, as it increases the dimensionality of the data, and might influence

the performance of clustering algorithms like K-Means [4]. Other approaches that handle

mixed data, split the data according to type, and rejoin it after transformation, which is

the approach used here. We split our dataset according to numerical and discrete type, and
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performed Multiple Correspondence Analysis (MCA) on the categorical data, that maps the

categorical data to a continuous space [5], and a Principle Component Analysis (PCA) to

the numeric data.

1.3 Preprocessing of Behavioural, Psychological and Demographic

Data

Preprocessing and data analysis was performed in Python 3.9.7 for behavioural, psy-

chological and demographic data. We used scikit-learn 1.0.2, SciPy 1.7.2 for all analyses,

except for MCA, for which we used the package prince 0.7.1.

Prior to our analysis, the data was normalized (see Suppl. Tab. 3 for scaling method of

each feature). Scaling of a continuous value x in a feature column X was computed via the

mean and standard deviation over the column:

x̃ =
x−mean(X)

std(X)
. (1)

Skewed features were log-transformed, and age was transformed separately by the following

formula:

x̃ =
x−min(X)

max(X)−min(X)
. (2)

To prepare mixed data for clustering, the data was split according to numerical and

categorical features. We performed a PCA on numerical data and an MCA on categorical

data [6]. For our analysis, we applied a PCA on numerical data to find the axes of the

highest variance and reduce the dimensionality of the data. Results were consistent with

other symptom-reduction studies [7]. MCA is an extension of correspondence analysis (CA)

for more than two categorical features [8, 9]. It is used on categorical data, similarly as PCA

used on numerical data. MCA investigates the association between categorical variables,

and, just like a PCA, produces orthogonal components.

As input to our clustering analysis, we combined significant components of the PCA on

numerical data and significant components of the MCA. Significance of principal components

was determined for components with significantly higher explained variance and inertia for

PCA and MCA, respectively, than components of permuted data (i.e., unstructured data;

p<0.05, 5000 permutations). Components for which explained variance or inertia was less

than 5% were discharged. Thus, the data was transformed using PCA and MCA, to allow

for combined analysis and reducing dimensionality of the data simultaneously.

1.4 Preprocessing of Brain Data

The HCP-EP provides data for various structural and functional Magnetic Resonance

Imaging scans for 183 subjects, three subjects had to be excluded with faulty brain scans.
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As we are interested in grey matter volume changes we used T1-weighted structural im-

ages (N=180, 57 healthy controls, 28 affective psychosis group, 93 non-affective psychosis

group and three missing patient specification). During the preprocessing, the structural

images of all 180 subjects were segmented into grey matter, white matter, and CSF using

Statistical Parametric Mapping, running on MATLAB version 2018b. We used Diffeomor-

phic Anatomical Registration through Exponentiated Lie Algebra toolbox (DARTEL) [10]

to process grey matter images. This procedure creates a sample-specific template repre-

sentative of all subjects by iteratively aligning all images. Then, the template underwent

non-linear registration with modulation for linear and non-linear deformations to the MNI-

ICBM152 template. Subsequently, we registered each participant’s grey matter map to the

group template and smoothed with an 8 mm3 isotropic Gaussian kernel.

Following the preprocessing, we computed an independent component analysis. First,

all individually preprocessed grey matter maps were concatenated, creating a 4D file. An

absolute grey matter threshold of 0.1 was applied to all images, ensuring that only grey

matter voxels were used for the ICA. ICA was performed using the Multivariate Exploratory

Linear Optimized Decomposition into Independent Components (MELODIC) method as

implemented in the FSL analysis package [11] version 6.0. Data-driven population-based

networks of grey matter covariance were derived, performing an ICA on all subjects (n=180).

Therefore, this process identifies common spatial components based on the covariation of

grey matter patterns across all subjects. We allowed the process to identify 30 components

(i.e., structural covariance networks, SCN), as done previously [12–14]. The results were

thresholded at z = 3.5 and binarized [15, 16] to eliminate spurious results. Finally, for each

participant, grey matter volume was extracted from each of the 30 morphometric networks.

Brain regions included in morphometric networks are described in section 4.2 Brain Data.

For two subjects (src subject id 4066, 2028), non-brain data contained too many missing

values. Thus, all subsequent analyses involving the grey matter volume of the 30 morphome-

tric networks are based on 178 subjects (N=178, 57 healthy controls, 28 affective psychosis

group, 93 non-affective psychosis group). For clustering, brain data was corrected for total

intacranial volume (TIV), age and sex, using the R stats package, version 4.0.5 [17]. We

then performed a PCA on the data, and significant components were used for clustering,

applying the same procedures as for non-brain data (p<0.05, 5000 permutations).

1.5 Preprocessing of Combined Brain and Non-Brain Data

When combining brain and non-brain (i.e., behavioural, demographic, and psychological)

data, 151 (46 healthy controls, 24 affective psychosis group, 81 non-affective psychosis group)

subjects had matching identifiers and were used for further analysis. The PCA loadings

revealed that the PCA performed on all numerical data, brain and non-brain combined,

showed almost no differences compared to the PCA conducted on non-brain data only
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(Suppl. Fig. 5). The grey matter volumes of networks did not explain any more variance

than non-brain data alone when a PCA is performed together across all numerical data.

We, therefore, performed a PCA on grey matter values and numerical behavioural data

separately and joined significant components of both PCAs with the significant components

of the MCA on categorical features (Suppl. Fig. 6, 7) for the combined clustering analysis.

2 Results

2.1 Non-Brain Data

We identified six significant principal components in numerical features, that captured

58.6% of total variance (permutation test p<0.05, 5000 permutations). Cognitive features

(i.e., the Auditory Continuous Performance Test, IQ Score, Cognition Composition Score,

Reading Recognition Score, and the Picture Vocabulary Test) contributed most to the first

principal component, whereas psychological features (e.g. Emotional Support Survey, Per-

ceived Stress Scale or Social Isolation Score) contributed most to the second principal com-

ponent (Suppl. Fig. 2 for loadings). Visualization of the data in 2D and 3D indicated,

that the control group formed a smaller and denser cluster, whereas the non-affective group

expanded in the opposite direction of the controls. Affective psychosis subjects were dis-

persed across controls and non-affective psychosis subjects, which was already implied by

the higher inhomogeneity of the affective group. Separation of the three groups was rather

apparent on the axis of the first PC, mainly consisting of cognitive features.

control affective non-affective

cognitive

psychological

cognitive psychological cognitive psychological cognitive psychological

1.0

0.5

0.0

0.5

1.0

Suppl. Figure 1: Comparison of behavioural feature correlations between groups. Cor-
relation between 48 cognitive and psychological features for control (N = 55), affective (N = 51)
and non-affective (N = 111) subjects (from left to right).
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Suppl. Figure 2: PC loadings of numeric behavioural, psychological and demographic
data. PCA was performed across 217 subjects on 48 numeric behavioural, psychological and
demographic features. (A) Contribution of each feature to the PCs, in descending order according to
the first PC. Features are colour coded according to feature category. Cognitive features contribute
most to the first PC, whereas psychometric features contribute mainly to the second PC. (B) PC
loadings each normalized with variance explained by the PC, thus comparable across components.

2.2 Brain Data

We identified four significant components (permutation test p<0.05, 5000 permutations)

from a PCA that captured 57.1.% of the total variance (Fig. ??B). Visualization of the data

in 2D (Fig. ??D) and 3D (Supplement, Fig. 4B) did, in contrast to non-brain data, not

show a separation of groups. Subjects of all groups were evenly distributed in space. Also

non-linear dimensionality reductions did not reveal a separation of groups in 2D or 3D.
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Suppl. Figure 3: Comparison of brain feature correlations between groups. Correlation
between 30 grey matter values (raw data) for control (N= 57), affective (N= 28) and non-affective
(N= 93) subjects (from left to right).
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Suppl. Figure 4: PC loadings and visualization in 3D of brain data. PCA was performed
across 178 subjects on 30 grey matter volumes. (A) Contribution of each feature to the PCs,
in descending order according to the first PC. (B) PC loadings each normalized with variance
explained by the PC, making them comparable across components. (C) Visualization of brain
data in first three PCs, coloured according to subject groups (blue: control, purple: affective, red:
non-affective)

2.3 Brain and Non-Brain Data

Brain and non-brain data: We identified five significant PCs in behavioural, demographic

data, 4 significant PCs in brain data and two significant PCs in categorical data (p<0.05,

5000 permutations).
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Suppl. Figure 5: PC loadings of numeric brain and non-brain data. PCA was performed
across 151 subjects on 78 combined features. (A) Contribution of each feature to the PCs, in
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components captured 58.0% of all variance. (B) The first two PCs are visualized and coloured
according to group. (C) Percentage of subjects of a group in each cluster, for K-Means clustering
analysis with two, three and four clusters on significant PCs. (D) Same as C for spectral clustering.
(E) Clustering result for K-Means (upper) and spectral (lower) analysis visualized on first two PCs
for two, three and four clusters.
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Suppl. Figure 7: PCA and Clustering analysis on combined brain and non-brain
data with 151 subjects. (A) Variance explained by each of the principal components
(PCs) in % of a PCA performed on 48 numeric behavioural features and 30 age, sex and
TIV corrected gray matter volumes across 151 subjects. The first five PCs (blue) survived
permutation testing (p<0.05, 5000 permutations). Significant components captured 57.9%
of all variance. (B) Data visualized on the first two PCs, coloured according to group.
There is no apparent change compared to visualization of behavioural data (Fig. 6) because
brain data added little to the PCs (Fig. 5) (C) Percentage of subjects of a group in each
cluster, for K-Means clustering analysis with two, three and four clusters on significant PCs
of numeric behavioural data, significant components of brain data and first two components
of categorical behavioural data. (D) Same as C for spectral clustering. (E) Clustering result
for K-Means (upper) and spectral (lower) analysis visualized on first two PCs for two, three
and four clusters.

2.4 Clinical Data

We identified three significant principal components in numerical features, that captured

47.9% of total variance (permutation test p<0.05, 5000 permutations). Significant compo-

nents (PCs 1-3) explained 47.9 % of variance, and patients groups parted mainly on the

PC1 axis (Suppl. Fig 8 A-B). K-Means clustering with two clusters on the significant PCs

resulted in a cluster containing 63 % of non-affective and 22 % of affective patients and 78%

of non-affective and 37 % of affective patients in the other cluster (Supplements, Fig 8 D,
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Suppl. Figure 8: Clustering of clinical scores. (A) The first two PCs are visualized
and coloured according to patient group. (B) Same as A for first three PCs. (C) Vari-
ance explained by each of the principal components (PCs) in % of a PCA performed on 30
clinical scores. The first three PCs (blue) survived permutation testing (p<0.05, 5000 per-
mutations). Significant components captured 47.9% of all variance. (D) K-Means clustering
results visualized in the low dimensional space of the PCA. (E) Percentage of patients of a
group in each cluster, for K-Means clustering analysis with two clusters on significant PCs.

2.5 Cluster Exploration

Cognitive scores were compared across patients in specific clusters and control subjects,

(Suppl. Fig. 11, see Tab. 2 in main text for statistical comparisons and for boxplots). There

were significant group differences in all categories. Differences in cognitive scores supported

findings in clinical scores. Patients in cluster 1 showed a similar cognitive performance as

controls, as indicated by non-significant differences across all behavioural scores, indicating

maintained cognition. Interestingly, cluster 3, which showed only reduced fluid cognition

scores compared to cluster 1, showed significant differences compared to controls, with the

greatest differences in episodic memory, and selective as well as auditory attention. Cluster

2 showed the worst cognitive performance across all scores (except for impulsivity, for which

cluster 0 showed poorer performance), indicating strong cognitive deficits;l. Compared

to the cognitively preserved patient group of cluster 1, cluster 0 performed worse across

several tasks and scores, including fluid cognition, decision impulsivity, selective attention
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and executive control, episodic memory and auditory attention.
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and *** to p < 0.001.
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Suppl. Figure 11: Comparing cognitive features of patients within clusters and
control subjects. Individual boxplots represent the distribution of the performance for
each cognitive score, showing data minimum, first quartile, median, third quartile, and
data maximum. Individual subjects are overlaid as dots. Outliers are indicated outside the
minimum or maximum.

3 Extended Discussion

Our correlation analysis revealed that stronger cognitive deficits are linked to stronger

negative symptoms, and symptoms or general psychopathology. Although it has been sug-

gested that negative and cognitive symptoms are separable domains which require inde-

pendent treatment development [18], many studies show an association between cognitive
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deficits and negative symptoms across all stages of the disease [19–24]. Our results provide

evidence for a link between increased negative symptoms and stronger cognitive deficits

across all cognitive domains tested, i.e., crystallized cognition, impulsive decision making,

oral reading recognition, picture vocabulary test, total IQ, verbal IQ and auditory atten-

tion. The presence of cognitive deficits in combination with increased negative symptoms

triggers the question whether one potentially leads, or reinforces, the other. We could

argue that deficits in working or episodic memory, or selective attention, which has been

reported in risk as well as chronic stages of psychosis, negatively impact social interactions,

potentially making them less successful, and leading to poor rapport, one prominent neg-

ative symptom, of psychosis. Over time this may lead to social withdrawal, which may

in turn negatively impact, e.g. occupational success, having a negative impact on func-

tional outcome. Being excluded from social and/or occupational life may further aggravate

cognitive impairment. Further support for this line of thought is provided by the findings

that stronger general psychopathology, covering symptoms like depression, disorientation

or active social avoidance, assessed using PANSS general psychopathology, are linked to

lower fluid and crystallized cognition, worse executive functioning, selective attention and

oral reading recognition. As both negative symptoms, including e.g. depression or social

withdrawal, and cognitive deficits, have been linked to poorer social functioning [25, 26],

identifying individuals with increased risks or increased cognitive dysfunctions may provide

new options for patient tailored intervention.

Our correlation analysis revealed that stronger cognitive deficits are linked to stronger

negative symptoms, and symptoms or general psychopathology. Although it has been sug-

gested that negative and cognitive symptoms are separable domains which require inde-

pendent treatment development [18], many studies show an association between cognitive

deficits and negative symptoms across all stages of the disease [19–24]. Our results provide

evidence for a link between increased negative symptoms and stronger cognitive deficits

across all cognitive domains tested, i.e., crystallized cognition, impulsive decision making,

oral reading recognition, picture vocabulary test, total IQ, verbal IQ and auditory atten-

tion. The presence of cognitive deficits in combination with increased negative symptoms

triggers the question whether one potentially leads, or reinforces, the other. We could

argue that deficits in working or episodic memory, or selective attention, which has been

reported in risk as well as chronic stages of psychosis, negatively impact social interactions,

potentially making them less successful, and leading to poor rapport, one prominent neg-

ative symptom, of psychosis. Over time this may lead to social withdrawal, which may

in turn negatively impact, e.g. occupational success, having a negative impact on func-

tional outcome. Being excluded from social and/or occupational life may further aggravate

cognitive impairment. Further support for this line of thought is provided by the findings

that stronger general psychopathology, covering symptoms like depression, disorientation
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or active social avoidance, assessed using PANSS general psychopathology, are linked to

lower fluid and crystallized cognition, worse executive functioning, selective attention and

oral reading recognition. As both negative symptoms, including e.g. depression or social

withdrawal, and cognitive deficits, have been linked to poorer social functioning [25, 26],

identifying individuals with increased risks or increased cognitive dysfunctions may provide

new options for patient tailored intervention.

3.1 Limitations

This study has several limitations: The ratio of numerical categorical to continuous fea-

tures is imbalanced. This holds the risk for over-representation of categorical features as

they are preprocessed separately; of 6 categorical features two components are generated

for clustering, whereas of 54 continuous features 6 PCs are generated. However, in this

study, including categorical components did not change the results of our clustering anal-

ysis (Suppl. Fig. 9). Generally, K-Means [27] is a commonly used clustering algorithm

that performed well on our behavioural data. Nevertheless, there are some drawbacks of

this method: First, the algorithm requires a predefined number of clusters. Based on the

diagnosis, data contained at least three groups. We used this prior information as basis for

the specification of the number of clusters in our analysis. Clustering was performed with

two (controls, patients), three (healthy controls, affective psychosis group and non-affective

psychosis group) and four clusters (potential subgroups) and the results were compared.

Four clusters have been chosen regularly in other clustering work [28, 29]. Identification of

five or more clusters require large sample sizes in order to produce reliable and interpretable

results. Our sample size does not allow this, because of the restricted number of subjects.

Second, K-Means clustering does not work well with non-spherical cluster or clusters with

different sizes [30]. We, therefore, also performed spectral clustering, which constructs a

similarity graph based on the data (nearest neighbours embedding in our analysis) prior to

the clustering and therefore preserving non-linear structure of the data when reducing the

dimensions. K-Means clustering is performed on the dimensionality reduced data [31, 32].

This procedure makes the clustering invariant to cluster shapes and densities and by this

taking into account clusters of various size and shape, that might arise from the data.

4 Features Description

4.1 Non-Brain Data

Suppl. Table 2: Of 160 features, 105 were dropped due to missing entries.

Dropped Features
scid-v01-scidd-74 tpvt01-lavoc-screen
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Dropped Features
scid-v01-scidd-64 tpvt01-tlbx-readncorr

psychosocial01-psysoc-74 scid-v01-scidd-66

cgi01-gafrat socdem01-dem-18b

tpvt01-tpvt-fcts tlbx-wellbeing01-nih-tlbx-fctsc

wasi201-iqscores-perfiq socdem01-sd25h

scid-v01-scidd-79 psychosocial01-psysoc-72

psychosocial01-psysoc-66 socdem01-sd29

scid-v01-anx-diag socdem01-cig-smoke

socdem01-employcur socdem01-sd23a

socdem01-sd25c wasi201-ss-blockdesigntscoreperf4

ymrs01-ymrstot wasi201-sumstscores-total2subtest

socdem01-demog-09 wasi201-iqscores-verbpercentile

lswmt01-nih-tlbx-tscore psychosocial01-psysoc-69

acpt01-auditory-t7 psychosocial01-psysoc-68

psychosocial01-psysoc-55 psychosocial01-psysoc-65

socdem01-demo-fam-depression socdem01-ethnicity

socdem01-bio-mother-education psychosocial01-psysoc-73

wasi201-sumstscores-verbal4subtest socdem01-sd27c

scid-v01-a1d35 wasi201-iqscores-verbconfintervalto

er4001-er40-c-fear psychosocial01-psysoc-71

psychosocial01-psysoc-67 flanker01-acc

er4001-er40-c-fpn er4001-er40-c-fpa

dccs01-acc er4001-er40-c-fps

er4001-er40-c-noe socdem01-sd27a

pss01-pss-cope-rs wasi201-iqscores-verbiq

socdem01-sd27g socdem01-smq3

socdem01-fsprels socdem01-sd25a

wasi201-iqscores-perfsumtscores wasi201-ss-vocabularytscore2

socdem01-sd25g madrs01-totscr2

socdem01-au1 socdem01-anthro-weight-calc

er4001-er40-c-rtcr wasi201-sumstscores-total4subtest

er4001-er40-c-ang wasi201-sumstscores-perf4subtest

tlbx-rej01-nih-tlbx-fctsc er4001-er40-c-hap

er4001-er40-c-cr scid-v01-gf-social-scale

socdem01-sd24d socdem01-sd25f

tlbx-perhost01-nih-tlbx-fctsc lswmt01-nih-tlbx-agegencsc

socdem01-sd27h wasi201-ss-similaritiestscoreverbal4

socdem01-psqb20d socdem01-sd27i

flanker01-rt wasi201-ss-matrixreasoningtscoreperf4

socdem01-psy-health socdem01-audit12-02a

scid-v01-specphob-diag psychosocial01-psysoc-70

scid-v01-gf-role-scole socdem01-ps-prime-income

wasi201-iqscores-verbconfintervalfrom socdem01-alcq

er4001-er40-c-fpf psychosocial01-psysoc-75

dccs01-rt wasi201-ss-vocabularytscoreverbal4

orrt01-read-fcts socdem01-phq

acpt01-auditory-t13 er4001-er40-c-sad

18



Dropped Features
socdem01-baseline-j-003 wasi201-iqscores-verbsumtscores

acpt01-auditory-t8 socdem01-deppar

acpt01-auditory-t3 socdem01-sd27d

er4001-er40-c-fph scid-v01-scidd-84

lswmt01-nih-tlbx-fctsc wasi201-ss-matrixreasoningtscore2

pcps01-nih-tlbx-fctsc

Suppl. Table 3: Overview of all features (54) sorted according to

cognitive, psychometric and demographic that were used for anal-

ysis. Normalization procedure: data was either only scaled or log

transformed and scaled. Some features are categorical and were, if

necessary, converted into numerical keys.
Feature Assessment Scaling
Cognitive

acpt01-auditory-t1 Auditory CPT logscale

acpt01-auditory-t2 logscale

acpt01-auditory-t4 logscale

acpt01-auditory-t5 logscale

acpt01-auditory-t6 logscale

acpt01-auditory-t9 logscale

acpt01-auditory-t10 logscale

acpt01-auditory-t11 logscale

acpt01-auditory-t12 logscale

acpt01-auditory-t14 logscale

acpt01-auditory-t15 logscale

cogcomp01-nih-fluidcogcomp-ageadjusted Cognition Composite Scores logscale

cogcomp01-nih-crycogcomp-ageadjusted logscale

dccs01-nih-dccs-ageadjusted NIH Toolbox Dimensional Change Card Sort Test logscale

deldisk01-sv-6mo-40000 Delay Discounting Task logscale

deldisk01-sv-3yr-40000 logscale

deldisk01-sv-1mo-40000 logscale

deldisk01-sv-5yr-40000 logscale

deldisk01-sv-10yr-40000 logscale

deldisk01-sv-1yr-40000 logscale

deldisk01-auc-200 scale

deldisk01-auc-40000 scale

flanker01-nih-flanker-ageadjusted NIH Toolbox Flanker logscale

Inhibitory Control and Attention Test

lswmt01-tbx-ls NIH Toolbox List Sorting Working Memory Test logscale

orrt01-read-acss NIH Toolbox Oral Reading Recognition Test logscale

pcps01-nih-patterncomp-ageadjusted Pattern Comparison Processing Speed Test logscale

psm01-nih-picseq-ageadjusted NIH Toolbox Picture Sequence Memory Test logscale

tpvt01-tpvt-acss NIH Toolbox Picture Vocabulary Test logscale

wasi201-vocab-totalrawscore Wechsler Abbreviated Intelligence Scale, WASI II logscale

wasi201-matrix-totalrawscore logscale
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Feature Assessment Scaling
wasi201-iqscores-full2iq logscale

Psychological

cgi01-gaf2a MIRECC GAF Score logscale

cgi01-gaf2b1 logscale

cgi01-gaf2b2 categorial

cgi01-gaf2c logscale

prang01-anger-rs-nih-toolbox-anger PROMIS Anger

-affect-cat-age-18+-v2.0 logscale

-physical-aggression-ff-age-18+-v2.0 logscale

-hostility-ff-age-18+-v2.0 logscale

predd01-edd-rs NIH Toolbox Sadness CAT logscale

prsi01-soil-rs NIH Toolbox Loneliness logscale

pss01-pss-distress-rs NIH Toolbox Perceived Stress Scale logscale

self-effic01-nih-tlbx-rawscore NIH Toolbox Self-Efficacy CAT logscale

tlbx-emsup01-nih-tlbx-rawscore-nih-toolbox NIH Toolbox Emotion Domain

-emotional-support-ff-age-18+-v2.0 - Emotional Support Survey logscale

-instrumental-support-ff-age-18+-v2.0 logscale

tlbx-friend01-nih-tlbx-rawscore - Friendship Survey logscale

tlbx-perhost01-nih-tlbx-rawscore - Perceived Hostility Survey logscale

tlbx-rej01-pr-score - Peer Rejection and Perceived Rejection Surveys logscale

tlbx-wellbeing01-tlbxpa-ts - Psychological Well-Being logscale

Demographic

ses01-sestot Parental SES Hollingshead-Rendlich categorial

ses01-mot-edscale categorial

ses01-fat-edscale categorial

socdem01-sex Demographics Form categorial

socdem01-interview-age scaleage

socdem01-race categorial
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Suppl. Table 4: Number of missing entries per subject
Subject Number of missing values
NDARBA212KMG 1
NDARPD149HAG 1
NDARLG546TEA 1
NDARGB092FDQ 1
NDARCN428MJN 1
NDARXY959VNH 1
NDARFA038XWN 1
NDARJG634FY8 1
NDARUL529CG9 1
NDARJT322WXT 1
NDARXD502YMF 1
NDAR-INVLE002YD2 2
NDARKW893KM0 1
NDARJA321GCN 1
NDARWV100KAY 1
NDAR-INVXH347RUY 1
NDAR-INVWM000VNQ 1
NDAR-INVAR969RLZ 1
NDARGY450PB5 1
NDARZD427XM6 2
NDARNE321KE7 1
NDAR-INVEZ580EJ4 1
NDAR-INVTV985UYC 1
NDARMA691MNU 2
NDARXM887LRX 1
NDARXM921HKG 1
NDARWH919JM6 1
NDARTB513NAK 1
NDARKL811MLZ 1
NDARYP983TGQ 1
NDARDM382AXR 1
NDARFV856FT0 1
NDARJX175RDU 1
NDARZF769NFU 1
NDARXV601GCY 1
NDAREV475RWF 1
NDARND142AKJ 1
NDARJN875AYL 1
NDARPJ988JAT 1
NDARKB336YJQ 1
NDARPZ931MU9 1
NDARKA491VAG 1
NDARAK704TX8 2
NDARGR814XTC 2
NDARWJ204DJA 3
NDAR-INVFH233LYL 3
NDAR-INVTU739KL9 2
NDARVU141JWN 2
NDAR-INVPM355ND7 2
NDARFZ200EMY 2
NDARXM919EY1 2
NDAR-INVZF057YMK 2
NDAR-INVGE811UNG 2
NDARMC681ZFP 2
NDAR-INVUH339RDB 2
NDAR-INVKW983VTY 2
NDARMY791UYA 2
NDAR-INVWH077PK3 2
NDAR-INVEH619UM2 4
NDAR-INVMC872XH5 2
NDAR-INVXK842PYR 3
NDAR-INVXF293JK1 3
NDAR-INVRD953LXG 2
NDARNZ015PMM 2
NDARHL343VKA 3
NDARJV605VUB 2

4.2 Brain Data

NW1:

1: 6932, 14, -66, -48, cerebellum VIIIa

2: 6590, -20, -69, -60, cerebellum VIIIa, cerebellum crus

NW2:

1: 6763, 8, -48, -28, cerebellum VI

2: 5574, -33, -51, -39, cerebellum VI

NW3:
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1: 7340, -18, -70, -28, cerebellum VI, cerebellum crus I

NW4:

1: 11747, 2, -57, -27, cerebellum I-V

2: 1168, -16, -40, -58, cerebellum VIIIb

3: 134, 21, -42, -56, cerebellum VIIIb

NW5:

1: 10338, 6, -74, -38, cerebellum VIIb, cerebellum crus

NW6:

1: 5836, -18, -2, -33, parahippocampal gyrus, temporal pole

2: 3948, 34, -6, -51, parahippocampal gyrus, temporal pole

3: 329, -21, -87, -46, cerebellum crus II

NW7:

1: 10263, -2, -56, -46, r. cerebellum IX, l. cerebellum IX

2: 489, -27, -56, -36, cerebellum VI, cerebellum V

NW8:

1: 6947, -42, -60, -56, cerebellum VIIb, cerebellum crus

2: 5665, 40, -58, -51, cerebellum VIIb, cerebellum crus

3: 352, -14, -6, 10, thalamus

NW9:

1: 6039, -40, -4, -38, fusiform, middle temporal gyrus, inferior temporal gyrus

2: 5371, 48, -10, -46, middle temporal gyrus, inferior temporal gyrus

NW10:

1: 6981, 3, -78, 8, intracalcarine cortex, lingual gyrus

2: 177, 32, -82, 26 lateral occipital cortex

NW11:

1: 12704, 0, 20, 27, cingulate gyrus

2: 176, -33, 33, 33, middle frontal gyrus

3: 109, 34, 27, 30, middle frontal gyrus

4: 100, -8, -4, 15, thalamus

NW12:

1: 7408, 2, -64, 18, precuneus, supracalcarine cortex

NW13:

1: 5803, -8, -66, 22, precuneus

2: 1015, -28, -62, -33, cerebellum VI, cerebellum crus I

3: 689, 33, -26, 51, postcentral gyrus, precentral gyrus

4: 192, 33, 6, -4, insula

5: 148, 32, -6, -44, fusiform gyrus

6: 112, 36, -36, 39, supramarginal gyrus, superior parietal cortex
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NW14:

1: 3720, 6, -57, 4, lingual gyrus, precuneus

2: 2335, -14, -48,-9, lingual gyrus, posterior cingulate

NW15:

1: 3778, 14, -9, -21, hippocampus, parahippocampal gyrus

2: 3215, -24, -4, -36, hippocampus, parahippocampal gyrus

3: 767, 16, -66, 20, n. accumbens

4: 197, 16, -66, 20, cuneal cortex, supracalcarine cortex

NW16:

1: 25138, -4, 48, 3, paracingulate gyrus, cingulate gyrus, middle frontal gyrus, frontal pole

NW17:

1: 9529, 0, 28, -14, subcallosal cortex, medial frontal cortex

NW18:

1: 8174, -3, 4, -2, putamen, amygdala

2: 7660, -3, 4, -2, putamen, amygdala

NW19:

1: 3418, 12, -96, 3, occipital pole

2: 2974, -14, -99, -14, occipital pole

3: 510, 39, -64, -48, cerebellum crus

NW20:

1: 3082, -20, 22, 2, caudate, insula

2: 2833, 51, 30, -14, orbitofrontal cortex, insula

NW21:

1: 3223, 28, -18, -32, parahippocampal gyrus, fusiform gyrus

2: 2397, -32, -10, -48, fusiform gyrus

3: 339, 48, -52, -18, inferior temporal gyrus

NW22:

1: 5026, -12, 10, -18, temporal pole, orbitofrontal cortex

2: 3925, 30, 10, -30, temporal pole, orbitofrontal cortex

3: 2263, 38, -12, -14, insula

4: 1655, -66, -20, -4, superior temporal gyrus, planum temporale

5: 631, -30, -52, -56, cerebellum VIIIa

NW23:

1: 2188, 33, -33, 40, postcentral gyrus

2: 1265, -64, -22, 26, postcentral gyrus

3: 172, -50, -27, 10, Heschl gyrus, planum temporale

4: 142, -54, -10, 2, Heschl gyrus, planum temporale

5: 141, -20, -69, -18, cerebellum VI
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NW24:

1: 6802, -34, -48, -10, inferior temporal gyrus, middle temporal gyrus, fusiform gyrus

2: 4781, 57, -46, -24, inferior temporal gyrus, middle temporal gyrus

3: 406, -38, -58, -57, cerebellum VIIb, cerebellum VIIIa

4: 144, 44, 27, -9, orbitofrontal cortex

5: 32, 26, -24, orbitofrontal cortex, temporal pole

NW25:

1: 992, 21, -75, -18, cerebellum VI

2: 316, 22, -84, -38, cerebellum crus

3: 213, 56, -2, -32, middle temporal gyrus

4: 133, 33, -27, -30, fusiform gyrus

5: 126, 40, 10, 38, temporal pole

NW26:

1: 10618, -2, -20, 4, thalamus

2: 476, -21, -87, -46, cerebellum crus II

3: 462, -30, -15, 64, precentral gyrus

4: 115, -33, -96, -6, occipital pole

NW27:

1: 5041, -4, -48, 24, cingulate gyrus

2: 764, -32, -62, -60, cerebellum VIIIa

3: 188, 12, -74, 22, precuneus

NW28:

1: 4057, 51, -15, -18, middle temporal gyrus

2: 1945, -51, -16, -20, middle temporal gyrus

3: 407, 20, -80, -32, cerebellum crus

4: 292, -46, 8, -3, frontal operculum

NW29:

1: 8736, -3, 8, 58, paracingulate gyrus, juxtapositional lobule

2: 177, -27, -51, 60, superior parietal lobule

3: 125, 26, -14, 56, precentral gyrus

NW30:

1: 2731, -22, 32, 32, superior frontal gyrus, frontal pole

2: 2456, 26, 57, -8, frontal pole

3: 910, 32, -16, -10, putamen

4: 761, -30, -18, -6, putamen

5: 611, 22, -75, -30, cerebellum crus

6: 177, -16, 4, 58, superior frontal gyrus

7: 122, -38, -27, 42, postcentral gyrus
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[30] L. Ertöz, M. Steinbach, and V. Kumar. “Finding Clusters of Different Sizes, Shapes,

and Densities in Noisy, High Dimensional Data”. Proceedings. Society for Indus-

trial & Applied Mathematics (SIAM), May 2003, pp. 47–58. doi: 10 . 1137 / 1 .

9781611972733.5.

[31] A. Y. Ng, A. Y. Ng, M. I. Jordan, and Y. Weiss. “On Spectral Clustering: Analy-

sis and an algorithm”. ADVANCES IN NEURAL INFORMATION PROCESSING

SYSTEMS 14 (2001), pp. 849–856.

[32] D. Niu, J. G. Dy, and M. I. Jordan. Dimensionality Reduction for Spectral Clustering.

Tech. rep. June 2011, pp. 552–560.

27

https://doi.org/10.33160/yam.2018.06.001
https://doi.org/10.2307/2346830
https://doi.org/10.1017/S1355617717001047
https://doi.org/10.1017/S1355617717001047
https://doi.org/10.1137/1.9781611972733.5
https://doi.org/10.1137/1.9781611972733.5

	Data
	Features Selection
	Clustering of Mixed Data Types
	Preprocessing of Behavioural, Psychological and Demographic Data
	Preprocessing of Brain Data
	Preprocessing of Combined Brain and Non-Brain Data

	Results
	Non-Brain Data
	Brain Data
	Brain and Non-Brain Data
	Clinical Data
	Cluster Exploration

	Extended Discussion
	Limitations

	Features Description
	Non-Brain Data
	Brain Data

	References

