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Abstract 

Background: Reading and language skills are important and known to be heritable, and dyslexia and developmental 

language disorder are commonly recognized learning difficulties worldwide. However, the genetic basis underlying 

these skills remains poorly understood. In particular, most previous genetic studies were performed on Westerners. To 

our knowledge, few or no previous genome-wide association studies (GWAS) have been conducted on literacy skills in 

Chinese as a native language or English as a second language (ESL) in a Chinese population. 

 

Methods: We conducted GWAS and related bioinformatics analyses on 34 reading/language-related phenotypes in Hong 

Kong Chinese bilingual children (including both twins and singletons; N=1046). We performed association tests at the 

single-variant, gene, pathway levels, and transcriptome-wide association studies (TWAS) to explore how imputed 

expression changes might affect the phenotypes. In addition, we tested genetic overlap of these cognitive traits with 

other neuropsychiatric disorders, as well as cognitive performance (CP) and educational attainment (EA) using 

polygenic risk score (PRS) analysis.  

  

Results:  Totally 9 independent loci (LD-clumped at r2=0.01) reached genome-wide significance (p<5e-08) (filtered 

by imputation quality metric Rsq>0.3 and having at least 2 correlated SNPs(r2>0.5) with p<1e-3). The loci were 

associated with a range of language/literacy traits such as Chinese vocabulary, character and word reading, dictation 

and rapid digit naming, as well as English lexical decision. Several SNPs from these loci mapped to genes that were 

reported to be associated with intelligence, EA other neuropsychiatric phenotypes, such as MANEA, TNR, PLXNC1 and 

SHTN1. We also revealed significantly enriched genes and pathways based on SNP-based analysis. In PRS analysis, 

EA and CP showed significant polygenic overlap with a variety of language traits, especially English literacy skills. 

ADHD PRS showed a significant association with English vocabulary score. 

 

Conclusions: This study revealed numerous genetic loci that may be associated with Chinese and English abilities in a 

group of Chinese bilingual children. Further studies are warranted to replicate the findings and elucidate the mechanisms 

involved.  
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Introduction 

Literacy and language skills are important for academic development in children. Learning difficulties (e.g., dyslexia) 

are common and may affect one’s school performance, leading to poorer work attainment and socioeconomic status, as 

well as decreased general well-being 1. Multiple cognitive and language skills often serve as a strong foundation for 

literacy and language development; these include working memory, rapid naming, and vocabulary knowledge 2. 

Different factors of environmental and genetic origins may also affect children’s literacy-related and language-related 

skills across languages. Family, twin, and adoption studies have provided strong evidence that these complex cognitive 

and language traits and academic performance in young children are heritable 3 4 5 6 7  and also highly polygenic 8 9. 

However, the exact genes/variants involved in these traits are still not well understood, probably due to the complexity 

of the phenotypes and difficulty in gathering sufficient samples. 

 

  In recent years, several GWAS studies have been conducted on reading and language abilities in European 

populations. Several studies have focused on developmental dyslexia (DD) or high/low reading ability as a binary 

outcome, adopting a case-control study method 9 10 11 12 13 14. Such study design may enable a larger sample size to be 

collected, but also has its shortcomings. Language and literacy skills cover a broad range of phenotypes, and dyslexia 

is also a highly heterogenous condition. The focus on a single binary outcome may limit our understanding into the 

biological mechanisms underlying different domains of language abilities. Other studies have investigated reading and 

language abilities as continuous traits 8 15 16 17 18 19 20.  

   

  However, given the relatively high heritability of literacy and language skills 21 22, the genetic variants discovered 

thus far are still far from explaining the full genetic basis of these complex traits. In addition, most previous GWAS 

were conducted in European populations. However, the genetic architecture of language phenotypes may be different 

across ancestries, and some of the variants may be more readily discovered in other populations due to differences in 

allele frequency or LD (linkage disequilibrium) structure.  

 

  In addition, to our knowledge, no previous GWAS have been published on Chinese children’s literacy and language 

skills in native Chinese and English as a second language (ESL). We note that in one recent GWAS on dyslexia 9, 

several associated loci were also replicated in the Chinese Reading Study of reading accuracy and fluency; yet the 

primary GWAS was conducted predominantly on population of European ancestry. Given possible differences in 

mechanisms underlying Chinese and English literacy and language skills, it is essential to study the genetic variants 

underlying Chinese literacy phenotypes. While some previous studies have investigated the genetics of cognitive and 

language phenotypes, most have only focused on a limited number or domain of phenotypes (e.g., rapid naming, word 

reading). 

 

  In view of the above limitations, here we conducted GWAS and related bioinformatics analyses on a comprehensive 

panel of 34 literacy/language-related phenotypes in a Hong Kong Chinese population. The wide coverage enables a 

systematic and unbiased analysis of a variety of literacy and language-related phenotypes. Since this is among the first 

study of Chinese- and ESL-related phenotypes in a Chinese population, and the genetic bases of such phenotypes are 
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still largely unknown, it is our objective to explore a wider range of traits to maximize the chance of discovery, and to 

provide a starting point and also important reference for future studies. 

 

  Briefly, in this work, we investigated how genetics is associated with individual differences in Chinese and English 

reading and writing. We performed association tests at the single-variant, gene, and pathway levels, and employed 

transcriptome-wide association studies (TWAS) to explore how genotype-imputed expression changes affect the 

phenotypes. In addition, we tested potential associations between these complex cognitive traits with other 

neuropsychiatric disorders, as well as cognitive performance and educational attainment by polygenic risk score (PRS) 

analysis. To the best of our knowledge, this is the first GWAS conducted on a comprehensive range of Chinese-language 

and ESL-related phenotypes in a Chinese population.  

 

 

Subject and methods 

1. Participants  

The participants in our study were Hong Kong Chinese-English bilingual twins and singletons, with Chinese (Cantonese) 

as their native language. Children aged between 3 to 11 were recruited through kindergarten and primary schools in 

Hong Kong. A total of 1048 children were recruited for this genetic study, including 274 MZ subjects (137 pairs), 350 

DZ subjects (175 pairs) and 424 singletons. Zygosity determination on twin pairs was based on the genotyped small 

tandem repeat (STR) markers using Quantitative Fluorescence Polymerase Chain Reaction (QF-PCR)23. Singleton 

children were selected from the same schools as those twin pairs. Parental written consent for all the participants was 

obtained before testing. Children completed a series of cognitive and literacy-related tasks in Chinese and English either 

in a laboratory setting, their school, or their home by trained research assistants. For details of the tasks and phenotypes, 

please refer to the supplementary text. Briefly, a total of 34 phenotypes were included (Table 1), covering a wide range 

of literacy- and language-related skills.  

All tasks were finished in a given order that had been predetermined. Please refer to the supplementary text for a 

detailed description of each studied phenotype. A correlation matrix of all phenotypes is presented in Figure S1.  

 

2. Genotype quality control (QC) and imputation 

 Three groups of subjects, including monozygotic (MZ) twins, dizygotic twins (DZ), and singletons, were genotyped. 

Based on previous studies 24, reducing the MZ pairs to singletons leads to a loss of statistical power. It has also been 

shown that including both MZ twins in the genetic analysis does not lead to an inflation of type I error (when relatedness 

is accounted for) but can improve power 24. We therefore followed ref 24 and included both MZ twins in our GWAS. 

Monozygosity was confirmed by QF-PCR as described above, and only one member of each MZ pair was genotyped. 

The other MZ twin was assumed to share identical genotypes.  

 

   Quality control (QC) was performed by PLINK-1.9 on each dataset separately before merging. We removed those 

SNPs which deviated from Hardy–Weinberg equilibrium (HWE, P < 1E-5), with Minor Allele Frequency (MAF) < 1%, 

missingness per individual (MIND) > 10%, and missingness per marker (GENO) > 10%. After QC, 911178 SNPs and 
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1046 individuals were kept for further analysis, including 274 MZ subjects (59 male pairs, 78 female pairs), 349 DZ 

subjects (39 male pairs, 37 female pairs, 1 member of a female pair and 98 opposite-sex pairs), as well as 423 singletons 

(218 males, 205 females).  

 

Following QC, variant-level imputation was performed by the Michigan Imputation Server based on “Mininac” 25. The 

imputation was based on the reference panel 1000 Genomes (1000G) Phase 3 v5, as previous studies reported 

satisfactory performance of imputation in Chinese based on the 1000G panel 26. The imputed data were converted into 

a binary dosage file by the program “DosageConverter” (https://genome.sph.umich.edu/wiki/DosageConvertor). 

Imputed variants with INFO score (R-squared) > 0.3 (12,475,316 SNPs) were retained. 

 

3. Genome-wide association study 

A genome-wide association study (GWAS) of all phenotypes was conducted through a univariate linear mixed model 

in GEMMA (http://github.com/genetic-statistics/GEMMA). We included age and sex as fixed-effects covariates. The 

genetic relationship matrix (GRM) was included as a random effect to account for relatedness between subjects. This 

approach also controls for population stratification. We tested for the association of allelic dosages with phenotypes as 

described above. We considered p<5e-8 as the genome-wide significance threshold. Although multiple phenotypes were 

studied, our primary objective was to explore and prioritize genetic variants for further studies, and a further Bonferroni 

correction to penalize the number of phenotypes tested may be too conservative for this purpose. Instead, we employed 

the false discovery rate (FDR) approach to control for multiple testing. FDR controls the expected proportion of false 

positives among the results declared to be significant. This approach has been argued to be a more reasonable 

methodology as it ‘adaptively’ considers the data instead of imposing a direct penalty for the number of hypotheses 

tested, and the FDR approach has also been widely used in genomic studies 27.  

 

To identify independent significant risk loci, we employed PLINK-1.9 to perform LD-clumping with r2=0.01 and 

distance = 1000kb, using 1000 Genomes East Asian sample as reference. SNP-to-Gene mapping was done using 

Bioconductor’s software package ‘biomaRt’ (version 2.48.2) on R-4.0.3.  

 

Histograms of all phenotypes are shown in Figure S2; some of the phenotypes were normally distributed though some 

were not. Nevertheless, in large sample sizes with few covariates, violation of the normality assumption often does not 

affect the validity of results 28. There is no clear consensus on whether transformations (such as the rank-based inverse 

normal transformation, RINT) should be performed on (non-normal) phenotypes in GWAS. For example, Beasley et al. 
29 reported that RINT does not necessarily control type I error and may lead to reduced statistical power, while another 

study 30 showed improved performance of the RINT approach. Intuitively, the untransformed approach keeps the 

original value of the phenotype and does not lead to loss of information, and is more interpretable. Here we performed 

analysis on both RINT-transformed 30 and non-transformed phenotypes for all traits under study. As described below, 

on inspection of the QQ-plots, most traits have very similar distributions of p-values, except for four phenotypes. We 

primarily present our results of the non-transformed phenotypes except for the latter four which were RINT-transformed.  
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4. Gene-based test and pathway enrichment analysis 

4.1 Gene-based analysis with MAGMA 

Gene-based analysis has been considered more powerful than SNP-based analysis performed in GWAS 31. We utilized 

MAGMA (Multi-marker Analysis of GenoMic Annotation) v1.06 to conduct gene-based association tests with GWAS 

summary statistics of our phenotypes 13. Briefly, MAGMA considers the aggregate effects of all variants in each gene 

to produce a gene-based test statistic.  We employed the FDR procedure 32 to control for multiple testing. In our gene-

based study and the following analyses, results with FDR < 0.05 are regarded as significant, while those with 0.05 < 

FDR < 0.2 are considered to be suggestive associations.  

 

4.2 Pathway analysis with GAUSS 

We subsequently performed pathway enrichment tests with a powerful subset-based gene-set analysis method called 

GAUSS (Gene-set analysis Association Using Spare Signal) 33, based on gene-based association results obtained by 

MAGMA. We utilized two collections of gene-sets derived from the Molecular Signature Database (MsigDB v6.2) 34. 

The first is a collection of curated pathways (C2) which include canonical pathways such as KEGG, BioCarta, 

REACTOME, as well as chemical and genetic perturbations; the other is gene-ontology (GO) gene-sets (C5), which 

include biological processes, molecular processes, and cellular processes. Please refer to https://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp for details. If a significant association with a pathway is found, GAUSS also 

identifies the core subset (CS) of genes within the pathway that is driving the association. FDR was used to control for 

multiple testing.  

  

4.3 Transcriptome-wide association studies with S-Predixcan & S-Multixcan 

We have also employed other approaches to compute gene-based association results. MAGMA is a widely used 

approach, but it does not consider the functional impact of SNPs (e.g., impact on expression). S-PrediXcan is another 

gene-based analysis approach which imputes gene expression changes in relevant tissues due to genetic variations, using 

reference eQTL datasets such as GTEx. This approach is also known as the transcriptome-wide association study 

(TWAS) 35. Here we considered 13 brain regions, including the amygdala, anterior cingulate cortex (BA24), caudate 

basal ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex (BA9), hippocampus, hypothalamus, nucleus 

accumbens (basal ganglia), putamen (basal ganglia), spinal cord (cervical c-1) and substantia nigra. To increase 

statistical power to identify candidate genes, we integrated the joint effects of expression changes across multiple tissues 

in a secondary analysis by ‘S-MultiXcan’ 36. S-MultiXcan combines evidence across tissues using multiple regression 

(fitting predicted expression as independent variables), which also takes into account the correlation structure.  

 

 5. Polygenic risk score analysis 

To evaluate the genetic overlap of the studied phenotypes with other neuropsychiatric traits, we also performed a PRS 

analysis. A PRS analysis for individuals aggregates the joint effect of multiple genetic variants, weighted by the effect 

size from GWAS summary statistics data. PRS were generated by PLINK 1.9 across 11 P-value thresholds (pthres)={1e-

06, 1e-05, 1e-04, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,0.05}(multiple testing corrected by FDR) 37, LD-clumped at r2=0.1 

within a distance of 1000 kb.  
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The neuropsychiatric traits for constructing PRS included educational attainment (EA) (N= 1,131,881) 38, cognitive 

performance (CP; N=257,841; derived from scores of verbal-numerical reasoning from the UK Biobank and 

neuropsychological test results from the COGENT Consortium, details described in 38), autism spectrum disorders (ASD; 

N=10610)39, attention deficit hyperactivity disorder (ADHD), (ADHD; N=55374) 40, schizophrenia (SCZ; N=105318)41, 

bipolar disorder (BP; N= 416053)42 and major depressive disorder (MDD; N=18759) 43. GWAS summary statistics were 

downloaded from the Social Science Genetic Association Consortium (SSGAC) (https://www.thessgac.org/), 

Psychiatric Genomics Consortium (PGC) (https://www.med.unc.edu/pgc) and The Integrative Psychiatric Research 

project (iPSYCH) (https://ipsych.au.dk/downloads/).  

 

We employed linear mixed models in GEMMA to test for associations between PRS and phenotypes. The model was 

adjusted for age and sex as fixed effects. GRM was fit as a random effect, accounting for both relatedness and population 

stratification 44.  

 

 

Results 

 

Single-variant associations 

Quantile-quantile plots (QQ-plots) with lambda (λ) were constructed for each trait with and without RINT 

transformation. We found that the QQ-plots were very similar for most phenotypes with and without the transformation, 

except for four [Backward digit span (BDS_Total), Chinese Vocabulary - Receptive Vocabulary (CVA_Total), Chinese 

digit rapid naming (CDRAN_Mean) and English digit rapid naming (EDRAN_Mean)] (see Figure S3 and Figure S4). 

For these 4 traits, subsequent analyses were based on the RINT-transformed values, and all four traits showed no 

evidence of inflated false positives after the transformation based on the updated QQ-plots. Manhattan plot for all traits 

are shown in Figure S5. 

 

  In SNP-based analysis, a total of 9 independent loci (LD-clumped at r2 threshold=0.01) reached genome-wide (GW) 

significance (p < 5e-08) with imputation quality score (Rsq)>0.3 and at least 2 correlated SNPs (r2>0.5) with p<1e-3 

(Table 2). The check for correlated significant SNPs was performed to further reduce the risk of false positives, and was 

done using the default settings of LD-clumping in PLINK. The loci were associated with a variety of language/literacy 

traits such as Chinese vocabulary, character and word reading, dictation and digit rapid naming, as well as English 

lexicon decision. Note that 3 loci were each associated with two (correlated) phenotypes, including rs77868538 which 

was associated with both CVK_Total and CVD_total (correlation (r)=0.97), rs182977703 which was associated with 

both COM_Norm and CDICT_Total (r=0.37), and rs4865143 which was associated with CWR_total and CVB_total 

(r=0.63).  

 

   We also provide the full list of all GW significant SNPs (with Rsq>0.3) in Table S1 (Table S1.1: all GW-significant 

hits; Table S1.2: LD-clumped significant hits; Table S1.3: all GWAS results with FDR<0.1). In addition, we also 

searched the top-listed genes in GWAS catalog for associations with other phenotypes (especially neuropsychiatric traits) 

in previous studies. Please refer to Table S10 for details.  
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We detected the largest number of genome-wide significant SNPs with English Lexical Decision (ELD) (see Table 

S1.2). The most significant association was observed for rs6905617 (C/A, MAF = 0.35, p = 3.29E-09) with ELD; the 

SNP is located close to MANEA (-382.1 kb) and MANEA-AS1 (-364.7kb). As for Chinese-related traits, the strongest 

single-variant association with CVK (Chinese Vocabulary – Knowledge) was detected at rs77868538 (T/C, MAF = 

0.02548, p = 3.33E-09), an imputed variant located within TNR (Tenascin R). In addition to CVK, we also discovered 

one significant locus for CCR, CWR, CDICT, CDRAN, COM, CVB and CVD respectively (Table 2).   

 

  We also calculated the lambda-GC (genomic inflation factor) for each untransformed trait and there was no evidence 

of inflation (Table S7; largest lambda-GC=1.0255, 29/34 traits showed lambda-GC<1.02). 

 

Association analyses between genetically predicted expression and phenotypes 

We evaluated the association between genetically regulated expression (GRex) and phenotypes across multiple brain 

regions by S-Predixcan. We used pre-computed weights provided by the authors (available at https://predictdb.org/), 

derived from an elastic net regression model with transcriptome reference data from GTEx(v7). The most significant 

associations were observed for DUS3L, which showed significant associations (FDR < 0.05) with EWR.Total in four 

brain regions including amygdala (Z = -4.81, P = 4.18E-02), caudate basal (Z = -4.72, P = 4.18E-02), cerebellar 

hemisphere (Z = -4.69, P = 4.18E-02) and putamen (Z = -4.60, P = 4.77E-02) (see Table S2.1). The top 20 association 

results from S-PrediXcan are presented in Table 3 (see also Table S2 with top 100 associations). 

 

  Furthermore, we also employed S-MulTiXcan to improve power by combining evidence of differential expression 

across all brain regions. We observed 185 significant gene-level associations (with FDR<0.05) by this approach and 

identified the best representative brain region (the region showing the strongest single-tissue association). The top 20 

results are presented in Table 4 and fuller results in Table S3. We highlight a few findings here. The most significant S-

Multixcan association was observed for gene HSD3B7 with EVA_total (Hydroxy-Delta-5-Steroid Dehydrogenase, 3 

Beta- And Steroid Delta-Isomerase 7; best brain region, Brain_Cortex; P = 1.12E-21). HSD3B7 was also associated 

with other English literacy phenotypes, such as EVB, EVK, EVD, and EWR. For Chinese literacy skills, the most 

significant association was observed for gene SEMA6C (Semaphorin 6C; Brain_Cerebellar_Hemisphere; Z mean = -

1.81; P = 1.98E-16) with CVB_Total.  

 

Gene-based tests using MAGMA 

We also conducted gene-based analyses using MAGMA, which aggregates SNP-level associations into a gene-level 

statistic. This approach considers the statistical significance of SNP-based test but does not explicitly consider how 

SNPs affect expression levels. The top 20 significant results from MAGMA are presented in Table 5 and full results are 

given in Table S4. We shall highlight several genes within the top-10 list here.  

 

  The most significant association was observed for KCNC1 (potassium voltage-gated channel subfamily C member 1) 

with PureC_total (Z=6.03, FDR corrected p=1.49E-5). For English-related phenotypes, the most significant association 

was identified for gene CATSPERD (cation channel sperm associated auxiliary subunit delta) with EWR_Total (Z = 

5.1632; FDR corrected p = 2.22E-03); the same gene was also associated with EVB_Total (Z = 5.0327; FDR corrected 

p = 4.40E-03). Two genes showed associations with EIS_Total, namely SLC2A12 (solute carrier family 2 member 12; 
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Z = 5.1581; FDR corrected p = 2.27E-03) and RSPH1 (radial spoke head component 1; Z = 5.009; FDR-corrected p = 

2.49E-03).  

 

As for Chinese literacy skills, GTF3C1 (general transcription factor IIIC subunit 1) was associated with CVD_Total 

(Z = 5.405; FDR corrected p = 5.90E-04) and CVK_Total (Z=5.09 ; FDR corrected p =3.03E-3); MAPK10 (mitogen-

activated protein kinase 10) was associated with CVB_Total (Z = 5.0938; FDR corrected p = 3.20E-03). As for 

morphosyntactic skills in Chinese, the genes SMKR1(small lysine rich protein 1; Z = 5.0475; FDR corrected p = 3.25E-

03) and RFX8 (regulatory factor X8; Z = 4.9575; FDR corrected p = 3.25E-03) were associated with MS_Total.  

 

Pathway enrichment analysis  

To reveal relevant functional pathways, we conducted a self-contained gene-set analysis in GAUSS, testing 10679 

canonical pathway and gene ontology (GO) gene sets from the MSigDB database. Full results with FDR<0.2 are shown 

in Tables S5.1 and S5.2. Table 6 and Table 7 summarize the top 20 pathway and GO analyses results. We also present 

the top two pathways and GO terms enrichment for every trait in Tables S5.3 and S5.4.  

 

In pathway-based enrichment analysis of Chinese comprehension skills, the strongest association was observed for 

WO_Total with the Reactome RNA polymerase III transcription pathway (FDR corrected p = 1.60E-04). The second 

most significant association was observed for EWR_Total with the ‘Deregulation of CDK5 in Alzheimers Disease’ 

pathway (BioCarta) (FDR corrected p = 1.62E-03). Other pathways with the top five included the P2Y receptors 

(associated with CVK_total) and kinesins pathways (associated with BDS_total). GAUSS has also identified a collection 

of corresponding core genes (CS) for each pathway (please refer to Table S5).   

 

  In gene ontology (GO) enrichment analysis, the most significant enrichment was observed between CDICT_Total 

and sphingolipid-medicates signaling pathway (FDR corrected p = 4.07E-05). Other GO gene-sets within the top 5 (with 

respect to lowest p-values) included glycerophospholipid catabolic process, proton-transporting V-type ATPase 

complex, alcohol transmembrane transporter activity and divalent inorganic anion homeostasis. They were associated 

with PureC_total, CWR_norm, RC_MC and PureC_total, respectively. With regards to English literacy skills, we found 

that the GO gene-set ‘ATP hydrolysis coupled cation transmembrane transport’ (FDR corrected p = 1.31E-02) was the 

strongest association (with EWR_total). GAUSS selected 14 core genes for the gene set, in which one of them, 

BLOC1S4, was individually and significantly associated with EWR_Total (see TableS5.2). 

 

Look-up of loci reported in two previous GWAS of dyslexia and literacy traits 

Among the 42 (p < 5e-08) and 161 loci (p < 1e-06) previously reported for dyslexia 9 and literacy phenotypes 8 

respectively, none showed genome-wide significance in our analyses. To evaluate the aggregate effects of previously 

reported genes, we also performed a gene-set analysis, in which we considered the genome-wide significant genes from 

the two previous GWAS 8 9 as candidate ‘gene-sets’. An association was found between the literacy skills gene-set 

(derived from ref 8) with CVD_Total and CVK_Total (FDR < 0.05). Full results are reported in Table S8. 
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Genetic overlap with neuropsychiatric phenotypes, cognitive performance (CP), and education attainment 

(EA) 

Here we briefly describe several significant or suggestive findings (with FDR-corrected p<= 0.1) in PRS analysis. The 

ADHD polygenic score was associated with EVD_Total (FDR-corrected p= 0.026) at p-value threshold (pthres) = 1e-

06. We also observed significant associations with PRS of EA. The strongest association was observed at pthres = 1e-

02 with EIS_total (FDR-corrected p = 0.0035); EA PRS was also associated with EDICT, EMA, EVA, EVB, EVK and 

EWR (FDR corrected p<0.1) at one or more pthres levels. All the associations were in the positive direction. The CP 

PRS was positively associated with CVD, EDC, EVD, EVK, EWR and MS with FDR-corrected p<0.1, at one or more 

pthres levels.  

 

   For other neuropsychiatric phenotypes, SCZ PRS was associated with BDS_Total across multiple p-value thresholds. 

Also, we observed an association of MDD PRS with CVD and CVK, and an association of BP PRS with DS at 

FDR<=0.1. We did not observe significant associations otherwise and no associations were observed with ASD PRS. 

  

   We present in Figure 1 the results of a polygenic score analysis on different traits at the best pthres cutoff. Full PRS 

results across all pthres are reported in Table S6. 

 

Discussion 

Overview 

In this study, we attempted to uncover the genetic basis of a comprehensive range of cognitive, literacy-related, and 

language-related phenotypes in Chinese and English. To gain robust insights into the genetic architecture of the above 

phenotypes, we carried out a GWAS within a group of Hong Kong children, mainly developing twins with Cantonese 

as their native language and English as their second language. To the best of our knowledge, this is the first GWAS to 

explore the genetic basis of a comprehensive set of literacy- and language-related traits in both Chinese and English in 

a Chinese population. Compared to the previous GWAS on language traits (see introduction), this study also covers the 

widest range of phenotypes, enabling a finer resolution into the genetic architecture of language abilities.  

 

  One distinct feature of this study is that we selected the subjects drawn from a large longitudinal project in Hong 

Kong, a city with a unique linguistic background due to its geographical location and political history 45. As such, our 

study represents the first attempt to assess the genetics of language and literacy skills of bilingual (Chinese and English) 

children systematically. 

 

Genes associated with literacy- or language-related phenotypes 

  For English literacy skills, the most significant association was observed for a SNP close to MANEA and MANEA-

AS1 (rs6905617) with English lexical decision. Interestingly, by a search of the GWAS catalog, we found that a variant 

in MANEA showed tentative association with general cognitive ability in a previous GWAS (p=5e-6) 46 ; genetic variants 

in MANEA-AS1 may also be associated with behavioral inhibition 47. Regarding Chinese literacy skills, the SNP 

rs16848469 located in TNR (tenascin-R) was associated with CVD_Total and CVK_Total. TNR is primarily expressed 

in the central nervous system and plays a key role in human brain development by its involvement in axon growth and 

path finding48. Interestingly, variants in TNR have been reported to be associated with cognitive performance 49 46. In 
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addition, a recent study 50 revealed that TNR showed a significant interaction (at p<5e-8) with total testosterone in 

affecting fluid intelligence in healthy adults. In addition, a recent GWAS on ADHD identified a variant in TNR as the 

top association achieving genome-wide significance 51. There were also case reports that deletions in TNR may be 

associated with intellectual disability and neurodevelopmental disorder 52 53. Moreover, animal studies showed that 

TNR-deficient mice had severe memory and coordination deficits 54. 

    

  In addition, we also observed that the SNP rs182977703 was associated with COM_Norm and CDICT_Total, which 

lies within the gene SHTN1 (Shootin 1). The gene is involved in the generation of internal asymmetric signals necessary 

for neuronal polarization 55 . Increased expression of SHTN1 in hippocampal neurons may result in its accumulation in 

multiple neurites and formation of surplus axons56. Clinically, neurodevelopmental disorders such as intellectual 

disability (ID) may result from defects in neuronal polarity and migration 57 58 . For example, the association of Shootin 

1 with ID was supported by a whole-genome transcriptome analysis on ID patients 59. Another gene of interest in 

PLXNC1; variants in this gene have been reported to be associated (at p<1e-5) with multiple neuropsychiatric 

phenotypes such as major depression 60, Lewy body dementia 61, brain shape (segment 15 and 79) 62 and neuroticism63.  

 

   Several gene-based tests reached a significance level after FDR correction for reading and spelling measures. The 

most significant gene from MAGMA was KCNC1, which encodes a subunit of the KV3 voltage-gated K+ channels. 

Mutations in this gene were associated with a range of neurological disorders including epilepsy and also intellectual 

disability and cognitive decline in some patients 64 65 66. In terms of Chinese literacy skills, the most significant 

association signal was observed for gene GTF3C1 (General Transcription Factor lllC Subunit 1) with CVD_Total. 

GTF3C1 has been widely investigated on its interactive connections to other genes; for example, it is involved in 

networks pathologically related to neurodegenerative and Alzheimer’s disease 67 68 69. It has been shown that GTF3C1 

is involved in regulation of rearrangement of neuronal nuclear architecture following neuronal excitation 70. Of note, 

the nuclear architecture plays an important role in neural development and function 71. CHL1 was another gene 

implicated from S-PrediXcan analysis, and variants in this gene have been reported to be associated with education 

attainment 49 and also mathematics abilities 49. 

 

  In addition, our results showed that SLC2A12 appears to be associated with English comprehension skills. SLC2A12 

encodes GLUT12, a glucose transporter. It has been reported that amyloid-beta increases GLUT12 protein expression 

in the brain in mouse models, implicating an important role of this transporter in Alzheimer disease 72 and cognitive 

functioning.  

 

Polygenic score analysis  

We discovered that some language traits were associated with PRS of psychiatric disorders, cognitive performance 

and educational attainment. We found that, for example, PRS for educational attainment and cognitive performance 

(derived from external GWAS data) were associated with various literacy traits. Our results were consistent with 

previous studies that have demonstrated shared genetic factors among childhood intelligence, educational attainment, 

and literacy skills.  
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For example, Luciano et al. (2017) 73 showed that PRS of word reading, general reading and spelling, as well as non-

word repetition, were positively associated with educational attainment (college/university degree versus none), 

income and verbal-numerical cognitive test results. Moreover, in a GWAS by Price et al.,74 substantial genetic overlap 

was found between word reading and number of years of education (R2 = 0.07, P = 4.91 × 10−48) and intelligence score 

(R2 = 0.18, P = 7.25  × 10−181) in a population-based sample. In another recent study by Gialluisi et al. 14, risk of 

developmental dyslexia was also significantly associated with PRS of EA and intelligence. Combined with our current 

findings, these results provide evidence to support a partially shared genetic etiology among literacy skills, cognitive 

measures, and educational outcomes.  

 

Strengths and limitations 

There are several strengths of our study. First of all, to the best of our knowledge, this is the first GWAS to investigate 

the genetic basis of a wide range of both Chinese and English literacy- and language-related skills in a Chinese 

population. Importantly, as reading and language comprehension are highly complex traits, here we performed detailed 

phenotyping to decipher the genetic basis of various different domains of these skills. On the other hand, previous 

studies largely followed another research strategy by focusing on a limited range of language phenotypes or binary 

outcomes. While it is also possible to only focus on a few selected phenotypes, for example, those with higher heritability 

(or by other criteria), such choice of phenotype may inevitably be somewhat arbitrary, and one may still discover variants 

of biological relevance for a trait with lower heritability. In addition, the SNP-based heritability, or the extent to which 

common variants contribute to a trait, is unknown for most phenotypes studied here. To enable a more comprehensive 

and unbiased examination of the genetic architecture of language/literacy-related traits, we have included a wide range 

of phenotypes in the current study. We also employed the FDR approach to account for multiple testing.  

 

To gain deeper insights into the biological basis of the studied traits, we not only performed standard SNP-based tests 

but also gene-based (MAGMA, S-PrediXcan, S-MulTiXcan) and pathway-based analysis (GAUSS). This ‘multi-level’ 

approach helps to bridge the gap between SNP associations and biological mechanisms, thus enhancing our knowledge 

and understanding of reading and language. In addition to studying the associations between phenotypes and genetic 

factors, we performed PRS analysis to study the overlap of included phenotypes with other neuropsychiatric traits, 

which could provide insight into the genetic architecture of language-related traits. 

 

  Our study also has a few limitations. Our study is based on a Hong Kong Chinese sample (under a bilingual 

environment). It remains uncertain whether the genetic findings from the current study can be generalized to other 

populations. Further studies in other populations with different genetic and language backgrounds may be warranted. In 

a similar vein, the GWAS summary statistics of CP, EA and other psychiatric disorders were primarily derived from 

Europeans (due to lack of relevant data from Chinese populations), which may also attenuate the genetic overlap with 

the studied phenotypes in a Chinese population. Nevertheless, some studies (on other complex traits) have shown that 

genetic variants and PRS from Europeans may still be transferrable to Chinese 75 76. Also, here we employed the 1000-

Genomes as reference for imputation, following the findings from Lin et al. 26 that satisfactory imputation performance 

in Chinese was achieved using the 1000G panel. In Lin et al.’s report, the mean imputation r2 in two Chinese cohorts 

were at or above ~0.7 with MAF>1%, and were even better for higher MAF. At the time of this analysis, most established 

imputation servers (e.g. Michigan Imputation Server) does not contain Chinese-specific reference panels. Note that we 
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also reported the imputation quality score (r2) for all reported variants for easy reference, and have removed variants 

with low imputation quality (r2<0.3).   

 

In this study, we performed extensive and deep phenotyping covering most domains of Chinese and English literacy- 

and language-related skills. This GWAS covers the widest range of language phenotypes to date. However, admittedly, 

our sample size is relatively moderate and statistical power may be insufficient to detect variants of small effects. In 

addition, given that we only performed genetic analysis in a single sample and some phenotypes were studied for the 

first time (e.g. most phenotypes on Chinese reading/comprehension), we emphasize that further replications in other 

samples are required. As for the genetic analyses, this study focused on the contribution of common variants; rare variant 

association was not our focus and may require further sequencing studies. In addition, while we have performed further 

gene-based and pathway-based bioinformatics analyses, the findings are based on statistical associations and will require 

further experimental validations.  

 

  In summary, we have conducted the first GWAS on a comprehensive range of phenotypes on both Chinese and 

English abilities in a HK Chinese population. We discovered a number of novel genetic loci that may underlie these 

traits, and revealed genes and pathways that may be associated. We believe our work will be an important starting point 

and reference for further studies into the biological and genetic basis of language abilities, and ultimately such 

knowledge will be useful for the development of better treatment for children with specific reading disabilities.  

 

Figure Legends  

Figure 1 

Results of polygenic risk score (PRS) analysis on the 34 language-related phenotypes analyzed in this study, with PRS 

constructed from external GWAS data of different neuropsychiatric disorders/traits (training set). The following 

neuropsychiatric disorders/traits were included: attention deficit hyperactivity disorder (ADHD), autism spectrum 

disorders (ASD), Education attainment (EA), cognitive performance (CP), schizophrenia (SCZ), bipolar disorder (BP) 

and major depressive disorder (MDD).  

In the heatmap, for each PRS analysis, we select the result with the lowest FDR-adjusted p-value (p.adjust), and show 

the regression coefficient in the graph.  

PT: the optimal p-value threshold at which the most significant association was observed  
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Table 1. Overview of phenotypes included in the study 

Variable Variable Label 

BDS_Total Backward Digit Span 
CCR_Total Chinese Character Reading 
CDC_Total Chinese Delayed Copying 
CDICT_Total Chinese Dictation 
CDRAN_Mean Chinese Digit Rapid Naming 
CLD_Total Chinese Lexical Decision 
COM_Score Chinese 1 Min Word Reading Adjusted Total Score 
COM_Norm Chinese 1 Min Word Reading Scaled Score 
CVA_Total Chinese Vocabulary - Receptive Vocabulary (10 items) 
CVB_Total Chinese Vocabulary - Expressive Vocabulary (12 items) 
CVD_Total Chinese Vocabulary - Vocabulary Definition (26 items) 

CVK_Total Chinese Vocabulary Knowledge (48 items; sum of CVA, 
CVB and CVK)  

CWR_Total Chinese Word Reading Raw Score 
CWR_Norm Chinese Word Reading Scaled Score 
DS_Total Chinese Discourse Skills 
EDC_Total English Delayed Copying 
EDICT_Total English Dictation 
EDRAN_Mean English Digit Rapid Naming 
EIS_Total English Invented Spelling 
ELD_Total English Lexical Decision 
ELRAN_Mean English Letter Rapid Naming 
EMA_Total English Morphological Awareness - Written Test 
EVA_Total English Vocabulary - Receptive Vocabulary (15 items) 
EVB_Total English Vocabulary - Expressive Vocabulary (15 items) 
EVD_Total English Vocabulary - Vocabulary Definition (15 items) 
EVK_Total English Vocabulary Knowledge (45 items; sum of EVA, 

EVB and EVK) 
EWR_Total English Word Reading Total Score 
MS_Total Morphosyntax 
PairC_Total Pair Cancellation 
PureC_Total Pure Copying of Unfamiliar Scripts 
RC_MC Reading Comprehension - Multiple Choice 
RC_OE Reading Comprehension - Open End 
RC_Total Reading Comprehension - Total 
WO_Total Chinese Word Order 
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Table 2. Results of the SNP-based association analysis   

Phenotype CHR BP SNP A1 A2  P MAF Rsq Genotyped Closest gene S0001 
 

FDR-adjust P 

ELD_Total 6 95643248 rs6905617 C A 3.29E-09 0.352 0.52 Imputed MANEA-AS1(-364.7kb) 43 3.19E-03 
CVK_Total 1 175436068 rs77868538 T C 3.33E-09 0.028 0.99 Imputed TNR(0) 4 1.32E-02 
CVD_Total 1 175436068 rs77868538 T C 7.44E-09 0.028 0.99 Imputed TNR(0) 4 2.87E-02 
ELD_Total 1 238306117 rs370871011 T G 9.34E-09 0.011 0.64 Imputed LOC100130331(+214.5kb) 2 6.26E-03 
CCR_Total 9 115640979 rs56024259 G A 1.53E-08 0.124 0.98 Imputed SLC46A2(-0.22kb) 7 3.97E-02 
ELD_Total 5 32421181 rs925214 T G 1.64E-08 0.030 0.86 Imputed ZFR(0) 37 8.44E-03 
CDRAN_Mean 12 94529190 rs3847795 A C 1.73E-08 0.173 0.94 Imputed PLXNC1(-13.31kb) 4 7.60E-02 
ELD_Total 1 202430424 rs12049280 G T 3.17E-08 0.021 0.66 Imputed PPP1R12B(0) 5 1.52E-02 
CWR_Total 4 57573275 rs4865143 T C 3.61E-08 0.071 0.80 Imputed HOPX(+25.4kb) 15 1.34E-01 
COM_Norm 10 118659171 rs182977703 G T 4.39E-08 0.016 0.60 Imputed SHTN1 (0) 4 1.49E-01 
CDICT_Total 10 118659171 rs182977703 G T 4.44E-08 0.016 0.60 Imputed SHTN1 (0) 2 1.52E-01 
CVB_Total 4 57573275 rs4865143 T C 4.97E-08 0.071 0.80 Imputed HOPX(+25.4kb) 27 9.92E-02 

 

 
For full results please refer to Table S1. Results are sorted by P-value. MAF, minor allele frequency; Rsq, R-squared (imputation quality metric); BP, base pair (position 
of the SNP); S0001, number of clumped SNPs (SNPs in LD) with p<1e-3. Only SNPs with S0001 >= 2 are shown. FDR-adjust P, false-discovery rate-adjusted P-value by 
the Benjamini-Hochberg method.  
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Table 3. Top 20 S-Predixcan results after correction of multiple testing  

Phenotypea Tissue_name Gene Zscore P  FDR-adjust Pb 

EWR_Total Brain_Amygdala DUS3L 4.81 1.52E-06 4.18E-02 
EWR_Total Brain_Caudate_basal_ganglia DUS3L 4.72 2.35E-06 4.18E-02 
EWR_Total Brain_Putamen_basal_ganglia DUS3L 4.69 2.76E-06 4.18E-02 
EWR_Total Brain_Cerebellar_Hemisphere DUS3L 4.6 4.20E-06 4.77E-02 
EWR_Total Brain_Hypothalamus AC005523.3 4.37 1.23E-05 1.12E-01 
EMA_Total Brain_Frontal_Cortex_BA9 ZNF585B -4.67 3.07E-06 1.30E-01 
CVB_Total Brain_Cerebellum BNIPL 4.58 4.70E-06 2.13E-01 
EWR_Total Brain_Frontal_Cortex_BA9 DUS3L 4.13 3.60E-05 2.72E-01 
RC_MC Brain_Cortex RP11-508N22.12 -4.52 6.18E-06 2.81E-01 
EWR_Total Brain_Nucleus_accumbens_basal_ganglia DUS3L 3.99 6.58E-05 4.27E-01 
EDC_Total Brain_Cerebellum GTF3C5 4.41 1.03E-05 4.66E-01 
ELD_Total Brain_Cerebellum FAM86B2 -4.37 1.24E-05 5.62E-01 
EMA_Total Brain_Cerebellum KIAA0355 4.12 3.80E-05 5.79E-01 
EMA_Total Brain_Substantia_nigra CHL1 4.1 4.11E-05 5.79E-01 
EMA_Total Brain_Cerebellar_Hemisphere TSEN15 -3.81 1.41E-04 7.48E-01 
EMA_Total Brain_Hippocampus HNRNPCP1 -3.84 1.25E-04 7.48E-01 
EMA_Total Brain_Nucleus_accumbens_basal_ganglia RP11-521C20.2 -3.92 8.98E-05 7.48E-01 
EMA_Total Brain_Putamen_basal_ganglia RASA4 -3.91 9.22E-05 7.48E-01 
EMA_Total Brain_Spinal_cord_cervical_c-1 C20orf202 -3.84 1.22E-04 7.48E-01 
EVA_Total Brain_Amygdala RP11-178F10.3 -3.94 8.18E-05 8.33E-01 
a Please refer to Table 1 for abbreviations of the phenotype 
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b FDR-adjust P : Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH). 
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Table 4. Top 20 S-Multixcan results after correction of multiple testing 

Phenotypea T_i_bestb Gene P_i_Bestc FDR.adjust Pd 

EVA_Total Brain_Cortex HSD3B7 1.71E-03 1.62E-17 
CVB_Total Brain_Cerebellar_Hemisphere SEMA6C 3.77E-04 2.85E-12 
EVK_Total Brain_Caudate_basal_ganglia HSD3B7 6.02E-03 1.61E-11 
EVB_Total Brain_Cortex HSD3B7 1.16E-02 2.50E-10 
EWR_Total Brain_Cortex HSD3B7 1.40E-02 7.49E-08 
ELRAN_Mean Brain_Nucleus_accumbens_basal_ganglia BAK1P1 3.91E-03 8.93E-08 
EDICT_Total Brain_Anterior_cingulate_cortex_BA24 MYO6 3.35E-04 9.85E-08 
EVD_Total Brain_Caudate_basal_ganglia HSD3B7 9.38E-03 1.32E-07 
CLD_Total Brain_Caudate_basal_ganglia OXCT2P1 3.87E-04 3.45E-07 
COM_Score Brain_Cerebellum RBM8A 8.38E-02 4.40E-07 
ELRAN_Mean Brain_Nucleus_accumbens_basal_ganglia CYP2E1 7.40E-03 1.79E-06 
EVB_Total Brain_Anterior_cingulate_cortex_BA24 BCO2 5.28E-04 6.25E-06 
CDC_Total Brain_Nucleus_accumbens_basal_ganglia ZNF565 3.67E-02 6.48E-06 
EWR_Total Brain_Anterior_cingulate_cortex_BA24 MYO6 9.68E-04 8.21E-06 
ELRAN_Mean Brain_Nucleus_accumbens_basal_ganglia ZNF565 2.24E-02 1.33E-05 
EVA_Total Brain_Caudate_basal_ganglia AC110781.3 5.07E-02 1.47E-05 
EIS_Total Brain_Cerebellum EXOSC5 7.48E-03 1.61E-05 
MS_Total Brain_Anterior_cingulate_cortex_BA24 CTB-161M19.1 3.66E-02 1.69E-05 
COM_Norm Brain_Cerebellum RBM8A 1.50E-01 2.42E-05 
EDICT_Total Brain_Cortex HSD3B7 4.66E-02 2.78E-05 
a Please refer to Table 1 for abbreviations of the phenotype 

b T_i_Best : name of best single-tissue S-Predixcan association. 
c P_i_Best : best p-value of single tissue S-Predixcan association. 
d FDR-adjust P : FDR-adjusted p-value of the overall p-value output by S-Multixcan. FDR was calculated by the 
R program p.adjust using the Benjamini-Hochberg procedure (BH). 
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 Table 5. Top 20 gene-based results (Magma) after correction of multiple testing 

Phenotypea Description Gene CHR ZSTAT P FDR.adjust Pb 

PureC_Total potassium voltage-gated channel subfamily C member 1 KCNC1 11 6.03  8.18E-10 1.49E-05 

CVD_Total general transcription factor IIIC subunit 1 GTF3C1 16 5.41  3.24E-08 5.90E-04 

EWR_Total cation channel sperm associated auxiliary subunit delta CATSPERD 19 5.16  1.22E-07 2.22E-03 

EIS_Total solute carrier family 2 member 12 SLC2A12 6 5.16  1.25E-07 2.27E-03 

EIS_Total radial spoke head component 1 RSPH1 21 5.01  2.74E-07 2.49E-03 

CVB_Total mitogen-activated protein kinase 10 MAPK10 4 5.09  1.76E-07 3.20E-03 

MS_Total regulatory factor X8 RFX8 2 4.96  3.57E-07 3.25E-03 

MS_Total small lysine rich protein 1 SMKR1 7 5.05  2.24E-07 3.25E-03 

CVK_Total general transcription factor IIIC subunit 1 GTF3C1 16 5.09  1.81E-07 3.30E-03 

EVB_Total cation channel sperm associated auxiliary subunit delta CATSPERD 19 5.03  2.42E-07 4.40E-03 

CVB_Total BCL2 interacting protein like BNIPL 1 4.86  5.87E-07 5.34E-03 

EVB_Total cilia and flagella associated protein 65 CFAP65 2 4.84  6.46E-07 5.89E-03 

BDS_Total transmembrane serine protease 13 TMPRSS13 11 4.96  3.48E-07 6.33E-03 

EVK_Total cilia and flagella associated protein 65 CFAP65 2 4.83  6.95E-07 1.27E-02 

EWR_Total caveolae associated protein 2 CAVIN2 2 4.46  4.19E-06 1.39E-02 

EWR_Total Morf4 family associated protein 1 like 1 MRFAP1L1 4 4.49  3.57E-06 1.39E-02 

EWR_Total biogenesis of lysosomal organelles complex 1 subunit 4 BLOC1S4 4 4.44  4.57E-06 1.39E-02 

EWR_Total proline rich 22 PRR22 19 4.54  2.81E-06 1.39E-02 

EWR_Total dihydrouridine synthase 3 like DUS3L 19 4.57  2.43E-06 1.39E-02 

EDRAN_Mean ankyrin repeat domain 50 ANKRD50 4 4.80  7.76E-07 1.41E-02 

CDC_Total frizzled class receptor 7 FZD7 2 4.80  8.08E-07 1.47E-02 

CDRAN_Mean calcium and integrin binding family member 2 CIB2 15 4.79  8.25E-07 1.50E-02 

a Please refer to Table 1 for abbreviations of the phenotype 

b FDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.22278296doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.01.22278296
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 

 

 
27 

Table 6. Top 20 GO enrichment results (GAUSS) after correction of multiple testing    

GeneSet Pvalue Phenotype FDR.adjust Pa 

GO_SPHINGOLIPID_MEDIATED_SIGNALING_PATHWAY 6.88E-09 CDICT_Total 4.07E-05 

GO_GLYCEROPHOSPHOLIPID_CATABOLIC_PROCESS 6.40E-08 PureC_Total 3.78E-04 

GO_PROTON_TRANSPORTING_V_TYPE_ATPASE_COMPLEX 1.20E-07 CWR_Norm 7.13E-04 

GO_ALCOHOL_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 2.38E-07 RC_MC 1.41E-03 

GO_DIVALENT_INORGANIC_ANION_HOMEOSTASIS 5.74E-07 PureC_Total 1.70E-03 

GO_CELLULAR_ANION_HOMEOSTASIS 2.25E-06 PureC_Total 4.44E-03 

GO_BIOACTIVE_LIPID_RECEPTOR_ACTIVITY 2.13E-06 CDICT_Total 6.29E-03 

GO_ATP_HYDROLYSIS_COUPLED_TRANSMEMBRANE_TRANSPORT 2.22E-06 EWR_Total 1.31E-02 

GO_LYMPHANGIOGENESIS 7.35E-06 CDICT_Total 1.45E-02 

GO_ORGANIC_HYDROXY_COMPOUND_TRANSMEMBRANE_TRANSPORTER_ACTIVITY 4.90E-06 RC_MC 1.45E-02 

GO_POSITIVE_REGULATION_OF_VASODILATION 2.00E-05 PureC_Total 1.48E-02 

GO_POSITIVE_REGULATION_OF_B_CELL_DIFFERENTIATION 2.00E-05 PureC_Total 1.48E-02 

GO_POSITIVE_REGULATION_OF_BLOOD_CIRCULATION 2.00E-05 PureC_Total 1.48E-02 

GO_NEURON_PROJECTION_GUIDANCE 2.00E-05 PureC_Total 1.48E-02 

GO_POLYSACCHARIDE_BINDING 2.00E-05 PureC_Total 1.48E-02 

GO_MONOVALENT_INORGANIC_ANION_HOMEOSTASIS 3.00E-05 PureC_Total 1.97E-02 

GO_REGULATION_OF_MITOCHONDRIAL_FISSION 1.53E-05 CDICT_Total 2.27E-02 

GO_RESPONSE_TO_NERVE_GROWTH_FACTOR 1.08E-05 EWR_Total 2.43E-02 

GO_PROTON_TRANSPORTING_TWO_SECTOR_ATPASE_COMPLEX_CATALYTIC_DOMAIN 1.64E-05 EWR_Total 2.43E-02 

GO_PROTON_TRANSPORTING_V_TYPE_ATPASE_COMPLEX 1.35E-05 EWR_Total 2.43E-02 
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Please refer to Table 1 for abbreviations of the phenotypes. Full descriptions of each gene-set can be found by looking up the pathway 

names at  https://www.gsea-msigdb.org/gsea/msigdb/.  
a FDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH). 
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Table 7. Top 20 Pathway enrichment results (GAUSS) after correction of multiple testing 

GeneSet Pvalue Phenotype FDR adjust Pa 

REACTOME_RNA_POL_III_TRANSCRIPTION 3.36E-08 WO_Total 1.60E-04 
BIOCARTA_P35ALZHEIMERS_PATHWAY 3.41E-07 EWR_Total 1.62E-03 
REACTOME_P2Y_RECEPTORS 3.94E-07 CVK_Total 1.88E-03 
REACTOME_KINESINS 7.07E-07 BDS_Total 3.37E-03 
STOSSI_RESPONSE_TO_ESTRADIOL 3.04E-06 RC_MC 1.45E-02 
IGLESIAS_E2F_TARGETS_DN 4.29E-06 CWR_Norm 2.04E-02 
REACTOME_P2Y_RECEPTORS 5.25E-06 CVD_Total 2.50E-02 
PID_S1P_META_PATHWAY 9.02E-06 CDICT_Total 3.88E-02 
GOLUB_ALL_VS_AML_DN 1.63E-05 CDICT_Total 3.88E-02 
BIOCARTA_AKAPCENTROSOME_PATHWAY 2.00E-05 CCR_Total 4.76E-02 
BANDRES_RESPONSE_TO_CARMUSTIN_MGMT_48HR_UP 2.00E-05 CCR_Total 4.76E-02 
LIM_MAMMARY_LUMINAL_PROGENITOR_UP 2.00E-05 EWR_Total 4.76E-02 
BIOCARTA_BLYMPHOCYTE_PATHWAY 1.17E-05 CDC_Total 5.55E-02 
BANDRES_RESPONSE_TO_CARMUSTIN_WITHOUT_MGMT_48HR_UP 4.00E-05 CCR_Total 6.35E-02 
KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS 3.00E-05 EVB_Total 6.35E-02 
RODRIGUES_NTN1_AND_DCC_TARGETS 4.00E-05 EVB_Total 6.35E-02 
TERAMOTO_OPN_TARGETS_CLUSTER_7 4.00E-05 EVB_Total 6.35E-02 
KEGG_PROGESTERONE_MEDIATED_OOCYTE_MATURATION 3.00E-05 CVA_Total 7.14E-02 
DUTERTRE_ESTRADIOL_RESPONSE_6HR_UP 2.00E-05 CVA_Total 7.14E-02 
SA_FAS_SIGNALING 9.00E-05 CDRAN_Mean 7.14E-02 

Please refer to Table 1 for abbreviations of the phenotypes. Full descriptions of each gene-set can be found by looking up the 
pathway names at  https://www.gsea-msigdb.org/gsea/msigdb/.  
a FDR-adjust P: Calculated by the R.program p.adjust using Benjamini-Hochberg procedure (BH). 
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