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Abstract

Objectives
Oral squamous cell carcinoma (OSCC) and oropharyngeal
squamous cell carcinoma (OPSCC) are the two major subtypes
of head and neck cancer (HNC) that can go undetected
resulting in late detection and poor outcomes. We describe the
development and validation of a convenient and easy-to-use
test, called CancerDetect for Oral & Throat cancerTM (CDOT),
to detect markers of OSCC and/or OPSCC within a high-risk
population using salivary metatranscriptomics.

Materials and Methods
We collected saliva samples from 1,175 unique individuals
who were 50 years or older, or adults who had a history of
tobacco use. All saliva samples were processed through a
metatranscriptomic method to isolate microbial organisms and
functions, as well as human transcripts. Of the 1175 samples,
945 were used to train a classifier using machine learning
methods, resulting in a salivary RNA metatranscriptomic
signature. The classifier was then independently validated on
the 230 remaining samples unseen by the classifier, consisting
of 20 OSCC (all stages), 76 OPSCC (all stages), and 134
negatives (including 14 pre-malignant).

Results
On the validation cohort, the specificity of the CDOT test was
94%, sensitivity was 90% for participants with a
histopathological diagnosis of OSCC, and 84.2% for
participants with a diagnosis of OPSCC. Similar classification

results were observed among people in early stage (stages I &
II) vs late stage (stages III & IV) of OSCC and OPSCC.

Conclusions
CDOT is a non-invasive test that can be easily administered in
dentist offices, primary care centers and specialized cancer
clinics for early detection of OPSCC and OSCC. This test,
having received breakthrough designation by the US Food and
Drug Administration (FDA), will broadly enable early
diagnosis of OSCC and OPSCC, saving lives and significantly
reducing healthcare expenditure.

Introduction

Oral cancer is the seventh-most common neoplasm and the
ninth most common cause of cancer related death globally [1].
The American Cancer Society estimates about 54,000 new
cases of oral cancer, leading to 11,230 deaths, in the United
States in 2022 [2]. More than half of oral cancers in the world
occur in Asia, in South/Southeast Asia, oral cancer is one of
the top three cancers [3]. Oral squamous cell carcinoma
(OSCC) is the most common oral cancer, accounting for 2% of
all cancers and with a high recurrence rate even with treatment
[4]. Oropharyngeal squamous cell carcinoma (OPSCC),
commonly known as throat cancer, is currently emerging in
the developed world as the leading cause of human
papillomavirus (HPV)-driven cancer in the USA, and
Australia. While it shares similar etiologic factors with OSCC
like smoking history or alcohol consumption, OPSCC is also
highly associated with HPV, which makes this cancer
biologically and clinically different [5–7].
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Survival rates of OPSCC and OSCC patients vary based on
stage at the time of diagnosis and disease progression [8]. The
five-year overall survival rate in the U.S. for OSCC is 84%, if
diagnosed in the early stages of the disease (i.e., Stage I or II).
However, more than 70% of OSCC diagnoses are not made
until the disease is in stage III or IV. At these later stages, the
five-year survival rate, for OSCC specifically, drops to less
than 50% [9]. Research has shown that the reasons for late
diagnosis are layered and complicated, including
under-utilization of dental and primary care, and the lack and
poor quality of oral cancer screening in patients that do seek
general care [10]. In addition, most importantly, in the earliest,
most treatable stages, many oral cancers have little to no
symptoms and may not be easily visible [11,12].

The current standard of care for oral cancer screening and
diagnosis relies on a physical exam by a healthcare provider,
identification of lesion(s), followed by imaging, invasive
biopsy and histopathological evaluation. Biopsies will only
sample a limited amount of cancer tissue and heterogeneity
within the cancer is not accounted for. There are no oral
cancer screening guidelines published either from the
American Cancer Society, the National Comprehensive Cancer
Network (NCCN), or the National Cancer Institute. The only
recommendation that exists for oral cancer is in the form of a
resolution passed by the American Dental Association in 2019
recommending dentists to conduct routine visual and tactile
examinations for oral and oropharyngeal cancer for all patients
[13]. Thus, clinicians are left to determine the best practice on
their own with no objective criteria or tools for assessing
patients. Any abnormalities identified on visual or tactile
examination are referred for biopsy. However, only 29.4% of
adults in the United States reported ever having received a
visual and tactile examination for OSCC or OPSCC [14]. In
addition, those patients referred for biopsies go through an
invasive and risky procedure with uncertain outcomes based
on the specific tissue that was extracted. The most common
risk associated with the procedure is a hematoma, or a pocket
of blood, which can form and collect at the site of the biopsy.
Studies have documented the dissemination of cancer cells
into the circulation resulting in an increased risk of metastasis
after the incisional biopsy [15]. Moreover, the standard biopsy
techniques may not be appropriate for all patients, including
those with conditions that preclude the safe use of local
anesthetic and those with severe bleeding diathesis or
coagulopathies [14].

Even though tobacco consumption, alcohol abuse and poor
oral hygiene remain the major risk factors for oral cancer,
there has been increasing evidence to suggest that people who
are not exposed to these risk factors are also affected.
Dysbiosis in the oral microbiome leads to a chronic
inflammatory state, suppresses anti-tumor immunity, and leads
to the creation of novel mutagens [16]. One of the examples
supporting this evidence is periodontitis, which is associated
with an increased risk for cancer and poor survival in many
studies [17,18]. Streptococcus, Fusobacterium,
Capnocytophaga, Prevotella, among other bacteria are shown
to be increased in OSCC [19–22]. Changes in microbiota have
been observed in throat cancer patients as well [16]. This
provides the scientific evidence to further explore microbial
organisms and functions in the saliva as a means of developing
a tool to evaluate oral and throat cancers.

Previously we developed a classifier for the detection of OSCC
using only microbial expression on a smaller cohort [23]. In
this current study, we incorporate both OSCC and OPSCC,
include human gene expression in addition to microbial
expression, and expand the studied cohort significantly. The
resulting test, CancerDetect for Oral & Throat CancerTM

[CDOT], built using salivary metatranscriptomics and
validated with an independent cohort, was granted
breakthrough designation by the Food and Drug
Administration (FDA) in April 2021.

Test Description

We have developed a simple cancer detection test as shown in
Figure 1, consisting of the following elements: (i) Sample
collection / transport, (ii) Lab Processing (iii) Data Processing,
and Test Report.

(i) Sample collection and transport. Unstimulated whole
mouth saliva samples were collected as published previously
[23]. The test includes a custom collection device, which
allows easy collection of a saliva sample at home by
individuals, or during oral examination by a qualified
healthcare professional. The collection tube contains a
preservative that dissolves cell membranes and penetrates all
cells, denatures nucleases, and prevents RNA self-cleaving by
preventing deprotonation of the 2’-OH. The use of this
proprietary preservative enables ambient temperature
transportation for saliva samples. Saliva sample collection,
preservation, transportation and lab preparation are described
in Banavar et al. [23].
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Figure 1: Overview of salivary RNA metatranscriptomic signature based cancer detection system.

(ii) Lab processing. Our CLIA-certified lab receives the
saliva samples and processes it to extract and sequence the
RNA from the saliva sample. Our test extracts and sequences
all mRNA molecules in a non-discriminatory fashion, after
eliminating the non-informative rRNA molecules. After
sample preparation is completed in the Lab, total RNA is
extracted from clarified lysate using a custom silica
bead-based protocol, which includes on-bead DNA removal by
DNase. Total RNA is quantified using the RiboGreen method
and diluted when necessary. Bacterial and human rRNAs are
physically removed from the specimen using a subtractive
hybridization method. The remaining RNAs are converted into
Illumina directional sequencing libraries [24]. Library pools
are then sequenced on Illumina NovaSeq 6000 to produce
sequencing data.

(iii) Data processing. The sequenced data is processed
through our bioinformatics pipeline and an OSCC/OPSCC
classifier. The bioinformatics pipeline maps sequenced reads
to human genes (or HG), as well as microbial species (or SP)
and microbial gene clusters annotated as KEGG Orthologs (or
KO) [23]. For HG detection, paired-end reads are mapped to
the human transcriptome. Gene expression levels are
computed by collecting the transcript-level abundance
(transcript per million - TPM) and then aggregating them to
the gene level using Salmon version 1.1.0 [25]. For taxonomic
classification, reads are mapped to a custom catalog derived

from genomic sequences from all domains of the phylogenetic
tree, namely, bacteria, archaea, eukaryota, and viruses.
Taxonomies are identified and their relative activities are
calculated at three different taxonomic ranks (genus, species,
and strain). To identify and quantify transcriptionally active
genes in the microbial community, functional assignments are
obtained through alignment of the sequencing reads to another
custom curated catalog of genes and the KEGG databases
[26]. Further details of the bioinformatics processing can be
found in Banavar et al. [23]. All the detected molecular
features (HG, SP, and KO features) are then used for
downstream analyses including classifier development,
validation, and eventually, classification of new samples.

The OSCC/OPSCC classifier is a machine-learning (ML)
model that uses the HG, SP, and KO features and classifies the
sample as belonging to the “OSCC/OPSCC class” or the “Not
OSCC/OPSCC class” within pre-specified performance
criteria. The overall workflow of classification model
development and independent validation is shown in Figure 2.
Model development is described in detail in the supplementary
materials. The final trained model coming out of the
development phase was determined to be capable of inferring,
at a high probability, whether a participant’s sample has OSCC
and/or OPSCC or not, and used for independent validation
with unseen samples, on the other side of the “firewall” in
Figure 2.
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Figure 2. Model development, cross validation and independent validation workflow

Patent Population

The CDOT test was developed with samples from a cohort of
945 individuals (details in the supplementary materials), and
validated in an unseen independent cohort of 230 individuals
in order to evaluate its performance in the proposed intended
use. In this section, we describe the patient population on
which the test was validated.

Validation study participants were either 50 years or older or
had a history of tobacco use. Having a “history of tobacco
use” included being a current or former tobacco user per the
Affordable Care Act (ACA) definition. A current tobacco user
was defined as someone who uses tobacco products four or
more times per week in the past six months. A former tobacco
user is a person who has quit using tobacco products at the
current time but had previously used tobacco products four or
more times per week for six months or more, within the last 20
years. For purposes of this study, we defined tobacco broadly
consistent with definitions for multiple health organizations,
including the World Health Organization (WHO), which
defines “tobacco use” to include smoking, sucking, chewing or
snuffing any tobacco product.

The validation cohort of 230 included 101 samples from
secondary care centers, and a combination of 129 clinically
adjudicated patients with OPMD and cancer free patients from
the Viome company customer database in the US (Table 2).
Eligible participants had to be free from any active infection,
have no cancer in the past, not be pregnant and have no

irradiation to the neck and head region. The study was
approved by the Queensland University of Technology and
University of Queensland Medical Ethical Institutional Boards
(HREC no.: 1400000617 and HREC no.: 2017000662
respectively) and the Royal Brisbane and Women’s Hospital
(HREC no.: HREC/12/QPAH/381) Ethics Review Board. All
participants gave their consent to participate in the study.

Patients with OSCC or OPSCC were clinically diagnosed to
confirm their cancer status. Clinical data also included
histopathology reports after biopsying the patients, spanning
early (Stage I/II) and late (Stage III/IV) stage OSCC and
OPSCC. OSCC and OPC diagnosis was performed with
biopsy and examination of FFPE tissue sections by routine
(Hematoxillin and eosin) stain using standard methodology.
Pathological Staging of OSCC and OPC was also performed.
Largest diameter of tumor, tumor thickness and presence of
bone invasion are essential for T stage categorization. Lymph
node stage is mainly based on the number and size of involved
lymph nodes, laterality of involved nodes, and presence or
absence of extranodal extension of tumor deposit.

Patients with oral premalignant disorders (OPMD) or
cancer-free participants could be clinically adjudicated by a
primary physician. OPMD included the following conditions:
dysplasia, hyperplasia, leukoplakia, erythroplakia, lichenoid
lesions, actinic keratosis and lichenoid reaction; as well as
canker sores, gingival enlargement as a result of a dental
procedure, lichen planus, keratosis, inflammatory reaction and
cheek bites.

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.30.22278239doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.30.22278239


Table 2. Independent validation cohort (n= 230)
OSCC, Oral squamous cell carcinoma; OPSCC, Oropharyngeal squamous cell carcinoma; OPMD, Oral premalignant disorder

Positives (n= 96) Negatives (n=134)

OSCC (n= 20) OPSCC (n= 76) OPMD (n=14) Cancer free (n= 120)

Female (n) 3 (15.0%) 4 (5.3%) 7 (50.0%) 42 (35.0%)

Age (yrs) mean SD± 61.3 11.1 ±  60.9 7.6±  62.9 15.9± 60.5 8.8±

Results

We evaluated the performance of the CDOT test using various
metrics. Each participant sample was analyzed using the
classifier and the results were compared to the participant’s
known or assumed (cancer-free volunteers were assumed to be
cancer-free) cancer status to determine the classifier’s
performance characteristics (Figure 2). Specificity and
sensitivity were also evaluated by disease stage (early vs late),
smoking status (current, former, non-smoker and unknown)
and age (<50 and >=50).

Figure 3a and 3b show the area under the receiver operating
characteristic (ROC) curve (ROC - AUC) and the distributions
of the predicted probabilities for the model on the independent
validation data set. The AUC is 96%, indicating a probability
of 0.96 that our classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one
(assuming ‘positive’ ranks higher than ‘negative’).

Further, the OSCC-OPSCC classifier correctly classified 18/20
= 90% OSCC positive patients (sensitivity to OSCC), 64/76 =
84.2% OPSCC positive patients (sensitivity to OPSCC) (Table
3a) and 126/134 = 94% negative participants as no cancer
(specificity no negative samples) (Table 3b). Out of the early
stage participants with OSCC or OPSCC, the OSCC-OPSCC
classifier was able to classify 9 out of the 10 as OSCC and 51
out of 62 as OPSCC positive thereby demonstrating a
reasonable expectation of clinical success in identifying
participants with OSCC and/or OPSCC, including those with

early-stage disease (Table 3a). Also, in Table 3b, we included
the breakdown of the model’s specificity to negative samples.

We stratified the patient characteristics across the care centers
used to source the patient samples for validation, to ensure that
there was no bias. When evaluating the performance of the
model by smoking status, the OSCC-OPSCC classifier
correctly classified 100% of the current smokers. Among
former smokers, 7/8 = 87.5% OSCC and 35/41 (85.4%)
OPSCC were correctly classified as positives. Among
non-smokers, 4/4 = 100% OSCC and 13/17 (76.5%) OPSCC
were correctly classified as positives (Table 3c).

When evaluating the performance of the model by age, among
people below 50 years old, 4/4 = 100% of people with OSCC
and 2/3 = 66.7% of people with OPSCC were correctly
classified as positives. Among older people, 15/17 = 88.2%
OSCC and 62/73 (84.9%) OPSCC were correctly classified as
positives (Table 3d). Similarly, when stratifying the data by
biological sex, we observed that the distribution of positive
and negative samples across disease state was concordance
between male and female.

An interference evaluation was also performed with 41 cancer
free negative participants. Participants were required to chew
gum, chew tobacco, and brush their teeth. These analyses
determined whether external interference factors influenced
the detection power of the model. The probability output of the
model did not change based on the presence of the different
interfering substances, showing the robustness of the model to
interferants (Supplementary Figure 2).
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Figure 3a: ROC plot for the model on
independent validation set

Figure 3b: Predicted probabilities for all participants in the independent
validation set

Table 3a: Sensitivity (Positive percent agreement)
OSCC, Oral squamous cell carcinoma; OPSCC, Oropharyngeal squamous
cell carcinoma

n/N (%)

Overall sensitivity
(TP / TP + FN)

82/96 (85.0%)
95% CI [76.7%, 91.8%]

OSCC sensitivity 18/20 (90.0%)

OSCC Early stage 9/10 (90.0%)

OSCC Late stage 9/10 (90.0%)

OPSCC sensitivity 64/76 (84.2%)

OPSCC Early stage 51/62 (82.3%)

OPSCC Late stage 13/14 (92.9%)

Table 3b: Specificity (Negative percent agreement)
OPMD, Oral Premalignant Disorder

n/N (%)

Overall specificity
(TN / TN + FP)

126/134 (94.0%)
95% CI [88.6% - 97.4%]

Cancer free 116/120 (96.7%)

OPMD 10/14 (71.4%)

Table 3c: Sensitivity and specificity by smoking status
OSCC, Oral squamous cell carcinoma; OPSCC, Oropharyngeal squamous cell
carcinoma

Sensitivity (n/N) % Specificity
(n/N) %

OSCC OPSCC

Current 6/6 (100%) 11/11 (100%) 2/4 (50%)

Former 7/8 (87.5%) 35/41 (85.4%) 5/7 (71.4%)

Non-smoker 4/4 (100%) 13/17 (76.5%) 117/121
(97.7)

Unknown 1/2 (50%) 5/7 (71.4%) 2/2 (100%)

Table 3d: Sensitivity and specificity by age group
OSCC, Oral squamous cell carcinoma; OPSCC, Oropharyngeal squamous
cell carcinoma

Sensitivity (n/N) % Specificity
(n/N) %

OSCC OPSCC

< 50 years 3/3 (100%) 2/3 (66.7%) 4/5 (80%)

>= 50 years 15/17 (88.2%) 62/73 (84.9%) 122/129
(94.5%)
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Discussion

This study evaluates the effectiveness of a saliva
metatranscriptomic detection test, CDOTTM, to identify
individuals with OSCC and OPSCC. To evaluate its
performance, the test result (negative or positive) was
compared with the histopathological diagnosis of all
significant lesions discovered during a biopsy. Based on this
comparison, CDOTTM sensitivity (true positive fraction) is
90% for participants with a histopathological diagnosis of
OSCC and 84.2% for participants with a diagnosis of OSPCC.
The test can also detect true positives in early and late stages
of OSCC with 90% sensitivity. Furthermore, among
participants having a valid oral cancer test result and a
self-reported or clinically adjudicated cancer free status,
specificity for cancer free patients not including OPMD is
96.7%. The specificity or ability of the test to designate true
negatives is 94%, bringing a new paradigm for early screening
in primary care settings and reducing the number of
unnecessary biopsies in secondary care settings.

In routine clinical practice today, the diagnostic pathway for
oral cancer is dependent on the experience and expertise of
different healthcare providers, including dentists, dental
hygienists and primary physicians who are responsible for
performing the head and neck visual examinations. Oral
lesions that may be indicative of oral cancer include
heterogeneous appearance such as changes in color, texture
and size; and alterations in the surface, for example,
non-healing ulcerations. Several adjunct diagnostic tools are
available to aid providers in identification and diagnosis, but
there is no general consensus on which, if any, is most reliable.
Examples are exfoliative cytology, including liquid-based,
scraped and brush cytology [27,28], toluidine blue staining
[29], and light-based visual detection systems [30]. The
performance of these methods vary widely, with a pooled
estimate of 88% sensitivity and 81% specificity [31], which is
a lower performance when compared to the proposed
saliva-based detection test. Furthermore, CDOTTM is
non-invasive and easy to use and transport, which makes it a
good screening tool in dentist and primary physician’s offices.

With the advent of AI technologies there are many new
imaging methods introduced in the last decade that act as
adjunctive technologies, ranging from fluorescent imaging to
optical and mobile phone imaging in teledentistry [32][33].
Fluorescent imaging is a non-invasive method supported with
confocal laser endomicroscopy which has high magnification

power [34] resulting in 92% specificity, as well as the N2 laser
study with 92% specificity [35]. These laser technologies are
still expensive and not readily available for primary care
settings. In addition, there is significant upskilling required for
thorough examination and the results might be operator
dependent. Another example is the Oncogrid surveillance
program [36] which uses mobile phones connecting primary
care dental practitioners and frontline health workers with oral
cancer specialists for screening oral cancer. While these
methods are easily accessible, they may only be partially
useful for certain low resource setting areas, as they have low
sensitivity (around 70%-85%) due to the limitations of the
access to certain areas of the mouth cavity [37] [38]. In
contrast, the advantage of saliva-based methods is that they
can be easily accessible in both primary and secondary care
settings, and the use of technology is not operator dependent.

Saliva is in direct contact with the tissues of the oral cavity and
represents a biofluid which acts as a great substrate for liquid
biopsy. The biomolecules detected by our metatranscriptomic
method offer deep resolution and insight into the activity of
the human genes as well as all the microbial species – making
it the first of its kind. Furthermore, our method uses advanced
machine learning modeling to tease out the most
distinguishing molecular features associated with OSCC
and/or OPSCC. Previous methods have either assessed
biomolecules from the human side (e.g. CD44 protein [39] or
RNA – 6 markers that include interleukins IL-1Beta, IL-8,
OAZ1SAT1S100P, and DUSP1 [40] or difference in species
with 16S rRNA gene sequencing and metagenomics [41] [42],
but their results are less promising, and while they have
reported discovery results, they have not been validated in
independent cohorts. Large independent prospective studies
are required to advance adoption of the new adjunctive
technologies in clinical and eventually in home-based testing
settings.

If a secondary care specialist has a suspicion of cancer, the
patient will undergo a biopsy, a common invasive procedure
that remains the gold standard for diagnosing premalignant
and malignant oral diseases. CDOTTM is non-invasive and can
be easily included in secondary care practices to confirm the
need for a biopsy. Oral biopsy involves both psychological
implications for the patient and technical difficulties for the
health practitioner. When lesions are extensive, the most
representative areas must be selected to avoid diagnostic
errors. In fact, inter- and intra-observer variability of
histological diagnosis for dysplasia is well documented [43].
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A useful diagnostic tool should be easy to use and cause
minimal patient discomfort. Ideally, a diagnostic procedure
should be neither time-consuming nor complicated and, in
addition to high sensitivity, should have the potential for
automation. High specificity also avoids false-positives and,
therefore, reduces patient anxiety, additional investigations,
and even unnecessary treatment. This precisely describes the
oral CDOTTM test. CDOTTM provides non-invasive information
regarding a patient’s OSCC or OPSCC disease status that can
aid in seeking a definitive diagnosis and treatment planning. It
offers significant advantages over existing alternatives because
of its high sensitivity and specificity, and it has the potential to
identify patients for additional follow-up before their disease
has progressed to be apparent in visual/tactile exams (i.e.,
Stages I/II).

We estimate the prevalence of Oral Cancer in the United States
at 0.4%. With this prevalence, the Positive Predictive Value
(PPV) for our test is 5.4%, including both OSCC and OPC in
the intended use. The corresponding Negative Predictive Value
(NPV) for our test is 99.9%. Also, the positive likelihood ratio
(LR+) of our test is 14.31 and the negative likelihood ratio
(LR-) is 0.16. Since the inverse of negative likelihood ratio
(6.25) is less than LR+, based on these data, we conclude that
our test will be used as a rule-in test.

An important goal of early detection of oral cancer is to shift
from detection at Stage III/IV to detection at Stage I/II. To
demonstrate this stage-shifting benefit, we developed a cancer
intercept micro-simulation model to evaluate the use of the
Viome device (point estimate sensitivity of 90%, lower 95%
confidence limit of 68%) within a large intended use
population, with the distribution of oral cavity and pharynx
cancers using data from SEER (https://seer.cancer.gov/), a
large validated database. In one simulation, a cohort of
30-year-olds was generated, and cancers were allowed to
develop up to age 50. At age 50, a one-time screen is applied,
and the cohort is followed from age 50-53 (3 year follow-up).
Cancer stage distribution is evaluated from cancers that are
detected (from the screen) and those that present with clinical
symptoms prior to age 53. All detected cancers are treated
with the standard of care. SEER-derived age-specific cancer
incidence rates are used. The simulated one-time screening
strategy is then compared to no screening, where an identical
population is simulated, and cancer stage distribution is
aggregated from age 50-53. In this simulation, with a 5-year
sojourn time (length of time the cancer remains
asymptomatic), we found that the proportion of early and late
stage oral cancers in the no-screening scenario was 29% and

71% respectively, whereas in the Viome one-time screening
scenario it was 56% and 44% respectively. This illustrates that
27% of late-stage cases were stage-shifted to the early stage,
thereby enabling a standard of care treatment for those cases
and concomitant benefits.

We recognize that there are some limitations to our study.
While the model performs well in patients with OSCC and
OPSCC and cancer free patients, the number of participants
with pre-malignant diseases is currently too low to
discriminate between positives and negatives. The model was
validated in former and current smokers as well as young and
older participants, however other populations at risk such as
heavy drinkers and patients with HPV-OPSCC were not
evaluated and deserve further exploration. Lastly, while the
study participants were recruited from across the US and
Australia, the positive cases were recruited from a single site
in Australia. A larger multi-site validation including centers in
the US is forthcoming, and is expected to address most of
these limitations.

In summary, CDOTTM is a saliva-based detection test for oral
cavity cancers and oropharyngeal cancers, with 94%
specificity and sensitivity of 90% for OSCC and 84% for
OPSCC. The test performs RNA sequencing analysis and uses
270 human and microbial mRNA features as markers
associated with oral and throat cancer. Our machine-learning
based test was validated on an independent cohort of 230
patients. While future studies with a larger number of patients
with pre malignancies are needed, the current method is a
practically useful, non-invasive method that can be easily
incorporated in dentist offices, primary care centers and
specialized cancer clinics for early detection of oral and throat
cancers.
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Supplementary Materials

Classification model development

As shown in Supplementary Table 1, the ML training set
consisted of samples from 945 participants, with 92 samples
labeled as positives (80 OSCC and 12 OPSCC) and 853
samples labeled as negatives (805 cancer free participants, and
48 with pre-malignant disorders). Out of the 945 training
samples, 744 came from primary care centers as well as
Viome customers distributed across the US, and 201 from a
secondary care hospital center and cancer-free individuals in
Australia.

An OSCC-OPSCC binary classifier, a machine-learning

model, was built using a regularized logistic regression𝑙
2

algorithm after evaluating several model candidates. An
internal k-fold cross-validation (CV) was performed within the
945 samples. Model hyperparameters included the number of
folds (k), variance threshold (v), regularization strength (C),
p-value for selecting stable features via bootstrapping (p) and
clinical threshold (t) that maximized the sum of sensitivity and
specificity. A total of 93 hyperparameter sets (models) reached
at least 90% specificity and sensitivity across the
cross-validation, and were further inspected for ROC-AUC,
sensitivity, specificity and the variance of the performance
metrics. We selected the model that had the highest

performance score, defined as the sum of average CV
sensitivity and average CV specificity, among the models
trained on a feature set containing human genes. This best
model had k, v, C, p and t to be 5, 25, 0.01, 0.1 and 0.5215,
respectively. Then the model with the best hyperparameters
(from the CV step) was trained with the entire 945 samples to
obtain the final/frozen machine-learning model (Suppl. Table
1). The final model encapsulated a pattern of molecular data
that correlated with OSCC and OPSCC, which is referred to as
the “molecular signature” of OSCC-OPSCC. The molecular
signature consisted of 270 features: 110 species, 72 microbial
gene clusters annotated as KO’s and 88 HGs. A full biological
interpretation of these molecular features is outside the scope
of this manuscript, but we summarize the features in
Supplementary Figure 1a, which aggregates the 182 microbial
features into functional categories, and Supplementary Figure
1b which aggregates the 88 human gene features into known
cancer hallmarks.

Supplementary table 1. Model development (training) cohort (n=945)
OSCC, Oral squamous cell carcinoma; OPSCC, Oropharyngeal squamous cell carcinoma; OPMD, Oral premalignant disorder.

Positives (n=92) Negatives (n=853)

OSCC
(n= 80)

OPSCC
(n= 12)

OPMD
(n=48)

Cancer free
(n= 805)

Female (n) 23 (28.8%) 0 (0.0%) 29 (60.4%) 561 (69.7%)

Age (yrs) mean SD± 59.4 13.9 ± 59.8 8.8 ±  61.5 11.4± 44.0 13.7 ±  
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Supplementary Figure 1a. 182 microbial features (110 species and 72 KOs) in the molecular signature of the final
machine-learnt model. Circles and triangles represent active species and active KOs respectively. Sizes of circles or
triangles are proportional to the CLR median difference in expression level between cases and controls. Features with
coefficients greater than zero (shown in red) denote higher expression in cancer cases, and those with coefficients less than
or equal to zero (shown in blue) denote higher expression in cancer negatives. LPS is lipopolysaccharides. These microbial
features were curated and aggregated into functional categories by systems biology experts using the available literature
relating to each of the features.
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Supplementary Figure 1b. 88 human gene features in the molecular signature of the final machine-learnt model. The 88
human genes have a statistically significant overlap with several cancer hallmark genesets such as interferon Gamma,
interferon Alpha, KRAS signaling and p53 pathways, with an analysis done via a Gene Set Enrichment Analysis (GSEA)
tool. GSEA computes overlaps with a Molecular Signatures Database (MSigDB), a collection of annotated gene sets
divided into major collections, representing a universe of biological processes and pathways which are meaningful for
insightful interpretation, each based on published experimental findings. This analysis shows that the 88 human gene
features in our model represent known associations with the biology of cancer.
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Supplementary Figure 2: Model predicted probabilities for interference samples. The test was evaluated for various forms
of interference experienced shortly before the collection of the saliva samples, namely: gum, brushing and tobacco and no
interference (none). For this experiment, 41 independent samples were collected, processed and evaluated, from cancer-free
individuals that had experienced interference prior to the collection of saliva samples. The result highlights the stability of
the test result, even when there is interference before sample collection.
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