Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

Dr. Michael Hanna1,2,3, Dr. Jaclyn Herman1,2, Dr. Bartosz Zawada3, Christine Andraos3, Dr. Oscar Karbi1,2, Carina D’Souza3, Dr. Atiemo Kessie2,4, Dr. Getachew Mazengia1,2, Dr. Sameer D’Souza1,2.

Author Affiliations 1William Osler Health System, 2McMaster University, 3Canadian Medical Assessment Centre, 4Urgent Care Centre

*Corresponding author – Dr. Michael Hanna

Registration: National Institute for Health Research, CRD42021276772

Conflict of Interest: None

Funding: None

Abstract

Background: The most common assessment modalities to determine the level of injury following a traumatic brain injury (TBI) includes computerized tomography (CT) scans and/or
magnetic resonance imaging (MRI). Evidence is mixed as to whether single photon emission computed tomography (SPECT) is specific and accurate in identifying TBI.

Objectives: This study systematically assessed recent evidence of the clinical utility of SPECT in the diagnosis of TBI and examined the diagnostic accuracy of SPECT in TBI and its performance in comparison to other imaging modalities (e.g., CT and MRI).

Methods: PubMed, MEDLINE, and Embase databases were systematically searched for published articles from December 2012 to July 2022. Randomized controlled trials (RCTs) and observational studies published in English that used SPECT to evaluate patients with all severity of TBIs were eligible for inclusion. Titles and abstracts were screened, and 111 selected full-text articles were independently screened based on predefined inclusion/exclusion criteria (guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PRISMA) and assessed for quality using the Newcastle-Ottawa Scale.

Results: Fourteen eligible studies, all observational, reporting location of lesions on brain SPECT were included, reporting data from 21632 participants of which 20,746 participants were from one study; the remaining 886 participants were from the remaining 13 studies. The heterogeneity of the data precludes a meta-analysis. There was no consensus among experts from the thirteen smaller studies; however, the largest study indicated that the specificity of visual readings was 54%. In particular, abnormalities and brain perfusions may lead to false positives. Quantitative analysis theoretically increases the reliability of findings for brain SPECT, but error rates are unknown and not published.

Conclusion: There is a lack of evidence to support the clinical utility of brain SPECT for the diagnosis and treatment of TBI.
Introduction

1. A traumatic brain injury (TBI) results from trauma to the brain, and is a major cause of disability and death (cite). Each year it is estimated that approximately 69 million people suffer from a TBI worldwide, of which the majority of cases are mild (81%) or moderate (11%) [1]. Depending on the severity of the injury, those who sustain a TBI may face health problems that can range from short to long-term in duration. Because prompt proper management of a TBI can significantly alter the clinical course, especially within 48 h of the injury, neuroimaging techniques have become an important part of the diagnostic work up of such patients. Thus, diagnostic accuracy for TBI is critical for medical treatment planning in order to reduce common and potentially devastating clinical outcomes.

2. While there are numerous definitions of TBI and there are ongoing debates within the scientific literature and among practicing professionals about the identification, signs, symptoms, diagnosis, and treatment of TBI of all severities, [2,3,6,7, 8, 9, 10] at this time, the most common assessment modality to determine the level of injury sustained after brain trauma includes two-dimensional modalities, computerized tomography (CT) scans and magnetic resonance imaging (MRI) (cite). Based on the results from the assessment, a treatment plan is carried out (e.g., medications, rest, rehabilitation, and/or surgery in severe cases). While MRI and CT imaging are the current gold standard to diagnose TBI (cite), other imaging techniques could be economically beneficial for healthcare systems worldwide and provide better outcomes for patients [18]. One such technique is single photon emission computed tomography (SPECT).
This advanced neuroimaging modality is a nuclear scan created by American researchers in 1963 that uses radioactive tracers to develop three-dimensional (D) images of blood flow [14]. The brain SPECT has undergone critical updates over the decades and newer machines often employs multi-headed cameras followed by quantitative analysis and attenuation to relay metabolic changes and physiological data [11,14]. The spatial resolution of brain SPECT images are lower compared to other similar scans such as positron emission tomography (PET) scan and functional magnetic resonance imaging (fMRI) [15,16]. Brain SPECT has been utilized to study neurological conditions and psychiatric disorders, which may include but not limited to: mood disorders, post-traumatic stress disorder (PTSD), obsessive compulsive disorder (OCD) [11,17].

There are contradictory findings in the scientific literature on brain SPECT and TBI. A brief overview on advanced neuroimaging techniques concluded that “there is insufficient evidence supporting the routine clinical use of advanced neuroimaging for diagnosis and/or prognostication at the individual patient level” [19]. Several systematic reviews on this topic have been published over the last several years [11,15,16,20,21], and most reviews, with the exception of Raji and colleagues (2014) [11], have been highly critical of the SPECT scan. A major criticism of the SPECT scan for TBI is that the results produced are substandard qualitative assessments between different regions of the brain, and attenuation of results are still less quantitatively accurate than other medical imaging modality such as PET scan. For example, Jacobs et al (1994) [23] and a follow-up study by the same group of researchers (1996) [24] reported poor results from the SPECT scan for TBI after a 3-month follow-up period, which is when some signs and symptoms of minor head injury have already diminished. However, after a 12-month follow-up assessment, the sensitivity (100%), specificity (85%), negative predictive value (100%), and positive predictive value (83%) of brain SPECT for TBI were remarkably
high. As such, it is questionable whether the findings from the SPECT scan are post-injury evidence or if these are incidental findings that are indicative of confounding factors such as separate medical conditions.

The most comprehensive systematic review of medical imaging technology to date was conducted by Amyot and colleagues (2015) [15], and noted that although the results are promising to support the clinical utility of SPECT scan for? In contrast, a systematic review by Raji et al. (2014) [11] regarding the clinical utility of brain SPECT in the early? diagnosis and treatment of TBI cited high levels of sensitivity and specificity. Although the authors reported level IIA evidence, it should be noted that few studies utilized control groups or rigorous scientific methodology such as double-blind randomization. Furthermore, it is a logical fallacy to suggest post hoc ergo propter hoc (“after this, therefore because of this”), and thus, the clinical history and evidence-based decision-making are necessary to investigate whether post-injury findings are directly related to an event or accident. In order for the wider scientific community and healthcare industry to endorse the use of brain SPECT for TBI, the generalizability of the results of this medical imaging modality for different cohorts must be confirmed. Therefore, an updated review of this study is necessary to determine if the findings from the previous review are replicable and provide additional insights by including the latest empirical evidence available on this topic.
The purpose of this study was to update the systematic review by Raji and colleagues (2014) and to evaluate the clinical utility of SPECT in the diagnosis and treatment of TBI, ranging from mild to severe. The PICO statement and methods remained consistent from the prior study so current findings could extrapolate from previous results. Thus, this updated review aims to answer if abnormalities on brain SPECT could be utilized to diagnose and treat individuals with TBI in clinical settings in comparison to other brain imaging modalities. A secondary analysis was also conducted to identify possible associations between SPECT abnormalities and neuropsychological and neurological outcomes.

Methods

This review followed protocols outlined in the PRISMA 2020 guidelines [25] and was submitted to PROSPERO for approval (ID: CRD42021276772). This updated review closely followed the methods provided in the previous systematic review conducted by Raji and colleagues (2014) [11]. However, the current authors decided to broaden the search strategy to comprehensively explore all possible resources and find all records related to this topic.

Search Strategy

PubMed, MEDLINE (Ovid), Embase (Ovid), Google Scholar, and citation searching were utilized to identify relevant articles published in English between December 2012 to July 2021, in accordance with the previous date range of 1983 to November 2012 from the prior systematic review. The MESH terms used to search the databases are presented in Chart 1.
Chart 1

Study Selection

The inclusion criteria were: (a) Randomized controlled trials (RCTs) and observational studies, including longitudinal, cross-sectional, and cohort studies that used brain SPECT to evaluate patients with TBI; (b) full-text peer reviewed studies published with a description of SPECT abnormalities; and (c) articles in English. The exclusion criteria were: (a) case studies and articles outside the specify date range; (b) studies without description of SPECT abnormalities; and (c) articles in foreign languages. Three reviewers participated in the identification of records, title and abstract screening, reviewing of full-text peer reviewed articles, and data extraction and analysis process.

Data Extraction and Quality Assessment

Search results from electronic databases were uploaded in Mendeley and charted in Excel. Duplicates were automatically removed and examined for accuracy by one reviewer. Titles and abstracts were independently screened by two reviewers against inclusion and exclusion criteria. A third reviewer resolved any disagreement between other investigators. Only relevant articles were included for full-text assessment and data extraction. Abnormalities on brain scans, results from neuropsychological/neurological evaluations, and severity of TBI were extracted for analysis. Additionally, study setting and demographic factors were noted. One reviewer assessed the quality of all eligible studies utilizing a standard quality assessment tool, the Newcastle-Ottawa Scale [26,27]. A second reviewer checked the results and consultation with a third reviewer occurred if there is any disagreement. A narrative synthesis described
whether brain SPECT is specific in identifying TBI. Descriptive statistics summarized the findings and post-test probabilities. Measures of diagnostic accuracy were extracted for analysis if the measures were included in the report (sensitivity, specificity, and negative/positive predictive values). Statistical analysis was calculated using the appropriate packages on the latest version of R via R Studio.

Amendment to Protocol

Due to a lack of responsiveness for edits, one author was removed

Results

Title and abstract screening included 2235 articles found on electronic databases (Fig 1):

PubMed ($n = 738$), Ovid Medline ($n = 671$), Ovid Embase ($n = 843$), and other sources ($n = 1$).

Two hundred and eleven duplicates were removed and an additional 1915 articles were excluded following title and abstract screening. A total of 111 full-text peer reviewed articles were analyzed, of which 14 observational studies were selected for further analysis [28–41]. The inter-rater reliability for the article selection process was calculated to be over 80%, which is considered acceptable levels ($\kappa = 0.87, p < .05$). It should be noted that no RCT was found and the heterogeneity of the data precludes conducting a meta-analysis. The combined sample size for this study is 21,416 persons with TBI of all severity.

Fig 1. Flowchart of Article Selection for Updated Systematic Review.

Note: $n =$ number of records; Adapted from the PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews [25].
Longitudinal Cohort Studies

Three longitudinal cohort studies investigated SPECT scan for TBI, which included 405 participants in total (146/405 participants were healthy controls), and one study did not include a control group for comparison (Table 1) [28]. All three studies were conducted in different locations (United States, Canada, and Denmark) and different tracers were used to inject participants for each study (HMPAO, 99mTc-ECD, and 123I-CLINDE). The majority reported using a scanner with a triple-headed camera system (66%) and only one study reported using CT scan (33%) and MRI for comparison (33%). Concussion or mTBI were the focus of each study (100%) and the majority reported lesion locations associated with the frontal lobe (100%), parietal lobe (66%), temporal lobe (66%), cerebellum (66%), and occipital lobe (33%). One of three studies compared professional athletes to healthy controls and found that all regions of the brain had indications of lower cerebral perfusion, which also correlated with psychological testing [29]. One study reported that there was no significant association between visual inspection of brain SPECT scan and clinical outcomes [28]. Similarly, researchers also found that no significant difference was detected after statistical corrections were performed [30]. Neuropsychological outcomes associated with post-concussion syndrome were investigated in two studies and both studies found no correlation [28,30].

Table 1. Summary of Longitudinal Cohort Studies.
Observational Studies

There were 14 observational studies that examined brain SPECT and TBI (Table 2). All studies reported positive findings between SPECT scan and TBI. However, there were mixed findings for some conditions such as post-concussion syndrome and mood disorders [31,32]. In total, there were 21632 participants included in these studies but 20,746 participants were included in a single study conducted by Amen et al. (2015) [33]; and furthermore, Raji et al. (2015) [34] extrapolated data using the same sample of participants. With the exception of the two aforementioned studies, there were only 265 participants in total from the additional 12 prospective cohort studies that were found and the majority had an insufficient number of participants to achieve optimal statistical power due to the small sample size (7 – 73 participants in each study) [31,32,35–41]. Four studies investigated all severities of TBI (36%), five studies focused on mTBI (45%), one study recruited those with severe TBI (9%), and one study did not define the severity of TBI (9%). Most studies only utilized SPECT scan (i.e., no comparison imaging, 55%), five studies used MRI as the comparison imaging (45%), and lastly, PET scan (9%) and CT scan (9%) were each included in only one study that also used MRI as a comparison modality. Different nuclear tracers were used for each study and method of analysis did not conform to a single protocol. Time of SPECT was normally months after initial injury (55%) and lesion detection were reportedly not seen on comparison imaging (100%). Injury was primarily found on the frontal lobe (100%), temporal lobe (64%), parietal lobe (55%), cerebellum (55%), and least of all, the occipital lobe (36%). Several studies found that SPECT scan can clinically differentiate TBI from PTSD between the general population, veterans, and healthy controls [33,34]. The only study that compared PET and SPECT scan determined that PET scan is better at detecting lesions than brain SPECT for TBI [35]. However, brain
abnormalities were often identified on brain SPECT independent of results indicated from structural scans such as CT scan and MRI [32,35–37].

Table 2. Summary of Observational Studies.

Diagnostic Accuracy

Previous results from the systematic review conducted by Raji and colleagues (2014) [11] highlighted exemplary findings from three longitudinal cohort studies that reported measures of diagnostic accuracy (sensitivity, specificity, and predictive values). In particular, the authors emphasized the importance of follow-up evaluations to identify and diagnose TBI on SPECT scans. As mentioned, the results from Jacobs and colleagues (1994) [23] and a follow-up assessment (1996) [24] described remarkably high sensitivity (100%) and specificity (85%) for brain SPECT and TBI. In addition, the sensitivity and specificity of SPECT were reported in four recent cohort studies. There are indications that poor neurological findings (e.g., cognitive dysfunctions and memory/attention deficits) were correlated with brain SPECT for mTBI (sensitivity ≥ 73% and specificity ≥ 75%) [37]. In a cross-sectional study, Raji and colleagues (2015) [34] described that brain SPECT can distinguish PTSD from all severities of TBI, but the results are only moderately reflected in the calculated sensitivity (≥ 80%) and specificity (≥ 64%) values. In comparison to previously reported results, two studies reported lower sensitivity (≥ 67%) and most found similar specificity levels (≥ 54%) as illustrated in Table 3. The largest cohort study (N = 20,746 participants) involving SPECT for TBI reported specificity was 54% at rest and on-task for visual readings of scans [33]. This coincides with findings from a longitudinal study by Romero and colleagues (2015) [28] who described there were no association between visual inspections in radiological reports with clinical outcomes for TBI.
Although quantitative analysis was included in most recent studies, none reported error rates and methods of analysis varied between studies. Furthermore, predictive values were not reported in the results of recent studies found for this review article, and only a single study reported predictive models for sensitivity and specificity measures, which were 86% and 80% respectively among professional athletes who experienced sport-related concussions [29].

Table 3. Sensitivity and Specificity of Brain SPECT in Peer Reviewed Publications.

Discussion

The overall results of this study indicated that brain SPECT could still be considered an experimental procedure that lacks scientifically sound evidence. Longitudinal findings associated with sport-related concussions among professional athletes [29] and cross-sectional results examining those with PTSD and TBI [34] could be promising but the results may not be generalizable for different patient population. Additional studies with larger samples are required to confirm the findings from the current results. Two studies with large samples utilized identical retrospective patient evaluations; and consequently, the study designs lack proper study protocols such as randomization and blinding [33,34]. As such, limited inferences can be made from the results of these studies. Most notably, PET scan outperformed SPECT scan at detecting brain lesions [35], and several studies found that brain SPECT did poorly to differentiate mood disorders and post-concussion syndrome [28,30–32]. Furthermore, there is a lack of evidence to indicate the usefulness of SPECT scan in the diagnosis and treatment of moderate traumatic brain injury (studies rarely investigate this classification of brain injury). Although more recent literature provided better evidence to support contemporary quantitative analysis techniques for
SPECT scan, certain factors such as error rates of this modality are still unknown and the lack of quality in the resulting images is undisputable [11,14–16,42]. In particular, abnormalities and brain perfusions could be detected based on visual inspection, but may lead to false positives without mathematical models and corrections. Quantitative analysis using normal database theoretically increases the reliability of findings for brain SPECT, but as mentioned the error rates are still unknown and not published, and therefore results derived from SPECT scans are not infallible. Raji and Henderson (2018) [42] published a brief narrative update to the systematic review on clinical utility of SPECT in the diagnosis and treatment of traumatic brain injury. The authors compared SPECT, PET scans, and functional MRI (fMRI) and provided an overview of issues relating to the SPECT scan. Key points of this article are that the SPECT scan is still clinically useful for diagnosis of TBI because comparison modality such as PET scan lacks large studies and fMRI requires better post-processing procedures. However, the authors also mentioned that SPECT, PET, and fMRI are all “advanced neuroimaging techniques” that are still “areas of active research but are not considered routine clinical practice at this time.” (in accordance with the ACR 2016 guideline for head trauma) [12]. Therefore, the general consensus is that these medical imaging modalities are still within the realm of experimental research and emphasis should be placed on clinical decisions when diagnosing patients with complex issues such as TBI.

Further complicating this topic is the lack of a widely acceptable clinical practice guideline. Although it has been argued that the lower cost of SPECT scan could help provide “maximal benefit to patient care,” [42] the potential legal implications are unclear when brain SPECT findings are presented during litigation. It is well-documented in the literature that TBI cases are multifaceted in nature and involved stakeholders from different professional
A universally accepted clinical practice guideline will provide evidence of evaluation and treatment to clarify issues presented during civil litigation [43]. However, an unpublished guideline may further create confusion within the medicolegal contexts. The latest guideline for brain perfusion SPECT by the Canadian Association of Nuclear Medicine (CANM) [45] included similar claims about the prognostic value of brain SPECT that was endorsed by the EANM over a decade earlier [17], and as such adherence to the recommendations is warranted with abundance of caution. Additionally, SPECT scan would not meet the Daubert Standard for expert’s scientific testimony because its “potential error rate” is unknown (Criterion 3) and it has not “attracted widespread acceptance within relevant scientific community” (Criterion 5) [44]. In comparison to the widely accepted use of CT scan and MRI to diagnose TBI, brain SPECT is not supported by current health regulations or experts in the field. Medical diagnostic imaging must be precise and accurate because these are common tools physicians routinely rely on during the course of their daily practice.

The bottom line is that clinicians should interpret the SPECT findings in the context of clinical history. This view is consistent with correspondence between Adinoff and Devous (2010) [46] and Amen (2010) [47], who agreed that the evidence base to support the application of SPECT for diagnosis and treatment without the consideration of other sources of data is insufficient. As a rule of thumb in clinical medicine, imaging, laboratory, and radiological findings need clinical correlation. As noted by Amen (2010) [47], "Thoughtful clinicians would never use SPECT in isolation. That is not how imaging is or should be practiced."

Limitations and Future Directions
Adherence to the protocols from the previous systematic review was critical and this could have potentially limited the scope of this article (e.g., further investigation regarding different mental health issues beyond those associated with TBI) [48]. In addition, lower level of evidence such as case reports were not considered because level IIA evidence was required to achieve the same standards set by the previous authors. The current findings only included a narrative synthesis due to the varying methods of data collection (e.g., different tracers were injected into patients such as 99mTc-ECD or 99mTc-HMPAO) from each study. Additionally, it is unclear if the study setting were consistent (i.e., more details are needed for further analysis), which could have also potentially impacted the results of the imaging when performed under different circumstances. It is salient to note that the participants cognitive state (fatigue/alert) and demographic factors such as age (youth/adult/elderly) during time of examination could have impacted the results of the metabolic scan. For instance, cerebral microbleeds or microhemorrhages are increasingly recognized as natural occurrences due to aging, but they have also been detected on medical images for TBI, which could potentially cause false-positives [49,50]. However, the small sample size from most studies found in this review would have made it highly difficult to further analyze possible confounding factors that could have impacted the findings of the SPECT scan. Although this systematic review did not include a meta-analysis, more research on this topic is required before additional statistical analysis can be performed. Future studies must utilize larger sample size and scientifically rigorous methodology (i.e., double-blind RCTs) to reduce risk of bias and enhance the strength of evidence available to support clinical utility of SPECT for diagnosis of TBI. Lastly, a detailed report regarding brain SPECT error rates is required before further inferences about its clinical utility are determined.
Conclusion

Recent findings on this topic help provide clarity on whether SPECT is specific in identifying TBI even without typical structural imaging such as CT and MRI. In conclusion, there is no consensus among experts about the clinical utility of brain SPECT. This “advance” medical imaging modality is currently not the gold standard diagnostic scan to investigate TBI. CT Scan and MRI are widely used and acceptable diagnostic imaging for TBI. PET scan is another advance neuroimaging modality that consideration should be given because it can outperform brain SPECT to detect abnormalities and lesions. Lastly, additional research is required to understand the intricacies regarding abnormalities on brain SPECT and conditions with clinical evidence similar to TBI. At the present, there is a lack of evidence to support the clinical utility of brain SPECT for the diagnosis and treatment of TBI in daily practice and healthcare settings. Therefore, diagnosis of TBI should be supported by evidence-based clinical decisions.
References

36. Crider T, Eng D, Sarkar PR, Cordero J, Krusz JC, Sarkar SN. Microvascular and large
vein abnormalities in young patients after mild head trauma and associated fatigue: A
2018;170:159–64. doi:10.1016/j.clineuro.2018.05.019

injury with neuropsychological impairment using statistical imaging analysis for Tc-ECD

comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic

in the evaluation of response to zolpidem therapy in consciousness disorder due to

40. Nakagawara J, Kamiyama K, Takahashi M, Nakamura H. Cortical neuron loss in post-
traumatic higher brain dysfunction using (123)I-iomazenil SPECT. Acta Neurochir

41. Womack KB, Dubiel R, Callender L, Dunklin C, Dahdah M, Harris TS, et al. (123)I-
Iofluopane single-photon emission computed tomography as an imaging biomarker of
pre-synaptic dopaminergic system after moderate-to-severe traumatic brain injury. J

42. Raji CA, Henderson TA. PET and single-photon emission computed tomography in brain

Chart 1

<table>
<thead>
<tr>
<th>Database</th>
<th>Search Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emtree (Embase)</td>
<td>((exp Tomography, Emission-Computed, Single-Photon/ or "spect".mp. or "single photon emission computed tomography".mp. or exp Technetium Tc 99m Exametazine/ or "hmpao".mp. or "ecc".mp. or "Technetium Tc 99m Bicisate".mp. or exp Cerebrovascular Circulation/ or "regional cerebral blood flow".mp. or "rcbf".mp.) and (exp brain injuries/ or "tbi".mp. or "traumatic brain injury".mp. or "concussion".mp.)) not ((exp animal/ or nonhuman/) not exp human/)</td>
</tr>
</tbody>
</table>

Table 1. Summary of Longitudinal Cohort Studies.

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>N, Start/Follow Up</th>
<th>Age</th>
<th>Male Gender (%)</th>
<th>Lesion Localization</th>
<th>Follow Up, months</th>
<th>NOS Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amen (2016)</td>
<td>285</td>
<td>52</td>
<td>100</td>
<td>F/T/P/O/C</td>
<td>Not mentioned</td>
<td>7</td>
</tr>
<tr>
<td>[29]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebert (2019)</td>
<td>36/35</td>
<td>42</td>
<td>56</td>
<td>F/T/C</td>
<td>3–4</td>
<td>7</td>
</tr>
<tr>
<td>[30]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romero (2015)</td>
<td>84/49</td>
<td>32</td>
<td>65</td>
<td>F/P</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>[28]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: N = sample size; F = frontal lobe; T = temporal lobe; P = parietal lobe; O = occipital lobe; C = cerebellum; NOS = Newcastle-Ottawa Scale.
Table 2. Summary of Observational Studies.

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>TBI Type</th>
<th>Sample Size</th>
<th>Comparison Imaging</th>
<th>Time of SPECT</th>
<th>Lesion Localization</th>
<th>Lesion Detection Not Seen on Comparison Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiko (2017) [35]</td>
<td>All severities</td>
<td>7</td>
<td>PET and MRI</td>
<td>Months to Years</td>
<td>F/T/P/C</td>
<td>Yes</td>
</tr>
<tr>
<td>Amen (2015) [33]</td>
<td>All severities</td>
<td>20746</td>
<td>SPECT Only</td>
<td>Not mentioned</td>
<td>F/T/P/O/C</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Crider (2018) [36]</td>
<td>Mild</td>
<td>12</td>
<td>CT and MRI</td>
<td>Months after TBI</td>
<td>F/T</td>
<td>Yes</td>
</tr>
<tr>
<td>Khalili (2020) [39]</td>
<td>Not defined</td>
<td>4</td>
<td>SPECT Only</td>
<td>Months to Years</td>
<td>F/P</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Nakagawara (2013) [40]</td>
<td>Mild</td>
<td>17</td>
<td>MRI</td>
<td>Months to Years</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td>Newberg (2014) [38]</td>
<td>Mild</td>
<td>45</td>
<td>SPECT Only</td>
<td>Months after TBI</td>
<td>F/T/P/O/C</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Raji (2015) [34]</td>
<td>All severities</td>
<td>196</td>
<td>SPECT Only</td>
<td>Not mentioned</td>
<td>F/C</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Romero (2014) [31]</td>
<td>Mild</td>
<td>67</td>
<td>SPECT Only</td>
<td>Weeks after TBI</td>
<td>F/O</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Uruma (2013) [37]</td>
<td>Mild</td>
<td>73</td>
<td>MRI</td>
<td>Months to Years</td>
<td>F/T/P/C</td>
<td>Yes</td>
</tr>
<tr>
<td>Winter (2015) [32]</td>
<td>All severities</td>
<td>14</td>
<td>MRI</td>
<td>Days after TBI</td>
<td>F/T/P/O/C</td>
<td>Yes</td>
</tr>
<tr>
<td>Womack (2020) [41]</td>
<td>Moderate, Severe</td>
<td>18</td>
<td>SPECT Only</td>
<td>Weeks after TBI</td>
<td>F/T</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Note: TBI = traumatic brain injury; SPECT = single photon emission computed tomography; PET = Positron emission tomography; MRI = magnetic resonance imaging; F = frontal lobe; T = temporal lobe; P = parietal lobe; O = occipital lobe; C = cerebellum.

Table 3. Sensitivity and Specificity of Brain SPECT in Peer Reviewed Publications.

<table>
<thead>
<tr>
<th>Study (Year)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobs (1996) [24]</td>
<td>78% – 100%</td>
<td>53% – 85%</td>
</tr>
<tr>
<td>Uruma (2013) [37]</td>
<td>73% – 100%</td>
<td>75% – 83%</td>
</tr>
<tr>
<td>Author</td>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Raji (2015) [34]</td>
<td>80% – 92%</td>
<td>64% – 85%</td>
</tr>
<tr>
<td>Amen (2015) [33]</td>
<td>67% – 100%</td>
<td>54% – 100%</td>
</tr>
<tr>
<td>Amen (2016) [29]</td>
<td>86% – 90%</td>
<td>80% – 87%</td>
</tr>
</tbody>
</table>

Note: The sensitivity and specificity data were reported in the article. The data from Jacobs et al. (1996) [24] was included in the systematic review by Raji et al. (2014) [11].
Fig 1. Flowchart of Article Selection for Updated Systematic Review.

Previous studies

Identification

Studies included in previous version of review (n = 71)

Identification of new studies via databases and registers

Records identified from:
- Databases (n = 2242)
- Other Sources (n = 1)

Records removed before screening:
- Duplicate records removed by automation tools (n = 211)

Records screened (n = 2932)

Reports sought for retrieval (n = 245)

Records excluded (n = 1787)

Reports not retrieved (n = 135)

Reports assessed for eligibility (n = 111)

Reports excluded:
- Study design (n = 204)
- Lacking full-text (n = 24)
- Not in English (n = 4)

New studies included in review (n = 14)

Total studies included in review (n = 85)

Note: n = number of records; Adapted from the PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews [24].
Fig 2. American College of Radiology Recommended Scans for Head Trauma.

ACR (2021) Recommended Scans

Acute Head Trauma

Subacute and Chronic Head Trauma

Suspected Intracranial Injury

Suspected Cerebrospinal Fluid Leak

Mid TBI (GCS 13–15)

Moderate TBI (GCS 9–12)

Severe TBI (GCS 3–8)

MRI or CT Scan

CT Scan

CT Scan

CT Scan

No Clinical Decision to Scan

Clinical Decision to Scan

No Scan

CT Scan

Note: TBI = traumatic brain injury; GCS = Glasgow Coma Scale; CT = computed tomography; MRI = magnetic resonance imaging; Adapted from the American College of Radiology (ACR) Appropriateness Criteria Head Trauma: 2021 Update [13].