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eMethod 1: Empirical validation of sopNMF. 

For the empirical validation of sopNMF, the comparison population (Method 1 in the main 

manuscript) was used so that the machine's memory could be sufficient to read the entire data for 

opNMF. For sopNMF, different choices of batch size (i.e., BS=32, 64, 128, and 256) were 

tested. We hypothesized that sopNMF could approximate the optima of opNMF during 

optimization, i.e., resulting in similar parts-based representation, training loss, and sparsity. 

TensorboardX was embedded into the sopNMF framework to monitor the training process 

dynamically. All experiments were performed on an Ubuntu machine with a maximum RAM of 

32 GB and 8 CPUs. The predefined maximum number of epochs for all experiments is 50,000, 

and the tolerance of early stopping criteria is 100 epochs based on the training loss. 

We qualitatively compared the extracted PSCs and quantitatively for the training loss, the 

sparsity of the component matrix W, and the memory consumption for C=20 (number of PSCs). 

The 20 PSCs were spatially consistent between opNMF and sopNMF, despite that some regions 

were decomposed into different PSCs (i.e., the white ellipse in eFig. 1A). For the training loss, 

opNMF obtained the lowest loss (1.103 x 106), and the loss of sopNMF were 1.107 x106, 1.108 

x106, 1.111 x106 and 1.210 x106 for BS =256, 128, 64, and 32, respectively (eFig. 1D). For the 

sparsity of the component matrix, all models obtained comparable results (sparsity ≈ 0.83, eFig. 

1E). The estimated memory consumptions during the training process were 28.65, 4.02, 3.81, 

2.60, 1.47 GB for opNMF and sopNMF (BS =256, 128, 64, and 32), respectively 

(Fig. e1F). 
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eMethod 2: Reproducibility index. 

We proposed a reproducibility index (RI) to test the reproducibility of sopNMF for brain 

parcellation: 

 We used the Hungarian match algorithm1 to match the pairs of PSCs between two splits 

under the specific condition that maximizes the similarity (i.e., minimize the cost of 

worker/jobs in its original formulation). 

 For each pair of PSCs, we calculated the inner product of the vectors (𝑅𝑑), referred to as 

RI. This index takes values between [0, 1], with higher values indicating higher 

reproducibility. 

 For each scale C, we presented the mean/standard deviation of the RIs for all PSCs. 
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eMethod 3: Inter-site image harmonization  

We used an extensively validated statistical harmonization approach, i.e., ComBat-GAM,2 to 

harmonize the extracted multi-scale PSCs. This method estimates the variability in volumetric 

measures due to differences in site/cohort-specific imaging protocols based on variances observed 

within and across control groups while preserving normal variances due to age, sex, and 

intracranial volume (ICV) differences. The model was initially trained on the discovery set and 

then applied to the replication set. 
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eMethod 4: Quality check of the image processing pipeline.  

Raw T1-weighted MRIs were first quality checked (QC) for motion, image artifacts, or restricted 

field-of-view. Another QC was performed as follows: First, the images were examined by 

manually evaluating for pipeline failures (e.g., poor brain extraction, tissue segmentation, and 

registration errors). Furthermore, a second step automatically flagged images based on outlying 

values of quantified metrics (i.e., PSC values); those flagged images were re-evaluated. 
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eMethod 5: Definition of the index, candidate, independent significant, and lead SNP and 

genomic locus. 

Index SNP 

They are defined as SNPs with a p-value threshold ≤ 5e-8 (clump-p1) from GWAS summary 

statistics. 

Independent significant SNP  

They are defined as the index SNPs, which are independent of each other (not in linkage 

disequilibrium) with r2 ≤ 0.6 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 

from each other.  

lead SNP and genomic loci 

They are defined as the independent significant SNPs, which are independent of each other with 

a more stringent r2 ≤ 0.1 (clump-r2) within 250 kilobases (non-overlapping, clump-kb) away 

from each other. Each of these clumps is defined as a genomic locus. 

Candidate SNP 

With each genomic locus, candidate SNPs are defined as the SNPs whose association p-values 

are smaller than 0.05 (clump-p2). The definitions followed instructions from FUMA3 and Plink4 

software.   
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eMethod 6: Cross-validation procedure for PAML.  

Nested cross-validation was adopted for all tasks following the good-practice guidelines 

proposed in our previous works5–7. In particular, an outer loop was used to evaluate the task 

performance (250 repetitions of random hold-out splits with 80% of data for training). In 

contrast, an inner loop focused on tuning the hyperparameters (10-fold splits). We computed the 

balanced accuracy (BA) to evaluate the classification tasks. We calculated the effect size 

(Cohen's d) and p-value for each SPARE index to quantify its discriminative power. 
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eFigure 1: Comparison between opNMF and sopNMF. (A) The extracted components are 

shown in the original image space, with each PSC displayed in a distinct color. 

The white ellipse indicates the region where the models diverge. Training loss (B, D) and 

sparsity (C, E) demonstrated similar patterns between models, except that batch size (BS) = 32 

had a larger loss than the other models. Comparing the estimated memory consumption during 

training across models shows significant advantages for all sopNMF models compared to 

opNMF. 
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eFigure 2: Reproducibility of the sopNMF brain parcellation. In general, sopNMF 

demonstrated high reproducibility under various conditions. For each brain PSC, the 

reproducibility index (RI) was calculated (Supplementary eMethod 2). (A) Split-sample 

analyses, where the training population (N=4000) was randomly split into two halves while 

maintaining similar age, sex, and site distribution between groups. (B) Split-sex analyses, where 

the training population was divided into males and females. Colored PSCs on the brain template 

illustrates the same PSC independently derived from the two splits.  
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eFigure 3: Scatter plot for the h2 estimates from the discovery and replication sets. The 

SNP-based heritability was estimated independently for the discovery set (N=18,052) and 

replication set (N=15,243). In particular, the two estimates were highly correlated (r = 0.94, p-

value < 10-6), demonstrating a highly similar genetic architecture across different sets of UKBB 

data.    
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eFigure 4: Machine learning performance for disease classification. Balanced accuracy (BA) 

for each classification task using different features from multi-scale MuSIC, AAL, and RAVENS 

(higher score better). Details are presented in eTable 5. 
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eFigure 5: Annotation of MUSE ROIs to MuSIC PSCs based on the overlap index. We 

automatically annotated the 119 MUSE GM PSCs to the MuSIC atlases at all six scales (C=32, 

64, 128, 256, 512, and 1024). To this end, we calculated an overlap index (OI) to quantify the 

spatial overlaps between MUSE and MuSIC. For instance, for each MUSE PSC (eTable 6) vs. 

each of the 32 PSCs of MuSIC at C=32 scale, the OI equals the proportion of the number of 

overlap voxels and the total number of voxels in the MUSE PSC. Here we illustrate by mapping 

the right thalamus of MUSE to all 6 MuSIC atlases. The highest OIs are 0.82, 0.70, 0.86, 0.30, 

0.09, 0.05 for C32_1, C64_42, C128_114, C256_110, C512_249 and C1024_249 PSCs. This 

functionality is available in BRIDGEPORT: 

https://www.cbica.upenn.edu/bridgeport/MUSE/Right%20Thalamus%20Proper     

  

https://www.cbica.upenn.edu/bridgeport/MUSE/Right%20Thalamus%20Proper
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eFigure 6: Summary statistics of the multi-scale PSCs of MuSIC. Multi-scale PSCs show 

considerable normal distributions, i.e., symmetrical distribution (A) with a low kurtosis (B). 

Moreover, we fit the Generalized Additive Model for Location, Scale, and Shape (GAMLSS)8 

model (fractional polynomials with 2 degrees) to each PSC to delineate the age trajectory over 

the lifespan in males (solid lines) and females (dotted lines), respectively (C). For visualization 

purposes, we selectively display the first 10 PSCs from each scale of the MuSIC atlases. In 

general, males have larger brain volumes than females.  
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eTable 1. Study cohort characteristics. 

The current study consists of two main populations/sets: the discovery set (N=32,440, including 

participants from the first download of the UKBB data) and the replication set (N=18,259, the 

second download of the UKBB data). To train the sopNMF model for MuSIC, we selected 250 

patients (PT) and 250 healthy controls (CN) for each decade of the discovery set, resulting in 

4000 participants in total, referred to as the training population. Age ranges from 5 to 97 years 

and is shown with mean and standard deviation. Sex is displayed with the number and 

percentage of female participants. Data were collected from 12 studies, 130 sites, and 12 

countries. The number of sites (country) per study is detailed as follows:  

 ADNI: 63 sites (USA) 

 UKBB: 5 sites (UK) 

 AIBL: 2 sites (Australia) 

 BIOCARD: 2 sites (USA) 

 BLSA: 1 site (USA) 

 CARDIA: 3 sites (USA) 

 OASIS: 1 site (USA) 

 PENN: 1 site (USA) 

 WHIMS: 14 sites (USA) 

 WRAP 1 site (USA) 

 PHENOM: 12 sites (China, Brazil, Australia, Germany, Spain, USA, Netherlands) 

 ABIDE: 25 sites (USA, Netherlands, Belgium, Germany, Ireland, Switzerland, France) 

Abbreviations: CN: healthy control; AD: Alzheimer's disease; MCI: mild cognitive impairment; 

SCZ: schizophrenia; ASD: autism spectrum disorder; MDD: major depressive disorder; DM: 

diabetes; HTN: hypertension. 
aUKBB data were separately downloaded two times: the first was the N=21,305 in the discovery 

set, and the second was the replication set. 
bWe define CN (healthy controls) as participants that do not have any of the diseases listed here. 

In reality, these CN participants might have diagnoses of other illnesses or comorbidities (e.g., 

participants from UKBB have a wide range of pathology based on ICD-10). 

 
Study N 

(50,699) 

Age 

(5-97 

year)  

Sex 

(female/%

) 

CNb 

 

AD MCI SCZ ASD MDD DM HTN 

Discovery 

set 

32,440 60.04± 

14.87 

16,868/52 24,98

0 

954 1288 1094 597 1476 1093 958 

ADNI 1765 73.66± 

7.19 

798/45 297 343 875 NA NA NA NA 250 

UKBBa 21,305 62.58± 

7.48 

10,101/53 18,73

5 

1 NA NA NA 1476 1093 NA 

AIBL 830 71.36± 

6.78 

471/57 625 86 115 NA NA NA NA 4 

BIOCARD 288 58.15± 

10.54 

115/60 283 1 4 NA NA NA NA NA 

BLSA 1114 65.44± 

14.11 

589/53 729 9 11 NA NA NA NA 365 

CARDIA 892 51.21± 

3.98 

471/53 620 NA NA NA NA NA NA 272 

OASIS 983 69.92± 

9.75 

557/57 759 220 NA NA NA NA NA 4 
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PENN 807 72.63± 

10.65 

333/59 173 294 283 NA NA NA NA 57 

WHIMS 995 69.61± 

3.64 

995/100 986 NA NA NA NA NA NA 6 

WRAP 116 63.36± 

6.06 

79/68 116 NA NA NA NA NA NA NA 

PHENOM 2125 30.21± 

10.60 

854/40 1031 NA NA 1094 NA NA NA NA 

ABIDE 1220 17.92± 

9.01 

203/17 623 NA NA NA 597 NA NA NA 

Replication 

seta 

18,259 54.70± 

7.43 

9742/53 NA NA NA NA NA NA NA NA 

 

We present the age distribution of the discovery population for all 12 studies. 
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eTable 2: Clinical phenotypes and diagnoses used in machine learning classification.  

We harmonized the population of the phenotypes of interest per study definitions:  

 we combined AD and MCI patients from ADNI, PENN, and AIBL but excluded OASIS 

subjects because of the different diagnostic criteria of an AD patient in OASIS.  

 For several binary disease phenotypes, we used the ICD-10 diagnosis 

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270). Note that ICD-10 diagnoses are 

generally collected from the participants' medical inpatient records. We first included 

diseases from the following categories:  

o Diseases of the blood and blood-forming organs and certain disorders involving the 

immune mechanism (D-XXX, XXX represents the ID of a specific disease); 

o  Endocrine, nutritional and metabolic diseases (E-XXX);  

o Mental and behavioral disorders (F-XXX);  

o Diseases of the nervous system (G-XXX);  

o Diseases of the circulatory system (I-XXX).  

We then set a threshold of 75 patients for any ICD-10 diagnosis. We finally randomly 

selected age and sex-matched healthy controls (excluding all patients in all diagnoses). a: 

For major depressive disorder, we used the inclusion criteria from our previous work.9 

 For cognitive scores, we included:  

o Tower rearranging (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004) 

o Matrix pattern (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373) 

o TMT-A (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348) 

o TMT-B (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350) 

o DSST (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324) 

o Pairs matching (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399) 

o Numerical memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282) 

o Prospective memory (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288) 

o Reaction time (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023) 

o Fluid intelligence (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20016) 

AD: Alzheimer's disease; MCI: mild cognitive impairment; SCZ: schizophrenia; DM: diabetes 

mellitus; MDD: major depressive disorder; HTN: hypertension; ASD: autism spectrum disorder; 

CN: healthy control; PT: patient; N: number of participants. We decided not to harmonize 

cognitive scores from different studies. 

 
Trait (ICD-10 code 

or ID) 

Sample size 

(CN/PT or N) Site 

Trait (ICD-10 code or ID) Sample size 

(CN/PT or N) Site 

AD 

1095/723 ADNI, 

PENN, & 

AIBL 

Carpal tunnel syndrome 

(G560) 

901/901 UKBB 

MCI 

1273/1095 ADNI, 

PENN, & 

AIBL 

Lesion of ulnar nerve 

(G562) 

104/104 UKBB 

SCZ 

1031/1094 PHENOM Lesion of plantar nerve 

(G576) 163/163 UKBB 

DM 1093/1093 UKBB Angina pectoris (I20) 1535/1535 UKBB 

MDDa 

1476/1476 UKBB Acute myocardial 

infarction (I21) 769/769 UKBB 

HTN 

934/887 ADNI, 

BLSA & 

CARDIA 

Chronic ischaemic heart 

disease (I25) 

2217/2217 UKBB 

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=41270
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21004
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6373
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6348
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=6350
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=23324
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=399
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4282
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=4288
https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20023
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ASD 623/597 ABIDE Pulmonary embolism (I20) 351/351 UKBB 

Iron deficiency 

anemia (D50) 

1012/1012 UKBB Cardiomyopathy (I42) 

116/116 UKBB 

Vitamin B12 

deficiency anemia 

(D50) 

78/78 UKBB Paroxysmal tachycardia 

(I47) 

320/320 UKBB 

Agranulocytosis 

(D70) 

245/245 UKBB Heart failure (I50) 

436/436 UKBB 

Thyrotoxicosis 

(E05) 

205/205 UKBB Cerebral infarction (I63) 

291/291 UKBB 

Vitamin D 

deficiency (E55) 

180/180 UKBB Vitamin B deficiency 
(E53) 

130/130 UKBB 

Obesity (E66) 1481/1481 UKBB Hemiplegia (G81) 111/111 UKBB 

Lipoprotein 

metabolism disorder 

(E78) 

3880/3880 UKBB 

Facial nerve disorders 

(G51) 

95/95 UKBB 

Mineral metabolism 

disorder (E83) 

291/291 UKBB 

Tower rearranging (21004) 

8412 UKBB 

Volume depletion 240/240 UKBB Matrix pattern (6373) 8501 UKBB 

Delirium 92/92 UKBB TMT-A (6348) 8599 UKBB 

Alcohol abuse 341/341 UKBB TMT-B (6350) 8599 UKBB 

Tobacco abuse 863/863 UKBB DSST (23324) 8523 UKBB 

Bipolar affective 

disorder 

77/77 UKBB Pairs matching (399) 

20945 UKBB 

Phobic anxiety 

disorder 

84/84 UKBB Numerical memory (4282) 

9323 UKBB 

Multiple sclerosis 

109/109 UKBB Prospective memory 

(4288) 19681 UKBB 

Epilepsy 250/250 UKBB Reaction time (20023) 21258 UKBB 

Migraine 508/508 UKBB Fluid intelligence (20016) 19184 UKBB 

Sleep disorders 590/590 UKBB 
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eTable 3: Comparison of variants identified via MuSIC with other studies. Using the AAL 

atlas, we found (using the same data in the current study) that 269 independent significant SNPs 

had 356 pairwise associations with 54 AAL brain regions. 230 out of the 269 SNPs matched with 

the SNPs in MuSIC. Among the 39 unmatched SNPs, 15 SNPs were in linkage disequilibrium 

(LD, r2 > 0.6) with MuSIC SNPs (Supplementary eFile 6). As a second example, Zhao et al.10 

reported that 251 independent significant SNPs had 346 pairwise associations with 43 GM regions 

using the Mindboggle atlas on the UKBB (N=19,629).11 129 of the 251 SNPs matched with SNPs 

identified by MuSIC. Among those non-coinciding (127), 31 SNPs were in LD with MuSIC SNPs 

(Supplementary eFile 7). Similarly, Elliot et al.12 (N=8428) discovered that 20 independent 

significant SNPs had 58 pairwise associations with 52 GM regions from atlases in Freesurfer and 

FSL software. Out of the 20 SNPs, 16 coincided with MuSIC SNPs. Among the four unmatched 

SNPs, 1 SNP was in LD with MuSIC SNPs (Supplementary eFile 8). Note that the definition of 

independent significant SNPs or genomic loci might slightly differ between studies. 
Study/Atlas Identified 

genomic 

loci 

Matched loci Loci in LD  Novel 

loci 

Database Sample 

size 

Ancestry 

MuSIC 915 NA NA NA UKBB 18,052 European 

AAL 218 162 13 740 UKBB 18,052 European 

Zhao et al.10 251 73 14 828 UKBB 19,629 European 

Elliot et al.12 20 16 1 898 UKBB 8428 European 

GWAS Catalog NA 298 NA 617 NA NA NA 
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eTable 4: Classification balanced accuracy for disease classification and effect size of these 

imaging signatures. 
Disease classification performance is presented using balanced accuracy. The mean and standard 

deviation are presented. Cohen's d was computed to compare the SPARE scores between groups. 

Multi-scale classificationa: All 2003 PSCs from multiple scales were fit into the classifier.  

Multi-scale classificationb: PSCs from all scales were fit into the classifier with a nested feature 

selection procedure (SVM-REF). The motivation is that PSCs from different scales are 

hierarchical and correlated. The nested feature selection can select the features most relevant to 

the specific task. We avoided any statistical comparison of the performance of machine learning 

models because available statistical tests are liberal and often lead to false-positive conclusions 

due to the complexity of the cross-validation procedure.13   
PSC AD d MCI d SCZ d DM d HTN d MDD d ASD d 

C32 0.78±
0.02 

1.52 0.62±
0.02 

0.59 0.55±
0.02 

0.30 0.56±
0.02 

0.35 0.55±
0.02 

0.28 0.52±
0.02 

0.16 0.50±
0.02 

0.07 

C64 0.81±
0.02 

1.73 0.63±
0.02 

0.66 0.57±
0.02 

0.41 0.57±
0.02 

0.40 0.56±
0.02 

0.31 0.53±
0.02 

0.17 0.53±
0.02 

0.19 

C128 0.82±
0.02 

1.82 0.65±
0.02 

0.76 0.59±
0.02 

0.47 0.56±
0.02 

0.33 0.55±
0.02 

0.30 0.52±
0.02 

0.15 0.52±
0.02 

0.15 

C256 0.85±
0.02 

2.08 0.66±
0.02 

0.91 0.59±
0.02 

0.50 0.56±
0.02 

0.47 0.54±
0.02 

0.31 0.51±
0.02 

0.13 0.52±
0.02 

0.16 

C512 0.88±
0.02 

2.34 0.67±
0.02 

1.06 0.62±
0.02 

0.62 0.57±
0.02 

0.54 0.56±
0.02 

0.42 0.52±
0.02 

0.05 0.54±
0.02 

0.24 

C1024 0.90±
0.02 

2.50 0.72±
0.02 

1.12 0.65±
0.02 

0.75 0.60±
0.02 

0.59 0.59±
0.02 

0.46 0.56±
0.02 

0.13 0.55±
0.02 

0.29 

Multi-

scalea 
0.91±
0.02 

2.54 0.72±
0.02 

1.12 0.66±
0.02 

0.77 0.61±
0.02 

0.64 0.59±
0.02 

0.47 0.55±
0.02 

0.23 0.56±
0.02 

0.30 

Multi-
scaleb 

0.92±
0.02 

2.61 0.73±
0.02 

1.13 0.67±
0.02 

0.78 0.64±
0.02 

0.67 0.61±
0.02 

0.49 0.55±
0.02 

0.26 0.58±
0.02 

0.32 

AAL 0.82±
0.02 

1.81 0.66

±0.02 

0.75 0.59±
0.02 

0.46 0.57±
0.02 

0.32 0.57±
0.02 

0.35 0.52±
0.02 

0.08 0.52±
0.02 

0.14 

RAVENS 0.85±
0.02 

2.04 0.64

±0.02 

0.74 0.60±
0.02 

0.45 0.58±
0.02 

0.33 0.55±
0.02 

0.34 0.50±
0.02 

0.05 0.54±
0.02 

0.15 
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eTable 5: 119 MUSE gray matter regions of interest. 

L: Left hemisphere; R: Right hemisphere; ROI: region of interest. 

  

MUSE ROI MUSE ROI MUSE ROI 

Precentral gyrus (R) Occipital fusiform gyrus (R) Anterior insula (L) 

Precentral gyrus (L) Planum temporale (R) Anterior orbital gyrus (R) 

Accumbens area (R) Cerebellar vermal lobules I-V Anterior orbital gyrus (L) 

Accumbens area (L) Cerebellar vermal lobules VI-VII Angular gyrus (R) 

Amygdala (R) Cerebellar vermal lobules VIII-X Angular gyrus (L) 

Amygdala (L) Basal forebrain (R) Calcarine cortex (R) 

Occipital pole (L) Basal forebrain (L) Calcarine cortex (L) 

Caudate (R) Middle temporal gyrus (L) Central operculum (R) 

Caudate (L) Occipital pole (R) Central operculum (L) 

Cerebellum exterior (R) Planum temporale (L) Cuneus (R) 

Cerebellum exterior (L) Parietal operculum (L) Cuneus (L) 

Planum polare (L) Postcentral gyrus (R) Entorhinal area (R) 

Middle temporal gyrus (R) Postcentral gyrus (L) Entorhinal area (L) 

Hippocampus (R) Posterior orbital gyrus (R) Frontal operculum (R) 

Hippocampus (L) Temporal pole (R) Frontal operculum (L) 

Precentral gyrus medial 

segment (R) Temporal pole (L) Frontal pole (R) 

Precentral gyrus medial 

segment (L) 

Triangular part of the inferior frontal gyrus 

(R) Frontal pole (L) 

Superior frontal gyrus 

medial segment (R) 

Triangular part of the inferior frontal gyrus 

(L) Fusiform gyrus (R) 

Superior frontal gyrus 

medial segment (L) Transverse temporal gyrus (R) Fusiform gyrus (L) 

Pallidum (R) Superior frontal gyrus medial segment (L) Gyrus rectus (R) 

Pallidum (L) Planum polare (R) Gyrus rectus (L) 

Putamen (R) Transverse temporal gyrus (L) Inferior occipital gyrus (R) 

Putamen (L) Anterior cingulate gyrus (R) Inferior occipital gyrus (L) 

Thalamus proper (R) Anterior cingulate gyrus (L) Inferior temporal gyrus (R) 

Thalamus proper (L) Anterior insula (R) Inferior temporal gyrus (L) 

Lingual gyrus (R) Occipital fusiform gyrus (L) Subcallosal area (R) 

Lingual gyrus (L) Opercular part of inferior frontal gyrus (R) Subcallosal area (L) 

Lateral orbital gyrus (R) Opercular part of inferior frontal gyrus (L) Superior frontal gyrus (R) 

Lateral orbital gyrus (L) Orbital part of inferior frontal gyrus (R) Superior frontal gyrus (L) 

Middle cingulate gyrus (R) Orbital part of inferior frontal gyrus (L) Supplementary motor cortex (R) 

Middle cingulate gyrus (L) Posterior cingulate gyrus (R) Supplementary motor cortex (L) 

Medial frontal cortex (R) Posterior cingulate gyrus (L) Supramarginal gyrus (R) 

Medial frontal cortex (L) Precuneus (R) Supramarginal gyrus (L) 

Middle frontal gyrus (R) Precuneus (L) Superior occipital gyrus (R) 

Middle frontal gyrus (L) Parahippocampal gyrus (R) Superior occipital gyrus (L) 

Middle occipital gyrus (R) Parahippocampal gyrus (L) Superior parietal lobule (R) 

Middle occipital gyrus (L) Posterior insula (R) Superior parietal lobule (L) 

Medial orbital gyrus (R) Posterior insula (L) Superior temporal gyrus (R) 

Medial orbital gyrus (L) Parietal operculum (R) Superior temporal gyrus (L) 

Superior frontal gyrus 

medial segment (R) 

 

Posterior orbital gyrus (L) 
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eAlgorithm 1: Algorithm for sopNMF. 
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