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A generalizable marker of attention in neurodiverse youth 
 
 
 
Abstract  



 
Difficulty with attention is an important symptom in many conditions in psychiatry, 

including neurodiverse conditions such as autism. There is a need to better understand the 

neurobiological correlates of attention and leverage these findings for individuals in healthcare 

settings. Nevertheless, it remains unclear if it is possible to build robust dimensional predictive 

models of attention in neurodiverse populations. Here, we use five datasets to identify and 

validate functional connectome-based markers of attention. In dataset one, we use connectome-

based predictive modelling and observe successful prediction of performance on an in-scan 

sustained attention task in a neurodiverse sample of youth. The predictions are not driven by 

confounds, such as head motion. In dataset two, we find the attention network model defined in 

dataset one generalizes to predict in-scan attention in a separate sample of neurotypical 

participants performing the same attention task. In datasets three to five, we use connectome-

based identification and longitudinal scans to probe the stability of the attention network across 

months to years in individual participants. Our results help elucidate the brain correlates of 

attention in neurodiverse youth and support the further development of predictive dimensional 

models of other clinically-relevant phenotypes. 
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Introduction 



 Autism spectrum disorder (hereafter ‘autism’) affects approximately 1% of children in 

the world (Zeidan et al. 2022) and is characterized by impairments in social communication and 

interaction as well as restricted and repetitive behaviors and atypical responses to sensory 

information (American Psychiatric Association 2013). An important symptom in autism with 

widespread individual differences is difficulty with attention. Between ~40-80% (Gadow et al. 

2006; Lee and Ousley 2006) of individuals with autism have co-occurring attention symptoms, 

affecting quality of life (Masi et al. 2017). In addition, other neurodiverse individuals, like those 

with attention-deficit/hyperactivity-disorder (ADHD) and/or the broader autism phenotype 

(Ingersoll 2010) also have difficulties with attention (Gerdts and Bernier 2011; American 

Psychiatric Association 2013). Given the impact, there has been much recent work investigating 

the neurobiological correlates of attention in neurodiverse populations through the use of fMRI. 

Of particular interest have been functional connectivity studies, in which measures of synchrony 

of the blood-oxygen-level-dependent (BOLD) signal are calculated between different regions of 

interest (Biswal et al. 1995). Group-based functional connectivity studies—comparing those with 

a neurodiverse condition like autism (Di Martino et al. 2013; Keehn et al. 2013; Fitzgerald et al. 

2015) or ADHD (Qiu et al. 2011; Di Martino et al. 2013; Posner et al. 2013; Hoekzema et al. 

2014) to neurotypical participants—have helped advance understanding of the brain correlates of 

attention. 

 While these studies have proven useful, they have largely failed to make a clinical 

impact. One potential reason is a lack of prediction-based studies focusing on individuals. 

Studies using cross-dataset prediction—building and validating models in one sample, then 

testing it in a separate sample (Scheinost et al. 2019)—are rare in the neuroimaging literature, 

despite their potential clinical utility (Gabrieli et al. 2015). Aside from clinical applications, a 



prediction-based approach holds promise for avoiding statistical issues hindering generalizability 

(Yarkoni and Westfall 2017; Yarkoni 2020) and avoids the general lack of reliability of simple 

association studies (Marek et al. 2022). Finally, a prediction-based framework can offer insights 

into populations undergoing significant developmental changes, particularly in youth (Rosenberg 

et al. 2018), and aligns with the goals of interrogating symptom dimensions among diverse 

individuals to aid further understanding of mental disorders (Insel et al. 2010). 

 Based on the importance of attention and the need for prediction studies focusing on 

individual differences, we set out to test if it is possible to build predictive models of sustained 

attention phenotypes based on an in-scan attention task in a sample of youth with autism and 

other neurodiverse conditions, as well as neurotypical controls. There are numerous reasons it 

might not be possible to generate a predictive model in a youth sample comprising many 

patients, including difficulties with task completion and issues with scan compliance (Yerys et 

al. 2009). In addition, some have suggested that brain differences among those with a 

neurodiverse condition compared to neurotypical participants (Ross and Margolis 2019) might 

make it difficult to dimensionally model a phenotype using measures of functional organization. 

Furthermore, cognitive processes like attention are supported by complex, brain-wide correlates 

(Kessler et al. 2016; Rosenberg, Finn, et al. 2016). Is it possible to generate a complex, brain-

wide model in a sample comprising neurotypical and neurodiverse individuals? 

 With these factors in mind, we address three main issues in this work. We aim to 1) 

determine if attention-based predictive models can be generated in a neurodiverse developmental 

dataset, 2) test if such a model generalizes out of sample, and 3) interrogate neuroanatomy of the 

network model and assess the stability in individual participants across time. Using connectome-

based predictive modelling (CPM) (Finn et al. 2015; Rosenberg, Finn, et al. 2016; Shen et al. 



2017; Beaty et al. 2018; Greene et al. 2018; Hsu et al. 2018; Yoo et al. 2018; Rapuano et al. 

2020; Rohr et al. 2020; Boyle et al. 2022), we show that we are indeed able to predict 

performance on an in-scan sustained attention task in novel subjects based on functional 

connectivity data. The predictions are robust to factors such as in-scanner head motion, Autism 

Diagnostic Observation Schedule (ADOS) scores, age, sex, and intelligence quotient (IQ) scores. 

Crucially, we find the network model generalizes out of sample, increasing confidence in the 

model. In line with other dimensional work in neurodiverse populations (Lake et al. 2019; Rohr 

et al. 2020; Xiao et al. 2021), we observe the brain correlates identified by the model are 

complex and distributed across broad swaths of cortical, subcortical, and cerebellar regions. 

Using connectome-based identification (ID) (Finn et al. 2015; Kaufmann et al. 2017; Vanderwal 

et al. 2017; Waller et al. 2017; Amico and Goni 2018; Graff et al. 2022; Graff et al. 2022), we 

perform exploratory analyses testing the longitudinal stability of the network model in individual 

participants. In sum, our data suggest robust network markers of attention can be generated in 

neurodiverse youth and add to the growing literature suggesting the power of dimensional 

approaches in modelling brain-behavior relationships. 

Materials and Methods 

Description of datasets 

We used five independent data sets (Table 1) in this study. The first dataset consisted of 

youths with autism and other neurodiverse conditions (e.g., ADHD, anxiety, broader autism 

phenotype, bipolar disorder) as well as typically developing children and has been described 

previously (hereafter ‘neurodiverse sample’) (Horien et al. 2020). Participants were scanned on a 

3T Siemens Prisma system. See Supplement for exclusion criteria and imaging parameters for 

the neurodiverse sample. A second dataset of neurotypical adults was used as a test dataset 



(hereafter ‘test sample’) and is described elsewhere (Rosenberg, Finn, et al. 2016). Participants 

were scanned on a 3T Siemens Trio TIM system. 

 Three additional datasets from the Consortium for Reliability and Reproducibility 

(CoRR) (Zuo et al. 2014) were used to assess stability of the network model: the University of 

Pittsburgh School of Medicine dataset, the University of Utah dataset, and the University of 

McGill dataset (hereafter, ‘Pitt’, ‘Utah’, and ‘UM’, respectively). Full details of the Pitt and UM 

datasets can be found elsewhere (Hwang et al. 2013; Orban et al. 2015). All scans were acquired 

using Siemens 3-T Tim Trio scanners; all participants were neurotypical. 

All datasets were collected in accordance with the institutional review board or research 

ethics committee at each site. Where appropriate, informed consent was obtained from the 

parents or guardians of participants. Written assent was obtained from children ages 13–17; 

verbal assent was obtained from participants under the age of 13.  

Measure Neurodiverse sample Utah UM Pitt Test sample 

Number of participants 

(males) 

70 (39) 16 (16) 27 (4) 44 (21)  25 (12) 

Number of participants 

with a 

neurodevelopmental or 

psychiatric condition 

33 total 

 

7 = ADHD 

2 = anxiety disorder 

20 = autism 

3 = BAP 

1 = bipolar 

 

- - - - 



Age in years, mean 

(standard deviation) 

11.59 (2.87) 20.23 (8.28) 65.3� (6.28) 15.23�(2.83) 22.79 (3.54) 

Time between scans in 

years, mean (standard 

deviation)  

- 2.54� (0.29)  0.305� 

(0.067) 

1.76�(0.41) - 

Scan duration in 

minutes (volumes) 

10 min (two 5 min runs; 

600 total volumes) 

8 min (240) 5 min (150) 5 min (200) 36 min task 

(three 12 min 

runs; 824 total 

volumes); 6 min 

rest (360 total 

volumes) 

 

TR in seconds 1 2 2 1.5 1 

IQ, mean (standard 

deviation) 

107.23 (15.93) - - - - 

Table 1. Demographic and imaging characteristics of samples used in this study.  

ADHD, attention-deficit/hyperactivity disorder; BAP, broader autism phenotype; ADOS, autism 

diagnostic observations schedule; IQ, intelligence quotient, TR, repetition time. 

 

gradCPT task description  

Participants in the neurodiverse sample completed the gradual onset continuous 

performance task (gradCPT) (Esterman et al. 2013; Rosenberg et al. 2013; Rosenberg, Finn, et 

al. 2016). The gradCPT task is an assessment of sustained attention and inhibition abilities that 

has been shown to produce a range of performance scores across neurotypical participants 



(Esterman et al. 2013; Rosenberg et al. 2013). In the task, participants viewed grayscale images 

of city and mountain scenes presented at the center of the screen. In each trial, an image 

transitioned from one to the next through linear pixel-by-pixel interpolation. Each transition took 

1000 ms. For 1000 ms the current scene transitioned from the previous scene, and for the next 

1000 ms, it transitioned to the next. Subjects were told to respond by pressing a button for city 

scenes and to withhold button presses for mountain scenes. City scenes occurred randomly 90% 

of the time. As in previous studies (Esterman et al. 2013; Rosenberg, Finn, et al. 2016), accuracy 

was emphasized without reference to speed, and performance was quantified using d’ 

(sensitivity), the participant’s hit rate minus false alarm rate. Participant d’ scores were 

calculated for scan 1 and scan 2 individually, as well as the average across both scans.  

Participants in the test sample also completed gradCPT with the same parameters as above, 

except scene transitions took 800 ms; resting-state data were also collected in this sample. 

The Pitt, Utah, and UM subjects completed only resting-state scans that were spaced 

apart at longer time intervals (months to years between scans; Table 1).  

Preprocessing 

The preprocessing strategy for the neurodiverse sample has been described previously 

(Greene et al. 2018; Horien et al. 2019). Preprocessing steps were performed using BioImage 

Suite (Joshi et al. 2011) unless otherwise indicated, and included: skull-stripping the 3D 

magnetization prepared rapid gradient echo (MPRAGE) images using optiBET (Lutkenhoff et al. 

2014) and performing linear and non-linear transformations to warp a 268-node functional atlas 

from MNI space to single subject space (Greene et al. 2018). Functional images were motion 

corrected using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Covariates of no 

interest were regressed from the data, including linear, quadratic, and cubic drift, a 24-parameter 



model of motion (Satterthwaite et al. 2013) mean cerebrospinal fluid signal, mean white matter 

signal, and the global signal. Data were temporally smoothed with a zero-mean unit-variance 

low-pass Gaussian filter (approximate cutoff frequency of 0.12�Hz). The results of skull-

stripping, non-linear, and linear registrations were inspected visually after each step.  

We used previously preprocessed data for the Utah, UM, Pitt, and test samples; the 

preprocessing approach has been described elsewhere (Horien et al. 2019; Rosenberg, Finn, et al. 

2016). (See Supplement for more about how motion was controlled in all analyses in all 

samples.) 

Node and network definition  

We used a 268-node functional atlas (Finn et al. 2015). For each participant, the mean 

time-course of each region of interest (“node” in graph theory) was calculated, and the Pearson 

correlation coefficient was calculated between each pair of nodes to achieve a symmetric 268 x 

268 matrix of correlation values representing “edges” (connections between nodes) in graph 

theoretic terminology. We transformed the Pearson correlation coefficients to z-scores via a 

Fisher transformation and only considered the upper triangle of the matrix, yielding 35,778 

unique edges for whole-brain CPM analyses.  

Connectome-based predictive modelling 

To predict gradCPT performance (d’) from the brain data (connectivity matrices) in the 

neurodiverse sample, we used CPM (Shen et al. 2017). (See Supplemental Methods and 

Supplemental Figure 1 for more details about CPM.)  

Briefly, using 10-fold cross-validation, connectivity matrices from gradCPT and d’ scores 

were divided into an independent training set including subjects from 9 folds and a testing set 

including the left-out fold. In the training set, linear regression was used to relate edge strength to 



d’. The edges most strongly related to d’ were selected (using a feature selection threshold of P = 

0.05) for both a ‘high network’ (in which increased connectivity was associated with a higher d’ 

score) and a ‘low network’ (in which decreased connectivity was associated with a higher d’ 

score). Mean network strength was calculated in both the high and low networks, and the 

difference between these network strengths was calculated (‘combined network strength’), as in 

previous work (Greene et al. 2018):  

High network strengths = 
�

� 
�∑ ��,���

�,���,�  ;  � 	 ���	�


�
   

Low network strengths 	
�

� 

∑ ��,��	

�,��,� � ;  � 	 ���	�


�
    

Combined network strengths = High network strengths – low network strengths 

where � is the connectivity matrix for subject s and ��and �	 are binary matrices indexing the 

edges (�, �� that survived the feature selection threshold for the high or low network. (Recall that 

� and ��and �	 comprise only the upper triangle of the connectivity matrix, as specified 

above.) Throughout the text, we refer to the edges in the high and low network as comprising the 

‘attention network.’ 

A linear model was then generated relating combined network strength to d’ scores in the 

training data. In a final step, combined network strength was calculated for the left-out 

participants in the testing set, and the model was applied to generate d’ predictions for these left-

out subjects. We conducted the main CPM analyses by constructing an average connectivity 

matrix per participant across the two gradCPT runs; behavioral data were averaged as well, as in 

previous work using gradCPT (Rosenberg, Finn, et al. 2016). (See ‘Multiverse analysis and 

CPM’ section below for how the effects of arbitrary choices were assessed.) 

 As in (Scheinost et al. 2021), model performance was assessed by comparing the 

similarity between predicted and observed gradCPT d’ scores using both Spearman’s correlation 



(to avoid distribution assumptions) and root mean square error (defined as: 

RMSE(predicted,observed) = √�1/� ∑ �������� � ��������������

���� ). We performed 1000 

iterations of a given CPM analysis and selected the median-performing model; we report this in 

the main text when discussing model performance. To calculate significance, we randomly 

shuffled participant labels and attempted to predict gradCPT d’ scores. We repeated this 1000 

times and calculated the number of times a permuted predictive accuracy was greater than the 

median of the unpermuted predictions to achieve a non-parametric P-value:  

P =  (#{rhonull > rhomedian}) / 1000 

where #{rhonull > rhomedian} indicates the number of permuted predictions numerically greater 

than or equal to the median of the unpermuted predictions (Scheinost et al. 2021). 

Multiverse analysis and CPM 

To determine if CPM findings were robust, we used a multiverse approach to explore 

how results were affected by different analytical choices (Steegen et al. 2016). The goal of this 

approach is not to determine what CPM pipeline gives the ‘best’ prediction; rather, it is to gather 

converging evidence across a range of analytical scenarios to determine how modelling choices 

affect results. Specifically, we altered the feature selection threshold used to select significant 

edges (P = 0.05, P = 0.01, P = 0.005, P = 0.001); we tested CPM using a combined network 

model versus testing the high and low networks separately; we tested the effect of partialling out 

participant age, sex, IQ, Autism Diagnostic Observation Schedule (ADOS) (Lord et al. 2012) 

calibrated severity score, and head motion in the feature selection step (as described previously) 

(Scheinost et al. 2021; Dufford et al. 2022); and we also built models using data from gradCPT 

run 1, gradCPT run 2, and average gradCPT data. To ensure this approach did not result in false 



positives, the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995) was applied to 

control for multiple comparisons (correcting for 12 tests). 

Testing generalizability of the attention network 

 To assess if the network model of attention generalized out of sample, we defined a 

consensus high attention network and consensus low attention network as edges that appear in at 

least 6/10 folds in 600/1000 iterations of CPM. This resulted in 922 edges in the high attention 

network and 896 edges in the low attention network. Using the combined network strength in the 

consensus networks (as above for CPM), we determined model coefficients across the 

neurodiverse sample, as in (Rosenberg, Finn, et al. 2016; Ju et al. 2020; Dufford et al. 2022). We 

then applied the network masks and model coefficients to the test sample to generate d’ 

predictions.  

As above for CPM analyses, model performance was assessed by comparing the 

similarity between predicted and observed gradCPT d’ scores using both Spearman’s correlation 

and by calculating RMSE. Non-parametric P-values were computed as for CPM. As above, we 

used a similar multiverse approach to ensure results were not being driven by subject age, sex, or 

head motion; the Benjamini–Hochberg (1995) procedure was again used to control for multiple 

comparisons. To further ensure results were robust, we tested a range of summary networks of 

varying sizes (i.e., from stringent cases where an edge must appear in 10/10 folds and 1000/1000 

iterations, to more liberal thresholds where an edge must appear in 3/10 folds and 300/1000 

iterations). 

Connectome-based ID 

To test the stability of the predictive model over time in a given individual, we used 

connectome-based ID (Finn et al. 2015) and the Pitt, Utah, and UM samples. (See Supplemental 



Figure 2 for a schematic and more about connectome-based ID.) Briefly, after selecting only the 

edges in the high and low networks (i.e., the same consensus edges used in the cross-dataset 

test—the 922 and 896 edges in the high and low attention networks, respectively), a database 

was created consisting of all subjects’ matrices from scan 1. In an iterative process, a 

connectivity matrix from a given subject was then selected from scan 2 and denoted as the target. 

Pearson correlation coefficients were calculated between the target connectivity matrix and all 

the matrices in the database. If the highest Pearson correlation coefficient was between the target 

subject in one session and the same subject in the second session (i.e. within-subject correlation 

> all other between subject correlations), this was recorded as a correct identification. The 

process was repeated until identifications had been performed for all subjects and database-target 

combinations. We averaged both database-target pairs (because these can be reversed) for a 

dataset to achieve an average ID rate. To calculate P-values, we randomly shuffled subject 

identities and reperformed ID for 1000 iterations and compared the actual ID rates to this null 

distribution (Finn et al. 2015; Horien et al. 2018; Horien et al. 2019): 

P =  (#{IDnull  > IDactual}) / 1000) 

where #{IDnull  > IDactual} indicates the number of permuted ID rates numerically greater than or 

equal to the actual ID rate obtained using the original data. 

We also assessed if connections inside the attention network were more or less stable 

than connections in the rest of the brain. We generated 1000 summary networks comprising 

edges outside of the consensus attention network (and the same size as the high and low attention 

networks). Connectome-based ID was performed using the random networks, and we compared 

ID results to those obtained using the original consensus attention network. P-values were 

obtained as follows: 



P =  (#{IDrandom  > IDactual}) / 1000) 

where #{IDrandom  > IDactual} indicates the number of random ID rates numerically greater than or 

equal to the actual ID rate obtained using the original data. 

In the Pitt dataset, incomplete scan coverage during the functional runs resulted in 

158/922 and 145/896 edges missing in the high and low networks, respectively; we performed 

ID with the remaining edges.  

Code and data availability  

Preprocessing was carried out using software freely available here: 

(https://medicine.yale.edu/bioimaging/suite/). CPM code is available here: 

(https://github.com/YaleMRRC/CPM). The parcellation, the attention network models, and the 

connectome-based ID code are available here: (https://www.nitrc.org/frs/?group_id=51). Data 

from the longitudinal samples are openly available through CoRR 

(http://fcon_1000.projects.nitrc.org/indi/CoRR/html/).   

Results  

Prediction of in-scan attention scores in the neurodiverse sample 

 In the neurodiverse sample, there were no differences between neurodiverse and 

neurotypical participants in in-scanner head motion (t(68) = 0.77, P = 0.4437) or gradCPT d’ 

(t(68) = -0.60, P = 0.5487). Across the sample, we observed that motion and d’ were negatively 

correlated (r = - 0.35, P = 0.0034); we hence adopted a rigorous motion control strategy for the 

duration of the analyses to ensure motion was not driving the brain-behavior models 

(Supplemental Methods). 

Next, using CPM, we built a model using within-dataset cross-validation to predict 

unseen participants’ gradCPT d’ scores from functional connectivity data. The model 



successfully predicted gradCPT d’ scores in the neurodiverse dataset (Spearman’s rho = 0.54, 

RMSE = 0.78, P = 0.0001; Figure 1A). 

To assess the robustness of the d’ prediction, we used a multiverse approach to explore 

how results were affected by different analytical choices (Steegen et al. 2016). We stress the 

point of this approach is not to determine what pipeline gives the ‘best’ prediction performance; 

it is instead to gather converging evidence across a range of analytical scenarios to determine the 

extent to which arbitrary choices affect CPM results. 

As the choice of feature selection threshold is arbitrary, we started by testing a range of 

thresholds, while still controlling for motion. We were able to significantly predict d’ scores in 

all cases (feature selection threshold of 0.01: Spearman’s rho = 0.50, RMSE = 0.79, P = 0.0001; 

feature selection threshold of 0.005: Spearman’s rho = 0.45, RMSE = 0.80, P = 0.002; feature 

selection threshold of 0.001: Spearman’s rho = 0.43, RMSE = 0.81, P = 0.0001). Interestingly, 

all models performed quite well, but when more stringent feature selection thresholds were 

applied (i.e., fewer edges were included in a model), performance decreased.  

We next performed analyses adjusting for participant age, sex, IQ, and ADOS score. 

Each pipeline demonstrated similar prediction performance of d’ (age-adjusted model: 

Spearman’s rho = 0.47, RMSE = 0.80, P = 0.001; sex-adjusted model: Spearman’s rho = 0.52, 

RMSE = 0.77, P = 0.0001; IQ-adjusted model: Spearman’s rho = 0.49, RMSE = 0.96, P = 0.003; 

ADOS-adjusted model: Spearman’s rho = 0.53, RMSE = 0.77, P = 0.0001). Models were also 

built for gradCPT scan 1 and gradCPT scan 2 separately (scan 1: Spearman’s rho = 0.31, RMSE 

= 0.85, P = 0.031; scan 2: Spearman’s rho = 0.27, RMSE = 0.87, P = 0.073). Prediction 

performance dropped in this case, echoing recent results that more data fed into predictive 

models results in higher accuracies (Taxali et al. 2021).  



Finally, the choice to model attention using a ‘combined network’ (used in all analyses 

above) is also arbitrary. We repeated the CPM prediction of d’ scores and tested the high and low

networks. We again observed similar d’ prediction in both cases (high network: Spearman’s rho 

= 0.53, RMSE = 0.78, P = 0.0001; low network: Spearman’s rho = 0.50, RMSE = 0.79, P = 

0.0001; Figure 1B-C). 

In all, these results suggest attention prediction is robust in this sample and is not driven 

by potential confounding factors. 

 

Figure 1. In-scan sustained attention task performance (gradCPT d’) can be predicted in a 

neurodiverse sample using CPM. A) Results from the combined network model. B) Results from 

the high network. C) Results from the low network. For all plots, actual gradCPT d’ scores are 

indicated on the x-axis; predicted scores, on the y-axis. A regression line and 95% confidence 

interval are shown. ADHD, attention-deficit/hyperactivity disorder; BAP, broader autism 

phenotype; P = P-value; RMSE, root mean square error. 

 
External validation of the attention network 

 Overfitting—deriving statistical patterns specific to noise in a sample—is a constant 

concern in machine learning studies. The ultimate test is to assess how well a model works in an 

independent dataset; we perform such a test here. We determined which edges tended to 

contribute consistently to successful prediction (922 in the high network and 896 in the low 

w 

 

m 



network, 1818 edges total) and built a consensus model in the neurodiverse sample (Methods). 

Applying the model to the test sample comprising subjects completing the same gradCPT task, 

we observed successful prediction of d’ scores (Spearman’s rho =  0.65, RMSE = 1.059 P = 

0.0006; Figure 2A).  

We repeated analyses controlling for several other variables, adjusting for in-scanner 

head motion (Spearman’s rho = 0.67, P = 0.0008), participant sex (Spearman’s rho = 0.61, P = 

0.0014), as well as age (Spearman’s rho = 0.65, P = 0.0009), and observed similar results. In 

addition, when we tested both the high and low network separately, we found each of these 

networks predicted d’ scores (high network: Spearman’s rho = 0.59, RMSE = 1.094, P = 0.021; 

low network: Spearman’s rho =  0.59, RMSE = 1.03, P = 0.0025). In addition, we tested whether 

the attention network could be used to predict d’ scores from resting-state data in the adult 

sample. We again found the model generalized (Spearman’s rho = 0.42, RMSE = 1.002, P = 

0.0358; Figure 2B). 

We further tested the stability of results by altering how consistently an edge had to 

appear across CPM iterations to be included in the summary attention network (Methods). This 

resulted in 8 attention summary networks, ranging from ~100-3000 edges. In 7/8 cases, the 

attention network generalized to predict d’ scores (range of Spearman’s rho = 0.50-0.66; all P < 

0.0104 after FDR correction; Supplemental Table 1). The only summary network that did not 

predict d’ score (Spearman’s rho = 0.23, P = 0.27) was quite small (~100 edges), approximately 

an order of magnitude smaller than the original attention network tested above (and other 

networks that have generalized) (Rosenberg, Finn, et al. 2016; Greene et al. 2018; Yip et al. 

2019). These results suggest generalization in this sample is robust to the arbitrary choices made 

when defining a summary model. 



Figure 2. Generalization of the attention network to an independent sample. A) Results using 

task data. B) Results using rest data. For all plots, actual gradCPT d’ scores are indicated on the 

x-axis; predicted scores, on the y-axis. A regression line and 95% confidence interval are shown. 

Abbreviations: RMSE, root mean square error; P = P-value. 

 
Neuroanatomy of CPM predictive networks 

 We next performed post-hoc visualizations to localize brain connections contributing to 

the model. Together, the 1818 total edges comprise 5.08% of the connectome. Similar to other 

CPM models (Rosenberg, Finn, et al. 2016; Beaty et al. 2018; Greene et al. 2018; Lake et al. 

2019; Ju et al. 2020; Dufford et al. 2022), the predictive edges in the high and low networks 

comprise complex, distributed networks spanning the entire brain (Figure 3A-B). In line with 

task demands, additional visualizations at the network level (Figure 3C-D) revealed connections 

involving subcortical, cerebellar, and visual networks were particularly important. In the high 

attention network, for example, the top three network pairs containing the greatest proportion of 

edges involved subcortical, cerebellar, and visual networks. In the low attention network, a 

 

n. 



network pair involving the cerebellum (the cerebellar-frontoparietal network) contained the 

greatest proportion of edges. For completeness, we present the matrices in Figure 3C-D in 

Supplemental Figure 3 without normalizing by network size; subcortical, visual, and cerebellar 

networks again tended to harbor large numbers of edges. (See also Supplemental Figure 4 for an 

additional visualization using circle plots and glass brains.) 

Figure 3. Neuroanatomy of CPM predictive networks. A) The consensus high network. B) The 

consensus low network. For both A) and B): a circle plot is shown in the upper left. The top of 

the circle represents anterior; the bottom, posterior. The left half of the circle plot corresponds to 

the left hemisphere of the brain. A legend indicating the approximate anatomic ‘lobe’ is shown to

the left. The same edges are plotted in the glass brains as lines connecting different nodes (red 

circles); in these visualizations, nodes are sized according to degree, the number of edges 

 

to 

 to 



connected to that node. Note that to aid in visualization, we have thresholded the matrices to only 

show nodes with a degree threshold > 15 (unthresholded circle plots and glass brains are shown 

in Supplemental Figure 4). C) Matrix of the consensus high network. D) Matrix of the consensus 

low network. For both C) and D): the proportion of edges in a given network pair; data have 

been corrected for differing network size. MF, medial frontal; FP, frontoparietal; DM, default 

mode; MT, motor; VI, visual I; VII, visual II; VA, visual association; CO, cingulo-opercular; SB, 

subcortical; CB, cerebellum. 

 
Individual-level stability of predictive network model 

 An ultimate goal of using individual-level approaches in the clinic is to infer future 

outcomes based on current data. Because the attention network was defined in relation to a state-

based cognitive process that itself fluctuates (Cohen and Maunsell 2011; Esterman et al. 2013; 

Esterman et al. 2014; Rosenberg et al. 2015; Terashima et al. 2021), it is possible individual 

connectivity patterns in the attention network might change over time. Hence, we conducted an 

exploratory analysis using connectome-based ID and longitudinal datasets with months to years 

between scans, asking: are connections in the attention network stable enough within individuals 

to identify a participant from a group? 

Across the three longitudinal samples, we observed that the attention network results in 

ID rates well-above chance (ID rate range: 53.4 - 93.5%; P < 0.0001 across all samples; Figure 

4A-B). Specifically, ID rates were high when there were months between scans (UM dataset; 

92.6% and 81.5% in the high and low attention networks, respectively) and when there were 

years between scans (as for Utah and Pitt datasets; Utah high attention network = 84.4%, Utah 

low attention network = 81.3%; Pitt high attention network = 53.4%, Pitt low attention network 



= 62.5%). These results suggest participants retain their unique connectivity signatures in the 

attention network. 

We next examined the relationship between in-scanner head motion and within-

participant correlations in connectivity strength in the attention network. Across all three 

samples, we found there were no statistically significant relationships between within-participant 

correlation scores and head motion in 5/6 cases (range of rho values: -0.096 - 0.123; P > 0.53 

across all samples; Supplemental Table 2). The only statistically significant relationship we 

observed was in Pitt, and there was a negative association (high attention network: rho = -0.36, P 

= 0.0153), indicating higher head motion in this sample was associated with lower within-subject 

self-correlation scores (in line with previous results) (Horien et al. 2018; Graff et al. 2022). 

These findings suggest the high ID rates are not being driven by head motion. 

Lastly, we used connectome-based ID to determine how the attention network compared 

to connections in the rest of the brain. Generating 1000 summary networks comprising edges 

outside of the consensus attention network (and of the same size), we observed no differences in 

ID rates of the random networks compared to the attention network (ID rate range: 62 - 92.8%; 

all P > 0.49 across all samples; Figure 4C-D; see Supplemental Table 3 for exact ID rates and P-

values for all samples). That is, the attention network itself tends to retain participant-specific 

connectivity signatures across months to years because the brain as a whole retains participant-

specific connectivity signatures across months to years. 

  



Figure 4. The attention network is stable at the individual level across months and years. For 

panels A) and B) results are shown for the high and low networks, respectively, comparing ID 

rates obtained using edges in the attention network (‘Actual’) compared to chance levels when 

participant labels have been permuted (‘Null’). In A) and B), the rightmost bar is the mean ID 

rate from 1000 iterations of permutation testing. For panels C) and D) results are shown for the 

high and low networks, respectively, comparing ID rates obtained using edges in the attention 

network (‘Actual’) compared to ID rates obtained when using edges not included in the attention 

network (‘Edges outside att. net.’). For A-D): each dataset is indicated below the x-axis; the y-

axis is the ID rate, presented as a fraction from 0 (no subjects correctly identified) to 1 (all 

subjects correctly identified). Error bars correspond to 95% confidence intervals obtained via 

 

n 



bootstrapping. Note the actual ID rates shown in plots A) and B) (the grey bars) are reproduced 

in plots C) and D). Att. net., attention network; ID rate, identification rate; Pitt, University of 

Pittsburgh sample; UM, University of Montreal sample. 

 
Discussion 

In this work, we set out to test if it was possible to generate connectome-based predictive 

models of attention in a neurodiverse sample of youth. Using CPM, we were able to build a 

predictive network model of in-scan sustained attention scores. Crucially, we found the network 

generalized out of sample, further suggesting the brain-behavior model we originally identified is 

a robust marker of attention. The network model was spatially complex, comprising connections 

across the brain. Lastly, we conducted exploratory analyses in three open-source samples using 

the network and connectome-based ID. 

The power and potential of dimensional models 

 Our work adds to the growing literature suggesting it is feasible to use a dimensional 

approach to model individual differences in brain-behavior relationships in neurodiverse youth. 

In addition to autism symptoms (Lake et al. 2019), groups have developed dimensional models 

predictive of behavioral inhibition (Rohr et al. 2020), social affect (Xiao et al. 2021), and 

adaptive functioning (Plitt et al. 2015) in neurodiverse samples. In all cases, the predictive 

models comprise complex networks, with connections spanning the entire brain (reviewed in) 

(Horien et al. 2022). Nevertheless, subcortical and cerebellar networks tend to emerge as major 

contributors in these models, regions we also observed as important in our attention network. 

Furthermore, similar brain areas have also been noted to play a role in attention (Rosenberg, 

Finn, et al. 2016; Green et al. 2017; Yoo et al. 2022), consistent with the growing recognition 



that subcortical and cerebellar circuits are important in mediating cognitive processes (Buckner 

2013; Clark et al. 2021). 

Beyond helping to hone in on brain areas involved in sustaining attention, the network 

identified is intriguing from a clinical standpoint. For example, it has been shown that a network 

connectivity model of attention (Rosenberg, Finn, et al. 2016) is sensitive to methylphenidate 

(Rosenberg, Zhang, et al. 2016). It is therefore possible the network identified here may help in 

tracking changes after administration of a therapeutic. Though more work is needed, it is 

generally encouraging that markers identified through dimensional analyses appear to be 

sensitive to clinically useful drugs. There is a need for objective, biological markers in 

psychiatry, and dimensional approaches could offer a framework to identify quantitative markers 

to help individuals clinically (McPartland 2021). 

Generalizability of the attention network and open science 

Much has been written about the reproducibility crisis in biomedical science (Pashler and 

Wagenmakers 2012; Open Science Collaboration 2015; Baker 2016), as well as the fear results 

might suffer from a lack of generalizability (Yarkoni 2020), particularly in psychiatry and 

psychology. We emphasize the present study uses predictive modeling, which is an additional 

step beyond association studies, that helps reproducibility (Rosenberg, Finn, et al. 2016; Yarkoni 

and Westfall 2017; Rosenberg et al. 2018; Scheinost et al. 2019; Poldrack et al. 2020). Testing to 

ensure results are robust across samples and contexts is also imperative. This effort is especially 

important in neuroimaging, where hopes have been high for clinical impact, yet there has been 

little progress translating papers into practice (Chekroud 2017; Chekroud and Koutsouleris 

2018). Further, even when findings might be clinically useful, many roadblocks stand in the way 



of successful implementation (Chekroud and Koutsouleris 2018). It is incumbent on researchers 

to test findings in multiple samples to avoid having other investigators waste time and resources.  

Hence, the fact the attention network generalizes out of sample increases confidence in 

the original model and opens new opportunities for analysis. That is, the attention network 

generalized from a young, neurodiverse sample to an older, neurotypical sample. This finding is 

in line with the dimensional view of brain-behavior relationships (Insel et al. 2010) and also 

supports the notion that despite developmental changes in brain function, a ‘core’ brain network 

architecture associated with sustaining attention is likely present (Yoo et al. 2022). An important 

next step to further assess generalizability will be testing if the network can generalize to predict 

different aspects of attention (or other phenotypes entirely) and in different populations. To this 

end, we openly share the attention network model and encourage other investigators to test it 

widely. By sharing materials, particularly those from neurodiverse participants, we as a 

community can ensure our findings are relevant for all individuals.  

Individual stability of the attention network 

Using connectome-based ID, it has been shown the connectome tends to be individually 

stable across short time scales (minutes) (Miranda-Dominguez et al. 2014; Finn et al. 2015; 

Kaufmann et al. 2017; Vanderwal et al. 2017; Waller et al. 2017; Amico and Goni 2018) and 

longer time scales (months to years) (Miranda-Dominguez et al. 2018; Horien et al. 2019; 

Demeter et al. 2020; Jalbrzikowski et al. 2020; Ousdal et al. 2020; Graff et al. 2022; Graff et al. 

2022). Further, individual resting-state networks have tended to exhibit high stability (Finn et al. 

2015). Here, we tested if a state-based, behaviorally defined network comprising edges across 

the brain exhibited the same degree of stability.  



Encouragingly, we observed the attention network is a stable multivariate marker of 

connectivity over long time scales, and this did not differ from the rest of the brain in terms of 

stability. We interpret this finding as a positive for the field, as it suggests that networks for other 

phenotypes, with different neurobiological correlates, will likely exhibit a high degree of 

individual stability as well. Indeed, this seems to be the case, as recent work has demonstrated 

that predictive network models tend to have substantially higher reliability than individual 

functional connections (Taxali et al. 2021). Future studies could more rigorously assess how 

stability of the attention network relates to CPM model performance in longitudinal samples, as 

the datasets used here did not contain assessments of attention. Continuing to focus on the 

stability and reliability of our measurements is crucial (Noble et al. 2019), as a lack of reliability 

can continue to impede the clinical utility of fMRI (Milham et al. 2021) 

Limitations and future considerations 

Compared to other open source datasets (e.g., ABCD (Casey et al. 2018), the Human 

Connectome Project (Van Essen et al. 2013), UK Biobank (Miller et al. 2016)), the samples used 

here are small. Another limitation is participants in the neurodiverse sample had fairly high IQ 

scores compared to the population at large (Wingate et al. 2014). While IQ was not shown to be 

a confounding factor in the predictive model, individuals with lower IQs may have difficulties 

completing the gradCPT task. Future studies could address generalizability of the task and/or 

network in more varied individuals. In addition, attention is a broad construct, and in this work, 

we focused on the ability to sustain attention. More research could be conducted to determine if 

it is possible to build dimensional models of other aspects of attention in neurodiverse 

individuals. 



The longitudinal samples we used to measure stability of the model did not contain 

behavioral/clinical data. It is unclear if the predictive network is able to predict attention 

phenotypes across longer time scales. Studies with the same participants completing the 

gradCPT task at multiple time points could help to answer this question. Finally, we have 

focused on a single phenotype here. An important next step will be to use a multimodal, 

multidimensional framework in large numbers of individuals—incorporating numerous 

phenotypes and data types—to generate findings across multiple spatial and temporal scales 

(Lombardo et al. 2019). Such an approach holds the promise of illuminating the complex biology 

underlying heterogenous neurodiverse conditions. 

Conclusion 

In sum, we have shown that it is possible to generate task-based predictive models of in-

scan attention in a neurodiverse sample and that such a model generalizes. Results support the 

further development of predictive dimensional models of cognitive phenotypes and suggest that 

such an approach can yield stable imaging markers. 
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