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 35 

ABSTRACT 36 

Background: Axial Spondyloarthritis can lead to significant disability and impairment in quality 37 
of life. TNF inhibitors are recommended to patients enduring active disease despite 38 
conventional treatment. Nonetheless, up to 40% of patients of patients fail to respond to TNF 39 
inhibitors. In this context, it is important to identify as early as possible patients highly likely to 40 
respond. This study aims at identifying, among axial spondyloarthritis patients undergoing 41 
treatment with the TNF inhibitor adalimumab, early molecular biomarkers differentiating good 42 
responders from non-responders after 14 weeks of treatment, as measured by ASAS20. 43 

Methods: Peripheral blood RNA sequencing and serum proteins measured by mass 44 
spectrometry were evaluated in a cohort of biologic naïve axial spondyloarthritis patients (n = 45 
35), before (baseline) and after (3-5 days, 2 weeks and 14 weeks) treatment with adalimumab. 46 
Results from differential expression analysis were used in combination with clinical data to build 47 
logistic regression models and random forest models to predict response to adalimumab at 48 
baseline. 49 

Results: Responders to adalimumab presented higher levels of markers of innate immunity at 50 
baseline, mostly related with neutrophils, and lower levels of adaptive immunity markers, 51 
particularly B-cells. A logistic regression model incorporating ASDAS-CRP and AFF3, the top 52 
differentially expressed gene between responders and non-responders at baseline, enabled an 53 
accurate prediction of response to adalimumab in our cohort (AUC=0.96), with random forest 54 
models suggesting 80% predictive accuracy. A treatment-associated signature suggests a 55 
reduction in inflammatory activity, with C-reactive protein and Haptoglobin showing strong and 56 
early decrease in the serum of axial spondyloarthritis patients, while a cluster of apolipoproteins 57 
showed increased expression at week 14. 58 

Conclusions: Differences in disease activity and/or blood innate/adaptive immune cell type 59 
composition at baseline may be a major contributor to response to adalimumab in axial 60 
spondyloarthritis, where a model including clinical and blood gene expression variables shows 61 
high predictive power. Our results suggest novel molecular biomarkers of response to 62 
adalimumab at baseline.  63 

Trial registration: Axial spondyloarthritis patients were selected from participants of the 64 
Bioefficacy study - Biomarkers Identification of Anti-TNFα Agent's Efficacy in Ankylosing 65 
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Spondylitis Patients Using a Transcriptome Analysis and Mass Spectrometry (clinical trials.gov 66 
identifier NCT02492217). 67 

Keywords: Axial spondyloarthritis, TNF inhibitor, Adalimumab, Treatment response, Disease 68 
activity, Innate immune system, Adaptive immune system, Peripheral blood, RNA sequencing, 69 
Proteomics. 70 

 71 

BACKGROUND   72 

Axial Spondyloarthritis (axSpA) can lead to significant disability and impairment in quality of life 73 

[1]. Inflammatory back pain is a characteristic symptom, and new bone formation with 74 

syndesmophytes and ankylosis are the disease radiographic hallmarks. Clinical features of 75 

axSpA are heterogeneous, including inflammatory back pain, asymmetrical peripheral 76 

oligoarthritis (predominantly of the lower limbs), enthesitis, and specific organ involvement such 77 

as acute anterior uveitis, psoriasis, and chronic inflammatory bowel disease. Pulmonary, renal, 78 

neurological, aortic root involvement and conduction abnormalities are all rare complications of 79 

axSpA [2]. 80 

In axSpA, non-steroidal anti-inflammatory drugs (NSAIDs) have a central role in treatment and 81 

are considered the first-choice drug treatment. However, biological disease-modifying 82 

antirheumatic drugs (bDMARDs) including TNF inhibitors (TNFi), are recommended to patients 83 

enduring active disease despite conventional treatment (or intolerance/contraindication) [3]. The 84 

efficacy of TNFi has been documented in several studies showing significant and early 85 

improvements in disease activity and function [4] sustainable for long periods of time [5]. In spite 86 

of its well documented benefit in axSpA, up to an estimated 40% axSpA patients fail to respond 87 

to TNFi treatment [6] or complain with adverse events [7]. 88 

The concept of “window of opportunity” is of critical importance in rheumatoid arthritis (RA) [8] 89 

and seems to be also relevant in the axSpa context, with studies of magnetic resonance 90 
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imaging in the context of TNFi treatment suggesting that early effective suppression of 91 

inflammation has the potential to reduce radiographic damage [9]. Patients that fail to respond 92 

to the first bDMARD usually switch to another bDMARD (with the same or other mechanism of 93 

action, such as IL-17 inhibitors [10]), and it may take several iterations to find a drug that 94 

reduces disease activity [3]. Response to an effective therapy can take several weeks/months, 95 

and the delay caused by non-response may imply irreversible damage. In this context, it is 96 

important to identify as early as possible the patients highly likely to respond, meaning to 97 

achieve remission or low disease activity, following the treat to target concept [11]. 98 

Studies specifically in axSpA indicate that primary non-responders to TNFi tend to be older, 99 

HLA-B27 negative, with longer disease duration (> 20 years), higher structural damage and 100 

poor function [12]. Likewise, good response to therapy was associated with younger age, HLA-101 

B27 carriage, short disease duration (<10 years), elevation of acute phase reactants (CRP), and 102 

marked spinal inflammation (detectable by MRI) [13]. Higher levels of CRP is the most common 103 

marker associated with good response, but higher levels of other inflammation markers such as 104 

IL6 [14] and calprotectin [15] have also been associated with positive outcomes of TNFi 105 

treatment.  106 

The molecular characterization of anti-TNF response in axSpA revealed the unsurprising 107 

involvement of genes related with immunity and inflammation [16,17]. Although several studies 108 

address the overall effect of TNFi treatment in the axSpA context [18], very few specifically 109 

address the molecular changes associated with response/non-response to anti-TNF treatment 110 

in axSpA, most of them focusing on specific markers of inflammation in the sera of a limited set 111 

of patients. In particular, no study systematically assessed large scale transcriptomics and/or 112 

proteomics data to find early predictors of response to anti-TNF in axSpA. On the other hand, 113 

several studies have tried to develop such predictors in RA, with variable success [19–21]. One 114 

study using whole blood transcriptomics achieved 65% accuracy of response to infliximab in RA 115 
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with a 10-gene biomarker set [19]. In another study using transcriptomics of monocytes, CD11c 116 

was found to be a very good predictor of response (95% accuracy) to adalimumab monotherapy 117 

in RA [20]. Thomson and colleagues used publicly available data to develop a model including 118 

18 signaling mechanisms that could increase the capacity to discover non-responders, from 119 

27% to 59% [21]. More recently, several studies suggested an interplay between innate and 120 

adaptive immunity, with a higher myeloid-driven inflammation in responders and higher 121 

lymphoid activity in non-responders [21–23]. 122 

Reliable predictors of outcome for anti-TNF monotherapies in axSpA are currently not yet 123 

available. The goal of this study is thus the identification of baseline predictors, using 124 

transcriptomic and proteomic approaches, of patient response to anti-TNF therapy 125 

(adalimumab) in axSpA using peripheral blood samples, which are particularly appealing given 126 

the relative ease of obtaining samples as part of patient follow-up. 127 

 128 

METHODS 129 

Study design and samples collection 130 

AxSpa patients were selected from participants of the Bioefficacy study - Biomarkers 131 

Identification of Anti-TNFα Agent's Efficacy in Ankylosing Spondylitis Patients Using a 132 

Transcriptome Analysis and Mass Spectrometry (clinical trials.gov identifier NCT02492217). 133 

This is a multicentric, prospective, nonrandomized, 14-weeks study that includes axSpA adult 134 

patients according to axSpA ASAS criteria [24]. The study included biologic naïve patients, 135 

starting TNFi therapy with adalimumab (40mg subcutaneously fortnightly), according to the 136 

Portuguese Society of Rheumatology Guidelines [25] (see supplementary material). Clinical 137 

evaluations and peripheral blood collections were performed at baseline (start bDMARD), and 138 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

after 3-5 days, 2 weeks and 14 weeks. Patients were classified as responders and non-139 

responders, according to ASAS20 [26,27] at week 14. To have 80% power to detect a 0.5SD 140 

difference between groups at p=0.05 (paired t-test), we estimated that we would need samples 141 

from 18 responders and 18 non-responders. Usually only 60% of patients after starting TNFi 142 

reach ASAS20, which means that we would need to include a larger number of patients to 143 

establish the subgroups for analysis. Thus, we included the number of patients necessary to 144 

ensure 18 non-responders, after which we closed the recruitment period. All clinical evaluations 145 

were performed by previously trained rheumatologists. Blood samples were collected from all 146 

subjects at baseline to test for HLA-B27 status and at each timepoint to determine C-reactive 147 

protein (CRP), Erythrocyte Sedimentation Rate (ESR), other biochemical parameters and for 148 

RNA-seq and serum proteomic analysis.  149 

RNA preparation and NGS sequencing (RNA-seq) 150 

Peripheral blood samples were collected into PAXgene Blood RNA System® tubes and stored 151 

at -80° C according to the manufacturer’s recommendations [28]. Total RNA was extracted from 152 

whole blood samples according to the standard PAXgene protocol (Qiagen, 2008). The quantity 153 

of RNA was measured using a NanoDrop 2000/2000c Spectrophotometer according to the 154 

manufacturer's procedure (Thermo-Scientific, 2000); RNAs with a 260:280 ratio of ≥1.5 were 155 

sequenced as below. The quality and quantity of the libraries was assessed by Fragment 156 

Analyzer with the method of DNF-474-22 - HS NGS Fragment 1-6000bp (Agilent). Sequencing 157 

library preparation was performed using Illumina TruSeq stranded mRNA library preparation 158 

kits, with 100ng of total RNA as input. Libraries were sequenced on an Illumina NextSeq500 159 

sequencer (average of 39 million reads per sample, 75 base-pair paired-end). Sample 160 

correspondence between timepoints was confirmed using SmaSH [29]. We also used the 161 

transcriptomic data to confirm gender and HLA-B27 status. 162 
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RNA-Seq data analysis 163 

Raw sequencing reads were aligned to gencode (v32) transcripts using kallisto (version 0.46.1) 164 

[43], reaching an average of 86% reads assigned to genes (gene counts are in Supp. Table 11). 165 

The edgeR R package was used to filter low-expressed genes with the filterByExpr function and 166 

to normalize raw counts with the trimmed mean of M-values (TMM) normalization approach [44]. 167 

The limma R package was used to apply a voom transformation for variance stabilization [45], 168 

and to obtain differentially expressed genes through an empirical bayes approach. Genes were 169 

considered differentially expressed if the adjusted p-value of the test was less than 0.05. 170 

Functional enrichment analysis was performed using the fgsea R package, based on ranks of 171 

the moderated t-statistic from the empirical bayes analysis. The per-gene variance explained by 172 

each variable was estimated using the variancePartition R package. Permutational multivariate 173 

analysis of variance (adonis) was performed using the vegan R package. 174 

Inference of Immune cell populations from RNA-Seq data  175 

The hemograms collected in each timepoint were used to correlate with data obtained from 176 

transcriptomic analysis. As common hemograms did not provide specific information on B-cells 177 

and other more specific cell types, we used Cibersort [30] to infer relative frequencies of 178 

immune cell populations by comparing normalized log2(counts per million) of the blood 179 

transcriptomes to the Abbas et al. signatures [31]. To assess the accuracy of these 180 

measurements, we correlated the relative frequencies obtained with RNA-Seq with the values 181 

we obtained with clinical hemograms (Supplemental Figure 8A,B, pearson R=0.84 and p=3.3e-8 182 

for Neutrophils, R=0.86 and p=1.2e-8 for Lymphocytes). For consistency, we used only 183 

frequencies from Cibersort estimated values in the analyses for Fig4C and Fig2D, and in logistic 184 

regression models. In Supp. Fig. 8C,D we used exclusively hemogram data, and in Supp. Fig. 185 

8E.F we used frequencies estimated with Cibersort confirming the same conclusions. 186 
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Quantitative set analysis for gene expression (QUSAGE) [32] was used to assess the fold 187 

change of immune signature gene sets from Lewis et al. [33] (Supp. Fig. 7A).  188 

Proteomics Analysis (LC-MS/MS) 189 

Immunoaffinity depletion of high-abundance proteins. Peripheral blood samples were 190 

collected into Clot Activator Tubes (Monovette Serum Gel Z- 7.5 mL, Sarsted) containing 100 μL 191 

of Protease Inhibitor Cocktail (Sigma-Aldrich). The six most abundant proteins in serum were 192 

depleted using the Multiple Affinity Removal Spin Cartridge Human 6 Kit (Agilent 193 

Technologies®) following manufacturer's instructions. The remaining proteins were 194 

concentrated using 4 mL Spin Concentrators with 5000 MWCO (Agilent Technologies®). A 195 

centrifugation was performed (with a fixed angle rotor) at 4000 x g and 10ºC until the sample 196 

reached a volume between 100 and 140 μL, after which it was recovered from the bottom of the 197 

concentrator pocket and stored at -20ºC until further analysis. In order to quantify the amount of 198 

protein in each sample, the QuantiPro™ BCA Kit (Sigma-Aldrich®) was used. 199 

In-gel protein digestion. 50 µg of total proteins was diluted with MilliQ water to a final volume of 200 

20 µL and 10 µL of LDS3X (Invitrogen™ by Life Technologies™) was added, for a final volume 201 

of 30 µL. Samples were heated for 5 min at 99ºC and briefly centrifuged (16,000 g for 1 min). 202 

The whole volume of the supernatant containing the soluble proteins was loaded on a NuPAGE 203 

4-12% Bis-Tris (Invitrogen™ by Life Technologies™) gel and the proteins were subjected to 204 

SDS-PAGE electrophoresis for 5 min. After migration, the gels were stained with Coomassie 205 

SimplyBlue SafeStain (Invitrogen™ by Life Technologies™) for 5 min and washed with water 206 

overnight with gentle agitation. Polyacrylamide bands containing the stained proteome were cut 207 

by the limit of gel wells, between the front of migration and the well bottom. Each sample was 208 

treated and proteolyzed with trypsin Gold (Promega©) in presence of ProteaseMax detergent 209 

(Promega©) as previously described [46]. The final volume of peptide extract was 50 µL. 210 
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LC-MS/MS analysis. Tryptic peptides were analyzed with a Q-Exactive™ HF high resolution 211 

tandem mass spectrometer (ThermoFisher Scientific™) incorporating an ultra-high-field Orbitrap 212 

analyser as previously described [34]. Shortly, 10 μL of the resulting peptide mixtures for each 213 

sample were injected in a random order. First, peptides were desalted online on a reverse 214 

phase precolumn Acclaim PepMap 100 C18 (5 μm, 100 Å, 300 μm id x 5 mm), and then, they 215 

were resolved on a reverse phase column Acclaim PepMap 100 C18 (3 μm, 100 Å, 75 μm id x 216 

500 mm) at a flow rate of 200 nL/min with a 90 min gradient of 4 to 25 % of B in 75 min and 25 217 

to 40% of B in 15 min (being A: 0.1% HCOOH and B: 80% CH3CN, 0.1% HCOOH). The Q-218 

Exactive HF instrument was operated according to a Top20 data-dependent method consisting 219 

in a scan cycle initiated with a full scan of peptide ions in the ultra-high-field Orbitrap analyzer, 220 

followed by serial selection of each of the 20 most abundant precursor ions, high energy 221 

collisional dissociation and MS/MS scans. Full scan mass spectra were acquired from m/z 350 222 

to 1,500 with a resolution of 60,000. A peptide exclusion list was established for the most 223 

abundant immunodepleted proteins: serum albumin (https://www.uniprot.org/uniprot/P02768) 224 

complement C3 (P01024), alpha-2-macroglobulin (P01023), and apolipoprotein B-100 225 

(P04114), in order to focus the analysis on the other proteins. Each MS/MS scan was acquired 226 

with a threshold intensity of 83.000, on potential charge states of 2+ and 3+ after ion selection 227 

performed with a dynamic exclusion of 10 sec, maximum Inclusion Time (IT) of 60 ms and an 228 

m/z isolation window of 2.0. MS/MS spectra at a resolution of 15.000 were searched using 229 

MASCOT 2.5.1 software (Matrix Science) against the Swissprot Human database downloaded 230 

in July 2019 (20.432 Homo sapiens protein sequences). The following parameters were used 231 

for MS/MS spectra assignation: full trypsin specificity, maximum of two missed cleavages, mass 232 

tolerances of 5 ppm on the parent ion and 0.02 Da on the secondary ions, fixed modification of 233 

carbamidomethyl cysteine (+57.0215), and oxidized methionine (+15.9949) and deamidated 234 

(NQ) (0.9840) as dynamic modifications. 235 
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Protein identification and relative quantification. After LC-MS/MS, a bioinformatic analysis 236 

was performed where all peptide matches with a MASCOT peptide score below a query identity 237 

threshold p-value of 0.05 were filtered and assigned to proteins. A total of 5.453.298 MS/MS 238 

spectra were recorded and 1.632.427 spectra were assigned to peptide sequences from the 239 

protein database – these peptide spectral matches are listed in Supp. Table 12. A protein 240 

identification was considered valid when at least two different non-ambiguous peptides were 241 

detected in the whole dataset. False discovery rate (FDR) for proteins was below 1% when 242 

applying these rules with the MASCOT decoy search mode. A total of 333 polypeptide 243 

sequences were identified based on at least 2 non-ambiguous peptides – from the initially 377 244 

polypeptide sequences identified, 44 contaminant proteins (keratin and keratin associated 245 

proteins) were excluded from further analysis. For each validated protein (listed in Supp. Table 246 

12), the number of MS/MS spectra for all detected non-ambiguous peptides or ‘Spectral Count’ 247 

(SC) [47] was used as a proxy of their abundances [48]. To further assess the value of SC as a 248 

measure of protein abundance, we compared clinically determined CRP levels with CRP levels 249 

measured by proteomics, and found these to be highly correlated (Supp. Fig. 9, pearson 250 

R=0.73, spearman rho=0.79, p<2e-16). Differential protein analysis was performed similarly to 251 

the transcriptomics, using the SC values as counts.  252 

 253 

Data analysis 254 

Descriptive statistics were used to summarize baseline characteristics for responders and non-255 

responders. Two sample Wilcoxon tests (continuous variables) and chi-square tests of 256 

association (categorical variables) were used to compare characteristics between responders 257 

and non-responders at different timepoints, in particular between baseline and week 14. 258 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Differential gene and protein expression analysis used the limma R package to apply a voom 259 

transformation for variance stabilization on normalized expression values, and to obtain 260 

differentially expressed genes through an empirical bayes approach, followed by multiple test 261 

correction with the Benjamini-Hochberg method. Genes were considered differentially 262 

expressed if the adjusted p-value of the test was less than 0.05. 263 

Logistic regression models, and plotting was performed using the R software. Sparse partial 264 

least squares discriminant analysis (sPLS-DA) was performed using the mixOmics R package. 265 

Random forest models were obtained using the randomForest R package. 266 

 267 

RESULTS 268 

The TNF inhibitor adalimumab induced a reduction in disease activity of most axSpa 269 

patients 270 

According to the ASAS20 criteria we obtained 18 non-responders, and selected, from the whole 271 

cohort, 18 responders matched to non-responders by age and gender (one non-responder was 272 

later excluded as it had missing information). Table 1 briefly summarizes the clinical 273 

characteristics of this sub-group of 35 patients included in this study. Responders presented 274 

higher values of C-reactive protein (CRP) (p=0.011) and ASDAS-CRP (p<0.001) at baseline 275 

(BL). Responders had a higher proportion of HLA-B27 (p=0.01), with 83% having the allele 276 

against only 41% of non-responders. Disease activity decreased from baseline to week 14 277 

(w14) in both responders (ASDAS-CRP: from 4.2 at baseline to 1.6 at week 14, p=2e-04; 278 

BASDAI: from 6.5 to 1.9, p=2e-04) and non-responders (ASDAS-CRP: from 3.2 to 2.5, p=5e-04; 279 

BASDAI: from 5.3 to 4.0, p=6e-03) (Table 1, Supp. Fig. 1A,B). This suggests that treatment with 280 
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TNFi, with a few exceptions, has lowered inflammatory markers and disease activity scores in 281 

most patients.   282 

Treatment with adalimumab had a significant impact on the expression of blood cell 283 

transcripts and serum proteins of axSpa patients. 284 

Expression levels of blood cell transcripts and abundances of serum proteins in axSpA patients 285 

did not clearly separate responders from non-responders in an unsupervised principal 286 

component analysis (PCA) at neither BL nor at w14 (Fig. 1A). Nonetheless, serum proteomics 287 

showed clear differences between BL and w14 in responders, suggesting an effective impact of 288 

adalimumab treatment. Indeed, a sparse partial least squares discriminant analysis (sPLS-DA) 289 

supports a separation between BL and W14, for both responders and non-responders, not only 290 

in proteomics (Supp. Fig. 2), but also in transcriptomics (p<0.05, Fig. 1B). Permutational 291 

multivariate analysis of variance indicates that both time points (3% and 17%) and response 292 

groups (2% and 4%) can explain a small but statistically significant (p<0.05) part of the 293 

observed global variation both in transcript and protein levels, respectively. Moreover, sPLS-DA 294 

analysis supports a separation between responders and non-responders at baseline (p<0.01, 295 

Fig. 1C). This suggests that treatment with TNFi had a significant impact in the expression of 296 

blood cell transcripts and serum proteins of axSpA patients undergoing treatment with 297 

adalimumab. Moreover, it also suggests the existence of detectable differences between 298 

responders and non-responders at baseline. 299 

Blood transcriptome data at baseline suggests that response to adalimumab derived 300 

from an interplay between innate and adaptive immunity. 301 

We tested for differences in gene expression or protein abundance between responders and 302 

non-responders at baseline. No proteins (of 112) were found to be significantly differentially 303 

abundant between the two groups at BL (Supp. Table 9), but we could detect 92 (of 18688) 304 
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genes (12 with FC>2) differentially expressed between responders and non-responders at BL, 305 

with 16 (0 with FC>2) more expressed in responders and 76 (12 with FC>2) more expressed in 306 

non-responders (Fig. 2A, Supp. Table 10). Genes more expressed in responders are associated 307 

with inflammation, such as neutrophil degranulation and interferon signaling, while genes more 308 

expressed in non-responders are associated with lymphocyte activation, namely B-cell activity, 309 

and metabolism, namely translation (Fig. 2B). The top differentially expressed genes are PAX5, 310 

MS4A1 (CD20), FCRLA, BANK1 and AFF3, all associated with B-cells and all significantly more 311 

expressed in non-responders at BL (Fig. 2C). Corroborating this observation, estimation of 312 

lymphocyte population frequencies using RNA-Seq indicates significantly higher frequencies of 313 

B-cells in non-responders at BL (Fig. 2D). Genes associated with B-cells show the strongest 314 

overall difference between responders and non-responders at BL. Moreover, there is a 315 

significant positive correlation between disease activity and estimated neutrophil frequencies, 316 

and a negative correlation between disease activity and estimated B- and T- cell frequencies at 317 

BL (Supp. Fig. 7B). Thus, our results suggest that response to adalimumab derives from 318 

alterations in the balance between innate and adaptive immunity, indicating an opposing role 319 

particularly between neutrophils and B-cells. 320 

Blood transcriptome data improved ability to differentiate responders versus non-321 

responders at baseline 322 

In our cohort, ASDAS-CRP at baseline was significantly (p=0.011) associated with response in 323 

a multivariate logistic model of association with TNFi response (Fig. 3A). HLA-B27 status was 324 

also significant (p=0.034), while age at diagnosis and disease duration did not reach statistical 325 

significance. ASDAS-CRP was more elevated in responders, with an optimal threshold of 4.15 326 

(100% sensitivity and 50% specificity) when considered in isolation (area under the curve (AUC) 327 

= 0.83, Fig. 5B). A model incorporating simultaneously the clinical parameters ASDAS-CRP and 328 

HLA-B27 reached an AUC of 0.88. Interestingly, a model replacing HLA-B27 with the ratio 329 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

between neutrophils and total lymphocytes (N/L) achieved an AUC of 0.84, hinting at the 330 

potential for the use of hemogram data as a simple alternative to predict response to treatment. 331 

Finally, we incorporated in our models variables from the transcriptomic data. For this, we chose 332 

the most robustly differentially expressed gene between responders and non-responders at 333 

baseline, which was AFF3, a tissue-restricted nuclear transcriptional activator preferentially 334 

expressed in lymphoid tissues. This gene presented the lowest false discovery rate (0.006), and 335 

a fold change of 1.9 (higher in non-responders, Fig. 2A,B). Adding the gene expression values 336 

of AFF3 to a logistic regression model including ASDAS-CRP increased the AUC to 0.96 (Fig. 337 

3B). If we choose the second most robust differentially expressed gene (BANK1), we reach a 338 

similar AUC of 0.94 (not shown).  Moreover, a random forest model using ASDAS-CRP, and 339 

AFF3 achieved a predictive accuracy of 80%, better than using ASDAS-CRP alone (60%) or 340 

only clinical variables ASDAS-CRP and HLA-B27 (70%). Thus, our results suggest that blood 341 

transcriptome data can improve our ability to differentiate responders from non-responders at 342 

baseline, and that simple hemogram data can have valuable clinical application.  343 

Transcripts and proteins varying between baseline and week 14 were associated with a 344 

decrease in innate immune activity 345 

To assess more concretely the impact of adalimumab treatment, we first looked for differences 346 

in gene expression and protein abundance between BL and w14. In responders, 2120 (of 347 

21438) genes (103 genes with fold change (FC) greater than 2) and 41 (of 129) proteins (7 with 348 

FC>2) were differentially abundant between BL and w14, of which 1096 genes (41 with FC>2) 349 

and 25 proteins (4 with FC>2) were upregulated at w14 (Fig. 4A, Supp. Tables 1,2).  350 

In responders, genes associated with inflammation, particularly neutrophil-driven (such as 351 

DOK3, LRG1, and MMP9), tended to be significantly less expressed in blood cells at w14 in 352 

comparison to BL, while upregulated genes were associated mostly with translation and other 353 
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metabolic processes (eg. EEF1A1, RPL7, MRPL1, Fig. 4B). In agreement with this, serum 354 

proteins less abundant at w14 were associated with the activation of the complement system 355 

and innate immunity, including the complement factors CFB and CFH, and complement 356 

components C3, C8B and C8G (Fig. 4B, Supp. Table 2). Serum proteins more abundant at w14 357 

were linked with vitamin metabolism, including the apolipoproteins APOA1, APOA2, and 358 

APOA4. Given the consistent decrease in expression of Neutrophil and innate immunity 359 

markers, we also compared estimated frequencies of different white blood cells between BL and 360 

w14. In agreement with the gene expression results, we observe in responders a significant 361 

decrease in neutrophil frequency at week 14, and an increase of B cell frequency (Fig. 4C), with 362 

a similar pattern observed for other adaptive immune cell populations such as CD4+ T-cells 363 

(Supp. Fig. 7A). 364 

In non-responders, no significant differences in blood cell gene expression were found between 365 

BL and w14 (Supp. Fig. 3 and Supp. Table 3). Nonetheless, a rank-based gene set enrichment 366 

analysis (GSEA) of the transcriptomics data uncovers the same pathways as in responders 367 

(Supp. Fig. 4). In non-responders, 16 serum proteins were found differentially expressed (none 368 

with FC>2), of which 11 upregulated at w14, including APOA1, CLEC3B, CFH and RBP4 (Supp. 369 

Table 4). No significant pathways are found in the proteomics data. Also, although there is a 370 

similar tendency to decrease neutrophil frequency between BL and w14 in non-responders, it 371 

does not reach statistical significance in neutrophils nor other immune cell populations (Supp. 372 

Fig. 7A). 373 

Genes and proteins differentially abundant between BL and w14 in responders were at more 374 

similar levels between the two patient groups at w14 (p<0.05), suggesting preexisting 375 

differences at baseline that got attenuated due to treatment (Supp. Fig. 5). In agreement with 376 

this observation, we did not find any genes or proteins displaying significantly different behavior 377 

between time and response group, suggesting that the action of adalimumab in responders and 378 
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non-responders is similar. Overall, these results suggest that transcripts and proteins varying 379 

during adalimumab treatment were associated with a decrease in innate immune activity. 380 

 381 

Markers of inflammation were already lowered in the serum after 3-5 days of adalimumab 382 

treatment, in both responders and non-responders. 383 

To refine our understanding of the temporal response to adalimumab, we performed serum 384 

proteomics analysis also at 3-5 days and 2 weeks after beginning of treatment. In responders, 385 

among the serum proteins significantly downregulated at w14 in comparison to BL, Haptoglobin 386 

(HP), Haptoglobin receptor (HPR) and CRP showed a tendency to decrease already at 3-5 387 

days, further decreasing until 2 weeks (Fig. 5A, Supp. Tables 5,6). These proteins also tended 388 

to decrease in non-responders, particularly in the first two weeks (Supp. Fig. 6A-C, Supp. 389 

Tables 7,8). Another group of proteins (including CFH and CFB) displayed a mild continuous 390 

decrease through time, while genes like C3 and C8A only appeared to decrease noticeably 391 

between week 2 and week 14. Among the proteins significantly increasing in w14 in comparison 392 

with BL in responders, there was greater heterogeneity, but some, including APOD, APOA2 and 393 

PPBP displayed a tendency to increase their abundance already at week 2, including in non-394 

responders (Fig. 5B, Supp. Fig. 6D). Interestingly, the average level of change of these proteins 395 

was much milder (maximum FC of 2) when compared to HP, HPR and CRP (FC of 3-5). Thus, 396 

our results indicate that some markers of inflammation elevated at baseline were already 397 

lowered in the serum of some patients after just 3-5 days of adalimumab treatment. 398 

 399 

DISCUSSION  400 
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This work documented that adalimumab treatment has a significant effect in transcript 401 

expression and protein abundances during the first 14 weeks of treatment. In our axSpA cohort, 402 

TNFi treatment seems to lower inflammatory markers in most patients, as observed in previous 403 

studies [4] and suggests an interplay between innate and adaptive immunity. Lymphoid markers 404 

such as AFF3, and Neutrophil/Lymphocyte ratios, emerge as novel differentiating variables 405 

between groups and enable highly accurate predictive models. 406 

The main objective of our study was to identify molecular predictors, at BL, of response to TNFi. 407 

Our results corroborate ASDAS-CRP as an effective measure to decide, as promptly as 408 

possible, about TNFi as a therapeutic option in axSpA. However, the cut-off to predict response 409 

to therapy at baseline with maximum sensitivity is 4.1, representing a very high disease activity. 410 

Therefore, more variables are necessary for an accurate prediction, particularly in cases of 411 

moderate disease activity. Adding HLA-B27 status brought further improvements, while the 412 

addition of other variables (age at disease onset, disease duration) didn’t seem to add further 413 

resolution to the model. The observation of an interplay between innate and adaptive immunity, 414 

also reported in previous studies in RA [23], suggest similar mechanisms in both diseases. Our 415 

analysis suggests that the ratios between innate/adaptive immune populations, such as 416 

neutrophils/lymphocyte ratios deserve further exploration as a simple clinical marker with 417 

interest regarding TNFi therapeutic decision. In agreement with this, replacing HLA-B27 with the 418 

ratio of neutrophil frequencies over total lymphocytes at BL enabled an accurate model, 419 

although it didn’t seem to improve over HLA-B27. This suggests a potential clinical interest, 420 

particularly when HLA-B27 status is not easily available. 421 

At the transcriptional level, our analysis revealed significant differences in several genes related 422 

to B cells (AFF3, CD19, MS4A1, FCRLA, BANK1, PAX5). In fact, the most enriched pathways 423 

were associated with B-cell development and activation (genes less expressed in responders), 424 

and to a lesser extent, neutrophil and inflammatory activity (eg. RIPK3, genes more expressed 425 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

in responders). At the proteomic level, we could not detect any protein consistently different at 426 

baseline between responders and non-responders. One possible reason may be that B cell 427 

proteins are present at too low a level in serum, which combined with the overall heterogeneity 428 

of the samples, made these undetectable in our proteomic analysis. We then used RNA-Seq 429 

data to estimate frequencies of different white blood cell populations that are not provided in the 430 

normal clinical hemogram, such as B-Cells. Our analysis confirmed a higher frequency of 431 

neutrophils, and a lower relative frequency of B cells (and of other adaptive immune 432 

populations) in responders in comparison with non-responders at baseline. Adding AFF3, a B-433 

cell associated gene that was the top differentially expressed gene at BL between responders 434 

and non-responders, in a logistic regression model with ASDAS-CRP, enabled a very accurate 435 

prediction of response to adalimumab (AUC=0.96). A similarly high predictive capacity was 436 

obtained with another B-cell associated gene (BANK1) providing further consistency to our 437 

results. Moreover, using the same models with robust machine learning methods including 438 

cross-validation suggests a predictive capacity of over 80% accuracy, an estimate which is likely 439 

to be very conservative given the small size of our cohort. 440 

To provide further insights regarding the molecular mechanisms involved in the differential 441 

response to TNFi treatment, we obtained measures of expression for blood transcripts and 442 

serum proteins of axSpA patients during 14 weeks of treatment with adalimumab. Our 443 

transcriptomics and proteomics data indicate that a significant fraction of the observed variation 444 

in gene expression can be explained by treatment time and response status. Moreover, 445 

transcripts and proteins with significantly reduced expression between BL and w14 of treatment 446 

were associated with inflammation and innate immunity, in agreement with the observed 447 

changes in clinical markers of inflammation and scores of disease activity. Taken together, this 448 

suggests the existence of clinically relevant information in the data and the potential to uncover 449 

early biomarkers of TNFi response.   450 
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Our transcriptomic results are in large agreement with previous results in axSpA. Namely, 451 

TNFSF14 (LIGHT), IL17RA, and EPOR, genes reported by Haroon et al. [16], also had 452 

significantly reduced expression after TNFi treatment in our cohort (the gene IFNAR1 didn’t 453 

reach significance in our study but had a borderline adjusted p-value of 0.07). Moreover, 58 454 

(16%) of 360 genes upregulated after TNFi in Wang et al. [17] were also upregulated in our 455 

study, and 88 (31%) of 285 down regulated genes were also detected in our study (with only 456 

one gene showing opposing significant tendencies between the studies). Among the 103 457 

significantly differentially expressed genes (DEGs) between BL and w14 with higher fold 458 

changes (FC>2), ten had been previously identified as axSpA-associated in GWAS [35]. Of 459 

these, TNFRSF1A, TBKBP1, HHAT, and LTBR, all less expressed at w14, are involved in the 460 

TNF pathway, mediate apoptosis through nuclear factor-κB, and function as a regulator of 461 

inflammation [36]. Interestingly, IL1R, IL6R and TYK2, more associated with innate immunity, 462 

were downregulated, while IL7R and ICOSLG, more associated with the adaptive immune 463 

system, namely the stimulation and differentiation of T and B cells, were upregulated. FCGR2A, 464 

also downregulated, encodes a cell surface receptor found on phagocytic cells, such as, 465 

macrophages and neutrophils. This indicates that, despite heterogeneity in clinical 466 

manifestations of axSpA, molecular response to TNFi seems consistent between different 467 

studies, at least at the level of the blood cell transcriptome. These results suggest that 468 

biomarkers of TNFi response uncovered in our cohort are likely to be generally applicable in the 469 

axSpA context, although further validation is still mandatory.  470 

Our study expands on previous works in the axSpA context by introducing proteomics data, 471 

including intermediate timepoints during adalimumab treatment. We identified several serum 472 

proteins undergoing significant changes in abundance with adalimumab treatment. Overall, we 473 

observe a decrease in the abundances of HP, HPR, CRP and complement factors, and an 474 

increase of several apolipoproteins, CLEC3b and RBP4. Interestingly, in responders, an early 475 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

(since days 3-5) and persistent decrease of HP and CRP is seen, correlating with observed 476 

clinical improvement. Decrease of complement factors is milder and occurs later (after week 2). 477 

A later increase of apolipoproteins APOA1, APOA2 and APOD, involved in lipid clearance from 478 

circulation and anti-inflammatory properties, has been previously shown [37]. Curiously, APOD 479 

has no marked similarity to other apolipoprotein sequences, but has a high degree of homology 480 

to plasma retinol-binding protein (Rbp), which is also overexpressed, and both are thought to 481 

influence bone metabolism [37,38]. Rbp4 seems to be present in a restricted population of 482 

epiphyseal chondrocytes and perichondrial cells correlating to the future regions of secondary 483 

ossification. In addition, CLEC3B, a plasminogen-binding protein induced during the 484 

mineralization phase of osteogenesis, is also more abundant [39]. These data unravel molecular 485 

mechanisms underlying the abrogation of inflammation, while also suggesting that 486 

osteoproliferation may be induced under TNFi therapy, as documented in recent studies [40–487 

42]. Future studies should aim to uncover the physiopathological role of these genes in TNFi 488 

response. 489 

We acknowledge limitations in our study, namely the need for further validation with targeted 490 

approaches and in new cohorts. Moreover, as all patients were under adalimumab treatment, 491 

we cannot extrapolate the results to other TNFi, although comparison with analysis in RA 492 

suggest that the underlying mechanisms will be similar.  493 

CONCLUSIONS 494 

To our knowledge, this study is the first using a multi-omic approach to tackle the difficult 495 

challenge of predicting at BL the therapeutic response to TNFi in the axSpA context. Our results 496 

suggest an interplay between innate and adaptive immunity occurring under TNFi therapy, with 497 

lymphoid markers emerging as the most differentially expressed between groups and enabling 498 

highly accurate predictive models with our cohort. In addition, our work confirms transcriptomics 499 

results of previous studies investigating the effects of TNFi in axSpA and expands them by 500 
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providing a genome-wide census of both blood cell genes expression and serum proteins 501 

abundances during the first 14 weeks of treatment with Adalimumab, in both responders and 502 

non-responders. 503 

Taken together, our results suggest that molecular data can not only provide mechanistic 504 

insights to the genesis and progression of the disease, but also suggest novel biomarkers to 505 

evaluate the potential response to adalimumab before initiating treatment or in its initial phases. 506 
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Abbreviations 549 

ASAS: assessment in ankylosing spondylitis 550 

ASDAS:  ankylosing spondylitis disease activity score 551 

AUC: area under the curve 552 

axSpA: axial spondyloarthritis 553 

BASDAI: bath ankylosing spondylitis disease activity index 554 

bDMARD: biological disease-modifying antirheumatic drugs 555 

BL: baseline 556 

ESR: erythrocyte sedimentation rate  557 

FC: fold change 558 

GSEA: gene set enrichment analysis 559 

HLA-B27: human leukocyte antigen B27 560 

MRI: magnetic resonance imaging 561 
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NSAID: non-steroidal anti-inflammatory drugs  562 

PCA: principal component analysis 563 

RA: rheumatoid arthritis  564 

sPLS-DA: sparse partial least squares discriminant analysis 565 

TNFi: tumor necrosis factor inhibitor  566 

w14: week 14 567 
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Figure Legends  711 

Figure 1: Response to TNFi has a significant impact on the relative abundance of blood 712 
cells transcripts and serum proteins of patients. A) Principal Component Analysis (PCA) of 713 
the blood cell transcriptomics and proteomics data for responders (R) and non-responders (NL) 714 
at baseline (BL) and week 14 (W14). For visual clarity two outliers are out of view in the 715 
transcriptomics PCA, but all data was used to generate the plot; B) Sparse partial least squares 716 
discriminant analysis (sPLS-DA) of transcriptomics data, using time as a variable of interest, in 717 
responders (AUC=0.99, permutation test p=8e-07) and non-responders (AUC=1, p=6.4e-07); C) 718 
sPLS-DA of transcriptomics (AUC=1, p=9.6e-07) and proteomics (AUC=1, p=3.4e-05) data at 719 
baseline, using response group as a variable of interest. In all cases, AUC and p-value 720 
correspond to the two best components of the sPLS-DA. In all graphs, ellipses represent 95% 721 
confidence intervals.   722 

Figure 2: Blood transcriptome data at baseline suggests response to adalimumab 723 
derives from an interplay between innate and adaptive immunity. A) Volcano plot (log2 of 724 
the fold change versus -log10 of the false discovery rate (FDR)) comparing the transcriptomics 725 
responder versus non-responder samples at baseline (Supp. Table 10); B) Barplot displaying 726 
the Normalized Enrichment Score (NES) of representative significant pathways resulting from a 727 
gene set enrichment analysis (GSEA) comparing the gene expression of responder versus non-728 
responder samples at baseline; C) Heatmap representation of the expression profile of the top 729 
40 differentially expressed genes comparing responder versus non-responder samples at 730 
baseline; for visualization purposes, expression values of each gene were scaled towards a 731 
standard distribution (z-score); rows and columns were clustered by correlation; D) Estimated B-732 
cell and Neutrophil frequencies in responder and non-responder samples at baseline; 733 

Figure 3: Blood transcriptome data improves ability to differentiate responders versus 734 
non-responders at baseline. A) Forest plot displaying the logarithm of the odds, 95% 735 
confidence interval and p-value of response to adalimumab for different variables from a logistic 736 
regression model. B) Receiver operating characteristic (ROC) curve displaying specificity and 737 
sensitivity for different logistic regression models incorporating: only ASDAS-CRP scores (Area 738 
Under the Curve - AUC=0.83); ASDAS-CRP scores and HLA-B27 status (AUC=0.88); ASDAS-739 
CRP scores and the ratio between the estimated frequency of neutrophils and total lymphocytes 740 
(N/L, AUC=0.84); ASDAS-CRP and the normalized expression value of AFF3 (AUC=0.96). 741 

Figure 4: Transcripts and proteins varying between baseline and week 14 were 742 
associated with a decrease in innate immune activity. A) Volcano plot (log2 of the fold 743 
change versus -log10 of the false discovery rate (FDR)) comparing the blood cell 744 
transcriptomics (Supp. Table 1) and serum proteomics (Supp. Table 2) baseline samples versus 745 
week 14 samples in responders; non-significant (NS) genes/proteins are in grey; in green 746 
genes/proteins that are not statistically significant (FDR>0.05) but have an estimated fold 747 
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change greater than 2; in blue genes/proteins that are statistically significant but have a milder 748 
fold change (less than 2); in red genes/proteins that are statistically significant and have a fold 749 
change greater than 2. All red proteins and some of the red gene names are displayed in the 750 
plot. B) Barplot displaying the Normalized Enrichment Score (NES) of representative significant 751 
pathways resulting from a gene set enrichment analysis (GSEA) comparing the gene 752 
expression or protein abundances of w14 (green) against BL (blue) responder samples; C) 753 
Boxplot displaying estimated Neutrophil or naive B-cell frequencies in BL and w14 samples. In 754 
C the p-value is from a paired Wilcoxon rank-sum test; Samples of the same patient are 755 
connected with a grey line. 756 

Figure 5: Markers of inflammation are already lowered in the serum after 3-5 days of 757 
adalimumab treatment, in both responders and non-responders. A) Log2 fold change of 758 
proteins between a given time point and the baseline. Only proteins significantly downregulated 759 
at w14 in responders were represented. B) Same as A but with upregulated proteins. We 760 
clustered proteins with similar temporal behavior using the dtwclust R package. Only the names 761 
of a set of representative proteins are displayed. 762 

Table 1. Summary of the clinical characteristics of the cohort. For each continuous variable, 763 
the mean and standard deviation within each group were calculated. Two sample Wilcoxon 764 
tests (continuous variables) and chi-square tests of association (categorical variables) were 765 
used to compare characteristics between “Responders” and “Non-Responders”. Variables 766 
include Erythrocyte Sedimentation Rate (ESR, in mm / h), C-Reactive Protein (CRP, in mg / L), 767 
Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) scores, Bath Ankylosing 768 
Spondylitis Functional Index (BASFI) scores, Ankylosing Spondylitis Disease Activity Score 769 
(ASDAS) using the ESR levels (ASDAS-ESR) or CRP levels (ASDAS-CRP). For these 770 
characteristics, the value at baseline and week 14 is provided, as well as the difference between 771 
the two endpoints. Other fixed clinical characteristics include age at diagnosis (in years of age), 772 
disease duration (in years since start of first symptoms), presence (Positive) or absence 773 
(Negative) of the HLA-B27 allele, and sex (biological gender) – Female or Male. 774 

 775 
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NR (N=17)
Mean (sd)

R (N=18)
Mean (sd) p value

Erythrocyte Sedimentation Rate
(mm / h)

Baseline 26.059 (20.355) 33.167 (28.461) 0.541

Week 14 11.882 (10.741) 10.833 (9.102) 0.856

BL - W14 14.176 (16.253) 22.333 (23.450) 0.298

C-Reactive Protein
(mg / L)

Baseline 11.312 (11.507) 23.692 (19.678) 0.011

Week 14 7.418 (10.882) 3.896 (2.776) 0.754

BL - W14 3.894 (4.781) 19.796 (19.375) < 0.001

BASDAI score

Baseline 5.347 (2.629) 6.528 (1.463) 0.234

Week 14 4.065 (2.181) 1.928 (1.443) 0.003

BL - W14 1.282 (1.502) 4.600 (1.814) < 0.001

BASFI score

Baseline 5.291 (2.717) 6.709 (1.906) 0.156

Week 14 3.712 (2.653) 2.548 (2.097) 0.176

BL - W14 1.578 (1.490) 4.161 (2.064) < 0.001

ASDAS-ESR score

Baseline 3.229 (0.861) 3.761 (1.083) 0.203

Week 14 2.271 (0.929) 1.478 (0.498) 0.008

BL - W14 0.959 (0.566) 2.283 (1.004) < 0.001

ASDAS-CRP score

Baseline 3.159 (0.748) 4.156 (0.756) < 0.001

Week 14 2.459 (0.753) 1.561 (0.572) < 0.001

BL - W14 0.700 (0.507) 2.594 (0.940) < 0.001

Age at Diagnosis
(years)

37.862 (11.279) 34.851 (11.635) 0.301

Disease duration 
(years)

14.822 (12.742) 13.718 (7.494) 0.869

HLA-B27 Status 0.010

Negative 10 (58.8%) 3 (16.7%)

Positive 7 (41.2%) 15 (83.3%)

Gender 0.915

Female 5 (29.4%) 5 (27.8%)

Male 12 (70.6%) 13 (72.2%)

Table 1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.22278314doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.02.22278314
http://creativecommons.org/licenses/by-nc-nd/4.0/

