
 1

Title: Impact of Selection Bias on Polygenic Risk Score Estimates in Healthcare Settings 1 

 2 

Authors:  3 

Younga Heather Lee, PhD1,3,4 4 

Tanayott Thaweethai, PhD2,4  5 

Yi-han Sheu, MD, MPH, ScD1,3,4,7 6 

Yen-Chen Anne Feng, ScD5 7 

Elizabeth W. Karlson, MD4,6 8 

Tian Ge, PhD1,3,4,7 9 

Peter Kraft, PhD8,9 10 

Jordan W. Smoller, MD, ScD1,3,4,7 11 

 12 

Affiliations:  13 

1 Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, 14 

Massachusetts General Hospital, Boston, Massachusetts, USA 15 

2 Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA 16 

3 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, 17 

Massachusetts, USA 18 

4 Harvard Medical School, Boston, Massachusetts, USA 19 

5 Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan 20 

University 21 

6 Division of Rheumatology, Immunity, and Inflammation, Department of Medicine, Brigham and 22 

Women’s Hospital, Boston, Massachusetts, USA 23 

7 Center for Precision Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, 24 

USA 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277710doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.07.20.22277710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

8 Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, 26 

Massachusetts, USA 27 

9 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, 28 

Massachusetts, USA 29 

 30 

Correspondence: 31 

Jordan W. Smoller (jsmoller@mgh.harvard.edu)  32 

 33 

Word count (main text): 4,130/4,500 max  34 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277710doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

ABSTRACT (shortened version; word count: 249/250 max)  35 

Background: Hospital-based biobanks have become an increasingly prominent resource for 36 

evaluating the clinical impact of disease-related polygenic risk scores (PRS). However, biobank 37 

cohorts typically rely on selection of volunteers who may differ systematically from non-38 

participants.  39 

 40 

Methods: PRS weights for schizophrenia, bipolar disorder, and depression were derived using 41 

summary statistics from the largest available genomic studies. These PRS were then calculated 42 

in a sample of 24,153 European ancestry participants in the Mass General Brigham (MGB) 43 

Biobank. To correct for selection bias, we fitted a model with inverse probability (IP) weights 44 

estimated using 1,839 sociodemographic and clinical features extracted from electronic health 45 

records (EHRs) of eligible MGB patients. Finally, we tested the utility of a modular specification 46 

of the IP weight model for selection.  47 

 48 

Results: Case prevalence of bipolar disorder among participants in the top decile of bipolar 49 

disorder PRS was 10.0% (95% CI: 8.8%-11.2%) in the unweighted analysis but only 6.2% 50 

(5.0%-7.5%) when selection bias was accounted for using IP weights. Similarly, case 51 

prevalence of depression among those in the top decile of depression PRS was reduced from 52 

33.5% (31.7%-35.4%) in the unweighted analysis to 28.9% (25.8%-31.9%) after IP weighting. 53 

Modular correction for selection bias in intermediate selection steps did not substantially impact 54 

PRS effect estimates. 55 

 56 

Conclusions: Non-random selection of participants into volunteer biobanks may induce 57 

clinically relevant selection bias that could impact implementation of PRS and risk 58 

communication in clinical practice. As efforts to integrate PRS in medical practice expand, 59 

recognition and mitigation of these biases should be considered.  60 
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INTRODUCTION 

In recent years, large-scale healthcare systems have contemplated integrating polygenic 

risk scores (PRS) into clinical practice given their potential to stratify diagnostic and therapeutic 

strategies in common medical conditions (e.g., diabetes, cancer, obesity) (1–6) and, more 

recently, in psychiatric conditions (7). For example, the Electronic Medical Records and 

Genomics (eMERGE) Network is conducting trials evaluating the impact of returning genomic 

results (“return of results” or RoR) in both clinical and research venues (8,9). Early evidence 

suggests that patients are in favor of being informed of their genetic test results and receiving 

advice about how to interpret and act on the results (10–12). With respect to returning 

psychiatric PRS results, individuals living with bipolar disorder (BD) were highly accepting of 

polygenic risk information for BD—even more so when accompanied by comprehensive 

psychiatric genetic counseling (13).   

With the prospect of using PRS to guide clinical decision making, optimizing the 

accuracy of the risk estimates they provide becomes especially important (14). In research 

settings, including biobank-based studies, genetic analyses are usually restricted to individuals 

who have volunteered to provide biospecimens for research investigations. More specifically, 

application of PRS in a biobank or other research cohort typically entails a sequence of 

sampling procedures. First, the cohort is limited to participants who provided consent, and had 

blood samples drawn and genotyped prior to the time of analysis. Next, this subsample is 

further restricted to those who have passed a genomic quality control (QC) process. However, 

restricting analyses without considering the complexity of selection mechanism can change or 

induce spurious associations between factors directly or indirectly related to selection into the 

PRS analysis.  

Inverse probability (IP) weighting is an established method for correcting such bias in 

which the contribution of each sampled individual is weighted by the inverse of their probability 
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of being sampled (15). In most volunteer-based studies, information about those who were not 

enrolled is typically limited, precluding in-depth exploration of selection bias that can result from 

non-random sampling. However, biobanks nested within healthcare systems where 

demographic and clinical data are available for the full healthcare system population provide a 

unique opportunity to evaluate factors that may influence the probability of being selected into 

an analytic sample. In these settings, one can use IP weighting to construct a hypothetical 

population in which participants are weighted such that they represent the entire population of 

participants and non-participants with respect to the predictors of selection and conduct 

analyses that account for non-random sampling. 

A key assumption of IP weighting, however, is that one has correctly identified and 

weighted the predictors of sampling; violation of this assumption may lead to residual or even 

greater bias (16). Meeting this requirement could be particularly challenging in the case of 

hospital-based biobanks, since selection may be dynamic and reflect a large number of poorly 

understood factors—including patient comorbidity profiles and the diversity of clinical settings in 

which recruitment was conducted. Instead of solely relying on expert knowledge to specify the 

weight model, Haneuse and Daniels suggest combining clinical knowledge with data-driven 

strategies for covariate selection (17–19), especially when working with high-dimensional 

electronic health records (EHRs) (20). Accordingly, we use a two-step approach to correct for 

non-random sampling in PRS analyses. First, we apply a machine learning approach to 

examine the relative contribution of sociodemographic, healthcare utilization, and clinical 

characteristics (captured in the longitudinal EHRs) and estimate IP weights for selection. Next, 

we estimate the association between PRS and the target conditions in an IP-weighted sample in 

which selection into the Biobank study occurred at random. Using this two-step approach, we 

find that standard PRS analyses that do not account for the non-random sampling of biobank 

samples may lead to biased estimation of polygenic risk in the context of psychiatric conditions.  
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Finally, we address the fact that selection into biobank-based studies typically involves 

multiple steps—such as recruitment, consent, biospecimen collection, genotyping, and genomic 

QC—each of which may be influenced by a unique set of determinants (see eFigure 1). 

Haneuse and Daniels proposed a general statistical framework that explicitly models the 

decisions made by patients and healthcare providers that collectively determine which data are 

available in the EHR relevant to a given research inquiry (20). They conceptualize selection bias 

as a missing data problem and encourage researchers to modularize the complex selection 

mechanism into a series of sub-mechanisms that are easier to characterize and model (21). 

Applying this modular IP weighting framework, we evaluate the discrepancy between PRS effect 

estimates for psychiatric conditions when using standard versus modular approaches to defining 

selection mechanisms.  

 

METHODS 

Study sample   

Mass General Brigham (MGB) Research Patient Data Registry (RPDR)  

The primary data source was the MGB RPDR, an EHR data warehouse covering 4.6 

million patients across the MGB HealthCare hospital system (formerly Partners HealthCare) 

including Brigham & Women’s Hospital, Massachusetts General Hospital, and other affiliated 

hospitals in the greater Boston area. To assemble the cohort for this study, we queried the MGB 

RPDR for 1,546,440 patients who self-identified as non-Hispanic White (that is, 74% of the 

overall MGB patient population) having at least three visits after 2005, more than 30 days apart 

between the first and last visits, and at least one visit greater than age 10 and less than age 90, 

as of February 2020 (22,23) (see Figure 1). The race and ethnicity restriction was applied here 

because the subsequent PRS were based on samples of European ancestry. 
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MGB Biobank 

The MGB Biobank is a hospital-based research program launched in 2010 to empower 

genomic and translational research for human health (12). Participants are patients at MGB-

affiliated hospital(s) above age 18 (at the time of the recruitment) who provided informed 

consent to join the Biobank study. Each consented participant was asked to provide blood 

samples (e.g., plasma, serum, DNA), which are then linked to their clinical data in the EHRs as 

well as survey data on lifestyle, behavioral and environmental factors, and family history. 

Leveraging in-person and electronic recruitment methods, the MGB Biobank has currently 

enrolled more than 130,000 participants, collected 82,092 DNA samples, and generated 

genotyping microarray data for more than 56,923 participants (4,920 using the Illumina MEGA, 

5,334 using the Illumina MEGA EX, 26,144 using the Illumina MEG, and 24,789 using the 

Illumina GSA) (23). This research was conducted as part of the PsycheMERGE Consortium 

(24), under approval from the MGB Institutional Review Board. 

 

Data-driven approach to specify IP weight models for selection 

 We employed a machine learning modeling method—extreme gradient boosting 

(XGBoost) classification (25)—to empirically identify key determinants of non-random sampling 

of biobank participants and calculate the IP selection weights using a large set of demographic 

and clinical features extracted from high-dimensional EHRs including 15 sociodemographic, 10 

healthcare utilization, and 1,814 diagnostic characteristics (see eTable 4 for the full list of 

features used to train XGBoost models). XGBoost is an open-source library providing a 

computationally efficient and high-performance implementation of gradient boosted decision 

trees (https://github.com/dmlc/xgboost).  

In the first set of IP weighted analyses (i.e., standard IP weighted approach), we fitted an 

XGBoost model classifying the inclusion into the PRS analysis (n=24,153) from a pool of 

1,546,440 adult patients at MGB-affiliated hospital(s) self-identifying as non-Hispanic White (7). 
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Considering that a very small proportion of the patient population participated in the Biobank 

study, we ensured that the training and test sample (with a split ratio of 80:20) had the same 

proportion of the target outcome in a given selection step (e.g., included vs. not included in the 

PRS analysis for the standard IP weighting approach). After fitting the model, we derived 

weights by taking the inverse of the predicted probabilities of being selected into the final PRS 

analysis. We further stabilized the IP weights by dividing the predicted probabilities by the 

marginal probability of selection and truncated the top and bottom 1% of the distribution to 

account for extreme weights (8).  

In the second set of IP-weighted analyses (i.e., modular IP weighted approach), we fit 

three separate sets of XGBoost models classifying each of the three selection steps (see 

eFigure 1). The three targets for classification were: 1) consent status among eligible 

participants, 2) biospecimen collection and genotyping status among consented participants, 

and 3) inclusion in the PRS dataset among participants who are eligible, consented, and had 

biospecimens collected and genotyped. We extracted predicted probabilities from each of the 

three models and took the product of these conditional probabilities to calculate the joint 

probabilities of being included in the final analytic sample given the three sequential steps of 

selection. We then stabilized and truncated the inverse of the joint probabilities in the same way 

as we did for the standard IP weighting approach and performed weighted PRS analyses.  

In addition, we applied a game theory-based algorithm called Shapley Additive 

Explanations (SHAP) method (https://github.com/slundberg/shap) to further elucidate the 

complex selection mechanism of the MGB Biobank. We calculated Shapley values, which are 

the weighted average of the marginal contribution of each feature value toward the model’s 

decision, to explain how changes in a feature value would shift the models’ decision both in 

terms of absolute magnitude and direction (26). This way, we characterized the importance of 

each feature to the predicted probability of being retained in the study sample at each step of 
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selection (see rankings and directionality of contribution by the top 20 features in eFigures 2 

and 3).    

 

PRS construction 

We generated PRS for the 24,153 MGB Biobank participants of European ancestry 

using their genotype data and weights derived by applying PRS-CS-Auto (27), a Bayesian 

polygenic prediction method, to publicly available summary statistics from the largest genome-

wide association studies (GWAS) of schizophrenia (28), bipolar disorder (29), and depression 

(30) on populations of European ancestry (see eMethods for details on genomic data 

processing and eTable 2 for further information on discovery GWAS).  

 

Case definition  

We identified cases of the three psychiatric traits by mapping the entire longitudinal 

health records available on all patients at MGB-affiliated hospital(s) to the phecode system 

using the PheWAS R package (31,32). We identified qualifying ICD-9CM and ICD-10CM codes 

for schizophrenia (phecode 295.1), bipolar disorder (phecode 296.1), and depression (phecode 

296.2), and defined cases as those having at least two qualifying ICD codes for a given 

phecode (see the full list of qualifying diagnostic codes in eTable 3).  

 

Statistical analysis 

We compared effect estimates of the associations between schizophrenia, bipolar 

disorder, and depression PRS and their respective target diagnoses using three approaches: 

unweighted, standard IP-weighted, and modular IP-weighted as described below (see eFigure 

1). In the unweighted approach, PRS effect estimates are calculated without accounting for non-

random sampling. In contrast, the latter two approaches involve a systematic evaluation and 

adjustment for differential probabilities of being selected into the analytic sample for the PRS 
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analyses. The application of IP weights allows us to construct a hypothetical population in which 

we can estimate the effects of PRS in the absence of spurious associations induced by 

participation-related factors specified in the weight model (see Figure 2). Prior to calculation of 

penetrance and discrimination of the PRS, we fitted linear regression models with age, sex 

assigned at birth, top 20 genetic principal components, and genotyping microarray as predictors 

of each respective psychiatric PRS. We then extracted and standardized the residuals from 

each regression model and generated a categorical version of the PRS using deciles. In the 

current study, we primarily focus on disease risk for the top decile of the standardized residuals 

of PRS, a threshold commonly used to define high genetic risk in the context of clinical 

translation (33).  

We first evaluated the impact of IP-weighting on the penetrance (i.e., case prevalence as 

a function of PRS) by comparing the weighted case prevalence against the unweighted case 

prevalence (34). Next, we evaluated the discrimination of the PRS using the area under the 

receiver operator characteristic curve (hereafter, the AUC) (35). Under the unweighted 

approach, we fitted standard logistic regression models adjusting for covariates. Under the IP-

weighted approaches, we inputted the standard and modular IP-weights, respectively, and fitted 

weighted logistic regression models. We then we calculated the AUC to compare performance 

of the unweighted and IP-weighted logistic regression models (36). Lastly, we estimated the 

discrimination of psychiatric PRS using the same method in subsamples defined by sex 

assigned at birth and current age to explore potential effect modification by these factors.  

 

RESULTS  

Descriptive statistics 

As shown in Table 1, we first compared participants in the analytic (Biobank) sample 

(N=24,153) for the PRS analyses against those who were not included (from the broader pool of 

eligible patients in the healthcare system). In general, the included individuals were significantly 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277710doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

more likely to be male, veterans, and married, have publicly funded insurance, and have 

markedly greater healthcare utilization compared to those excluded and those in the overall 

source population. Additionally, we compared the prevalence estimates for common health 

conditions of those included in the final analytic sample against those of excluded participants 

(see eTable 1). Consistent with their higher frequency of healthcare interactions, individuals 

included in the Biobank PRS analysis were more likely to have clinical diagnoses of all disease 

conditions examined, including up to three times higher rates of endocrine, nutritional, and 

metabolic diseases (e.g., Type 1 and 2 diabetes mellitus, obesity), neuropsychiatric conditions 

(e.g., neurological disorders, major depressive disorder, suicidal behavior), and circulatory 

conditions (e.g., essential hypertension, myocardial infarction). Of note, the prevalence of 

rheumatoid arthritis was up to five times greater among those included than those not included 

in the PRS analyses, likely reflecting recruitment into the MGB Biobank from rheumatology 

clinics. Lastly, the prevalence estimates for schizophrenia, bipolar disorder, and depression in 

the analytic sample of 24,153 MGB Biobank participants were 1.0% (ncase=236), 4.5% 

(ncase=1,079), and 26.2% (ncase=6,329), respectively.  

 

Identification of key determinants of selection in the MGB Biobank 

In the XGBoost model under the standard IP weighting approach, visit count, note count, 

current age, and clinical encounters at Massachusetts General Hospital (MGH) or Brigham and 

Women’s Hospital (BWH) were the five most informative features that differentiated those 

included and those not included in the PRS analysis, followed by treatment at Northshore 

Medical Center or Newton-Wellesley Hospital and median neighborhood income in 2010 (see 

eFigure 2a). The top features indicative of healthcare utilization from the standard IP weighting 

approach also appeared in the three XGBoost models under the modular IP weighting approach. 

The modular approach identified additional features that contributed to the probability of being 

retained in each step of selection, such as anxiety, phobic, and dissociative disorders, ischemic 
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heart disease, treatment history at Faulkner Hospital, and rheumatoid arthritis and other 

inflammatory polyarthropathies (see eFigures 2b-d).  

In addition to overall feature importance, we further examined the directionality of feature 

contributions to being retained in each step of selection in the modular IP weighting approach. 

This was motivated in part by prior work showing that standard IP weighting can lead to biased 

estimates when a given feature plays a different role in each step of a sequential selection 

procedure (21,37,38). To address this, we calculated Shapley values at every observed value of 

each feature across all possible combinations with other features and evaluated whether key 

features had dynamic contributions across the three selection steps. Interestingly, visit count, 

which was the most important feature in every step of selection, exhibited different directions of 

associations with selection probabilities across the three steps (see eFigure 3b-d). For example, 

an increasing number of visits was associated with a higher likelihood of providing consent to 

participate in the Biobank but a lower likelihood of being retained in the subsequent steps of 

selection. This underscores the incomplete information captured by standard IP weighting when 

there are factors that impact selection probabilities differently across multiple phases of 

selection.  

 

Polygenic risk estimation  

Case prevalence per deciles of standardized residuals of psychiatric PRS  

After standardizing PRS by principal components, sex, age, and genotyping microarray, 

case prevalence for schizophrenia in the top decile of standardized residuals of schizophrenia 

PRS was 2.7% (2.1-3.3) in the unweighted analysis, and 2.0% (1.2-2.7) in the standard IP 

weighted analysis (see Figure 3a). The unweighted and IP weighted estimates differed more 

substantially in the case of bipolar disorder: case prevalence of bipolar disorder in the top PRS 

decile was 10.0% (8.8-11.2) in the unweighted analysis, but only 6.2% (5.0-7.5) when selection 

bias was accounted for using IP weights (see Figure 3b). Finally, case prevalence of 
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depression in the top decile of standardized residuals of depression PRS was 33.5% (31.7-35.4) 

in the unweighted analysis but was reduced to 28.9% (25.8 – 31.9) after IP weighting (see 

Figure 3c). Results using modular IP weighting based on intermediate selection steps were 

similar to those observed with standard IP weighting (see eTables 5-7). 

 

Discrimination of psychiatric PRS  

 We found the largest impact of IP-weighting on discrimination with respect to 

schizophrenia relative to bipolar disorder and depression (see eTable 8). When stratified by sex 

assigned at birth, AUC were generally higher among male participants than female participants 

regardless of the weighting scheme (see eFigure 6a). The impact of IP-weighting was also 

greater among males (AUC=0.792 and 0.711 from unweighted and modular IP-weighted 

models, respectively) than females (AUC=0.711 and 0.675 from unweighted and modular IP-

weighted models, respectively).  

In addition, we found that both the magnitude and direction of the impact of IP weighting 

varied by age, especially for schizophrenia (see eFigure 6b). For example, among participants 

whose age was less than 40 years, the AUC of schizophrenia PRS from the unweighted IP-

weighted model was lower than the AUC from the modular IP-weighted model. Conversely, the 

AUC from the unweighted model was higher than the AUC from the modular IP-weighted model 

among participants whose age was greater than or equal to 40.  

 

DISCUSSION 

As interest grows in returning PRS-based risk estimates to participants in both research 

and clinical settings, the robustness of such estimates becomes increasingly important. In the 

present study, we demonstrated that effect estimates of psychiatric PRS can be sensitive to 

selection bias, using the MGB Biobank as a case example. First, we showed that volunteer-

based biobank participants may substantially differ from patients in the underlying healthcare 
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system with respect to a wide range of patient profiles including sociodemographic, healthcare 

utilization, and clinical characteristics. Notably, prevalence of disease conditions and rates of 

healthcare utilization were substantially higher in the analytic sample than in the overall MGB 

patient population. This suggests that, in contrast to the well-known phenomenon of “healthy 

volunteer bias” (39–43), patients enrolled in hospital-based biobanks may have a greater 

burden of illness than those in the underlying healthcare system from which they were selected. 

In addition, we demonstrated the utility of an efficient machine learning algorithm to identify 

demographic and clinical variables that are significantly associated with selection in biobank 

PRS analyses and to adjust for selection bias.  

Using IP weighting procedures, we found that selection bias can produce meaningful 

effects on estimates of penetrance and discrimination of psychiatric PRS in biobank samples 

derived from healthcare system populations. Overall, unweighted effect estimates of psychiatric 

PRS were larger than the IP weighted estimates for the three psychiatric traits examined in the 

current study. Using the example of a bipolar disorder PRS, Figure 2 depicts a causal diagram 

(directed acyclic graph) to illustrate how selection bias might inflate PRS effect estimates in 

hospital-based biobanks, such as the MGB Biobank. Restriction of PRS analysis to biobank 

participants is represented as a box around biobank enrollment in the causal diagram. In this 

example, stratification on the descendent of healthcare utilization, a common effect (i.e., collider) 

of bipolar disorder PRS and clinical diagnosis of bipolar disorder, can induce a spurious 

association between the PRS and the target trait—a phenomenon commonly referred to as 

“collider stratification bias” and known to pose a potential threat to the internal validity (44). As 

such, the estimated effect could include not only true causal effects but also the spurious 

association, thereby resulting in larger estimates in standard PRS analysis when non-random 

sampling is not addressed.  

These findings underscore the complex nature of selection bias and the difficulty of 

predicting the magnitude or direction of the effects by this type of bias on PRS estimates in real-
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world settings. For example, individuals who are more health-conscious or better informed 

about the clinical utility of genomic findings may be more willing to participate in a biobank, as 

has been shown in the UK Biobank (43,45). Conversely, patients whose illness leads to more 

frequent encounters with the healthcare system may have more opportunities to be selected for 

biobank participation, leading to an overrepresentation of less healthy individuals. In addition, 

some individuals may enroll in genetic studies because they have a family history of diseases, 

such as cancer, and are thus motivated to learn about their risk of illness; enrichment for family 

history of specific diseases may contribute to differences between biobank cohorts and their 

underlying source populations. 

Recently, several analytic approaches to model and mitigate selection bias in EHR data 

have been proposed, with varying conceptual definitions of selection bias and statistical 

approaches to modeling selection mechanisms. For instance, Haneuse and Daniels (20,21) 

conceptualized selection bias as a missing data problem and encouraged researchers to 

modularize complex selection mechanisms into a series of sub-mechanisms that are easier to 

characterize and model. In the current study, we adapted this statistical framework to 

accommodate the selection procedures unique to PRS analyses conducted in hospital-based 

biobanks, though results of modular IP weighting did not differ substantially from standard IP 

weighting in our sample. As an alternative, Goldstein and colleagues (46) proposed controlling 

for the number of healthcare encounters. However, as they note, stratification on healthcare 

utilization may actually induce spurious association between two disease phenotypes in cases 

where healthcare encounters may be the common outcome of the exposure and outcome (i.e., 

collider stratification bias). 

More recently, Beesley and Mukherjee proposed calibration weighting and IP weighting 

methods to account for selection bias in EHR-linked biobank studies (47). They focus on the 

form of selection bias that arises from the lack of representativeness and propose constructing 

weights from external data that better represent the demographic and clinical characteristics of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.22277710doi: medRxiv preprint 

https://doi.org/10.1101/2022.07.20.22277710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

the source population, such as national disease registries for target traits of interest. However, 

different healthcare systems serve different patient populations, each characterized by unique 

profiles of sociodemographic, clinical, and healthcare utilization characteristics. As such, it may 

not be feasible to directly transport selection weight models trained in one healthcare system to 

another. Instead, adjustment may require a population-specific examination of underlying 

distributions of the key determinants leading to retention in the analytic sample for PRS 

analyses. To that end, we leveraged the longitudinal EHRs linked to genomic data collected to 

derive a set of weights that are specific to the underlying selection mechanism for the MGB 

Biobank.   

Relatedly, different health system biobanks may rely on varying strategies for 

recruitment and biospecimen collection. For example, at the MGB Biobank, participant 

enrollment is conducted using a range of procedures including recruitment via a) outpatient 

primary care or specialty clinics; b) inpatient settings; c) at centralized phlebotomy services; d) 

online enrollment; or e) collaborating studies. For a subset of patients, biospecimen collection 

was obtained by placing an order into the EHR (Epic) system to collect a sample concurrently 

with a clinically ordered blood draw. Although an overrepresentation of less healthy individuals 

could be a general characteristic of hospital-based biobanks given that they originate from 

patient populations, the degree of overrepresentation may further vary depending on the distinct 

method of recruitment and sample collection used in each biobank study.  

Our results should be interpreted in light of several limitations. First, our approach does 

not address another threat to the validity of PRS risk estimates implemented in healthcare 

settings—the distributional mismatch between the sample in which the PRS is trained and the 

samples in which the PRS is being validated or implemented. Such estimates are typically 

derived from validation samples to which allelic weights found in an independent discovery 

GWAS are applied. To the extent that the discovery and validation samples differ from the 

implementation sample (here, the MGB biobank) on a range of factors (e.g., age, sex, 
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socioeconomic status) that can affect PRS penetrance, risk estimates may be miscalibrated (48). 

Second, we examined only three psychiatric traits and our results suggest that the impact of 

selection bias will vary across different clinical conditions. Lastly, the current investigation was 

limited to subjects with self-reported white race. Thus, further investigation and validation in 

other ancestry populations as well as in non-psychiatric conditions are necessary to evaluate 

the generalizability of our results.  

In conclusion, our analyses demonstrate a novel approach for detecting and accounting 

for unrecognized selection bias in polygenic risk estimation in hospital-based biobank samples. 

With the growing interest in the return of genomic risk information in clinical practice, it will be 

important to address such biases to avoid adverse impacts on clinical practice and patient 

outcomes.  
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TABLES 

Table 1. Comparison of demographic and healthcare utilization characteristics of patients self-
identifying as non-Hispanic White in the overall MGB patient population† against those included 
in the PRS analysis (shown in number of participants and prevalence of a given condition).  
 

  

Overall patient 
population† 

(N=1,546,440) 

Not included 
(N=1,522,287) 

Included  
(N=24,153) p-value 

Sociodemographic characteristics, N (%) 

Mean age (SD)  58.2 (19.3) 58.1 (19.3) 63.0 (16.3) <0.001 

Gender, N (%) 

Female 887,810 (57.4) 874,943 (57.5) 12,867 (53.3) <0.001 

Male 658,565 (42.6) 647,279 (42.5) 11,286 (46.7)  

Unknown 65 (0.0) 65 (0.0) 0 (0.0)  

Veteran status, N 
(%) 

Yes 98,723 (6.4) 96322 (6.3) 2,401 (9.9) <0.001 

No 1,191,436 (77.0) 1,171,391 (76.9) 20,045 (83.0)  

Unknown 256,281 (16.6) 254,574 (16.7) 1,707 (7.1)  

Health insurance, 
N (%) 

Private 888,548 (57.5) 878,586 (57.7) 99,62 (41.2) <0.001 

Public 657,892 (42.5) 643,701 (42.3) 14,191 (58.8)  

Marital status, N 
(%) 

Divorced 93,297 (6.0) 91,524 (6.0) 1,773 (7.3) <0.001 

Married 823,131 (53.2) 808,753 (53.1) 14,378 (59.5)  

Other/Unknown 48,181 (3.1) 47,843 (3.1) 338 (1.4)  

Partner 7,395 (0.5) 7,206 (0.5) 189 (0.8)  

Separated 12,331 (0.8) 12,112 (0.8) 219 (0.9)  

Single 478,402 (30.9) 472,380 (31.0) 6,022 (24.9)  

Widowed 83,703 (5.4) 82,469 (5.4) 1234 (5.1)  

Healthcare utilization, mean (SD) 

Visit count 73.71 (114.9) 71.34 (110.5) 223.27 (229.3) <0.001 

ICD code count 185.1 (332.7) 178.25 (317.2) 615.95 (743.7) <0.001 

CPT code count 140.63 (255.2) 135.38 (244.5) 471.15 (537.9) <0.001 

Note count 360.70 (566.7) 349.81 (545.8) 1,047.00 (1,145.2) <0.001 

Abbreviation(s): ICD, International Statistical Classification of Diseases and Related Health Problems; CPT, 
Current Procedural Terminology (CPT).  

 
† The denominator (“overall MGB patient population”) is defined as adult patients (18 years and older 
by 2010) of European ancestry having at least three visits after 2005 and more than 40 days apart 
with at least one clinical note (N=1,546,440; see Figure 1).  
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FIGURES 

Figure 1. Schematic of sample curation for polygenic risk score analysis using the MGB 
Biobank sample.  
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Figure 2. Causal diagram (directed acyclic graph or DAG) illustrating how non-random sampling
into hospital-based biobanks may introduce bias in PRS estimation.  
 
Using the example of a bipolar disorder PRS, this figure depicts two DAGs to illustrate how 
selection bias might inflate PRS effect estimates in a hospital-based biobank in unweighted 
PRS analysis. The relationship of interest is denoted by the dotted line connecting PRSBIP 

(bipolar disorder polygenic risk score) with bipolar disorder diagnosis. Restriction of PRS 
analysis to biobank participants is represented as a box around biobank enrollment in the 
causal diagram. Healthcare utilization is a common effect of PRSBIP (through the effect of 
PRSBIP on depression) and clinical diagnosis of bipolar disorder. In this example, stratification 
on biobank enrollment, a descendant of healthcare utilization, can induce a spurious association 
between the PRS and the target trait (represented as a dripping faucet in the figure below). 
Thus, the estimated effect could include not only true causal effects but also the spurious 
association, thereby resulting in larger estimates in standard PRS analysis when non-random 
sampling is not addressed. In contrast, when selection bias is accounted for using inverse 
probability (IP) weighting, socioeconomic status (SES) and healthcare utilization are no longer 
associated with biobank enrollment, and so biobank enrollment is no longer a descendant of a 
collider. Therefore, stratifying on biobank enrollment would not open the non-causal path 
blocked by healthcare utilization (represented as a tight faucet in the figure below). Thus, IP-
weighted PRS estimates would likely represent effects through the causal path only.  
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Figure 3. Case prevalence by polygenic risk score (PRS) decile for three psychiatric traits using two different weighting schemes—
unweighted and modular IP-weighted.  
 
PRS were adjusted for potential confounding by top genetic principal components, sex, age, and genotyping microarray. The solid 
lines indicate point estimates, and the bands indicate 95% confidence intervals for corresponding point estimates. Note that the 
standard IP-weighted model is not shown in this figure, since the estimates were nearly identical to the modular IP-weighted model. 
Numeric estimates from all three models can be found in eTables 5 through 7.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

(a) Schizophrenia (b) Bipolar disorder (c) Depression 
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