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Abstract. In medical image classification tasks like the detection of di-
abetic retinopathy from retinal fundus images, it is highly desirable to
get visual explanations for the decisions of black-box deep neural net-
works (DNNs). However, gradient-based saliency methods often fail to
highlight the diseased image regions reliably. On the other hand, ad-
versarially robust models have more interpretable gradients than plain
models but suffer typically from a significant drop in accuracy, which is
unacceptable for clinical practice. Here, we show that one can get the
best of both worlds by ensembling a plain and an adversarially robust
model: maintaining high accuracy but having improved visual expla-
nations. Also, our ensemble produces meaningful visual counterfactuals
which are complementary to existing saliency-based techniques. Code is
available under https://github.com/valentyn1boreiko/Fundus VCEs.

Keywords: Interpretability · Counterfactual explanations · Adversarial
robustness · Trustworthy AI · Diabetic retinopathy.

1 Introduction

In many medical domains, deep learning systems have been shown to perform
close to or even better than domain experts in detecting disease from images [21].
For clinicians and patients to trust such systems in practice, they need to be in-
terpretable [14,15]. Current techniques for interpreting model decisions, however,
have critical shortcomings. For instance, post-hoc interpretability techniques
such as saliency maps are often used to generate explanations for a classifier’s
decision. These have been evaluated for clinical relevance, e.g. in ophthalmol-
ogy [2,5,33], with some methods producing more meaningful visualizations than
others. As DNNs can rely on spurious features and are not necessarily learning
all class-relevant features [11,12], saliency maps may also have limited usefulness
in clinical settings [2, 28]: for standard classifiers they sometimes just highlight
high-frequency components of an image [5]. Especially for healthy cases, these
are often hard to interpret during screening for timely intervention.

Interestingly, models trained to provide inherent robustness against adver-
sarial attacks [7,22], have also been shown to yield better saliency maps [10,23].
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Model Orig.(GT:DR) T-GBP [29] T-IG [30] l1.5-VCE, ϵ=30 T-VSM

Plain

DR:1.00 0.10 0.12 →DR: 1.00 0.10

Robust

DR:0.99 0.19 0.20 →DR: 1.00 0.20

Ensemble
(proposed)

DR:1.00 0.20 0.22 →DR: 1.00 0.21

Fig. 1: Visual explanations of decisions are better for robust and ensemble models
than for plain models, as shown by intersection over union (IoU) between saliency

maps (P) and ground truth (GT) masks (IoU(P,GT ) := |P∩GT |
|P∪GT | ) (in bold).

We show an image correctly classified as DR (left), post-hoc explanations for
the decision using thresholded Guided Backprop (T-GBP), Integrated Gradients
(T-IG) and visual counterfactual examples (VCEs) for enhancing the classifiers’
confidence into DR as well as the corresponding saliency map: thresholded VCE
Saliency Map (T-VSM). Numerical evaluation of these maps in comparison to
the ground truth segmentation can be found in Tab. 2.

Also, these robust models allow to generate visual counterfactual explanations
(VCEs) [3, 6], an alternative image-wise interpretability technique that shows
the minimal changes necessary to maximize the confidence of the classifier in a
desired class (Fig. 1). But, the gain of these models in adversarial robustness
comes at the price of a loss in accuracy [32, 35] which is unacceptable espe-
cially in medical applications. Thus, adversarially robust models have not seen
widespread use in practice.

Here we show that an ensemble of a plain and an adversarially robust model
yields improved saliency maps and allows for the computation of VCEs to further
explore the basis of the model’s decision. Further, it achieves almost the same
accuracy as the plain model. We demonstrate this new approach to explainability
for medical image classifiers for the case of diabetic retinopathy (DR) detection
from retinal fundus images and propose a new type of the saliency map.
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2 Methods

2.1 Datasets

We used three publicly available datasets of retinal fundus images for which DR
grades were available: the Kaggle DR detection challenge data [1] for method
development and main results, the Messidor dataset [9] for additional external
validation, and a portion of the Indian Diabetic Retinopathy Image Dataset
(IDRiD) [26] for quantitative evaluation of visual explanations, as these data
additionally had DR lesion annotations at pixel level. We pre-processed the im-
ages using contrast limited adaptive histogram equalization (CLAHE) [36], and
by tightly cropping the circular mask of the retinal fundus, which was detected
by iterative least-squares fitting of a circular shape to image edges. For the
Kaggle dataset, we filtered out poor quality images using an ensemble of Effi-
cientNets [31] trained on the ISBI2020 challenge dataset1. This quality filtering
model achieved 87.50% accuracy for image gradability. After quality filtering, the
resulting dataset contained 45, 923 images (at a final resolution of 224×224 pix-
els): 33, 783 in class ‘no DR’, 3, 598 in ‘mild DR’, 6, 765 in ‘moderate DR’, 1, 186
in ‘severe DR’ and 591 in ‘proliferative DR’. The Messidor dataset contained
1200 retinal fundus images, and the IDRiD 81 images along with annotations
for microaneuryms, haemorrhages, hard and soft exudates. We combined the
annotations of these lesion types to obtain a single ground truth mask.

2.2 Plain, robust and ensemble models

As mild DR is a transitional stage between no DR and moderate-to-advanced
stages of DR [34], these images lead to high uncertainty in decisions of both
DNNs and clinicians [4]. Therefore, to obtain a clear separation of ‘no DR’ and
DR classes, we excluded the ‘mild DR’ cases. We then trained binary classifiers
f : Rd → R2 to predict whether a fundus image x was in the ‘no DR’ class or
belonged to moderate-to-advanced stages of DR, with p̂f (y = 1|x) indicating the
predicted probability of disease. We used 75% of the Kaggle data for training,
15% for validation, 4% for temperature scaling [16] and 6% for testing.

For the plain model we used a ResNet-50 [17] which was trained with cross-
entropy loss. We used batch size of 128, with oversampling of the DR cases
to account for class imbalance. We first trained the model for 500 epochs with
learning rate of 0.01 and a cosine learning rate schedule. This model was further
fine-tuned for 3 epochs with a cyclic triangle schedule for one cycle. We chose
the model with the best balanced accuracy on the validation set.

The robust model used the same architecture but was trained using TRADES
[35] for l2-adversarial robustness, where one minimizes for the given training set
(xi, yi)

n
i=1 the objective:

1

n

n∑
i=1

[
− log

(
p̂f (yi|xi)

)
+ β max

x∈B2(xi,ϵ)
DKL

(
p̂f (·|x) || p̂f (·|xi)

)]
, (1)

1 https://isbi.deepdr.org/challenge2.html

https://isbi.deepdr.org/challenge2.html
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where DKL denotes the Kullback-Leibler divergence, p̂f (·|x) is the predicted
probability distribution over the classes at x, β controls the trade-off between
adversarial and plain training schemes, and Bp(x, ϵ) := {x̂ ∈ Rd| ∥x− x̂∥p ≤ ϵ}.
For training we used p = 2 and ϵ = 0.25 and set β = 6.

In our experience, tuning β down during training can increase accuracy but
negatively affects interpretability. Hence, we built the following ensemble of plain
and robust models, which preserves both accuracy and interpretable gradients
for the given β:

p̂f,ensemble(k|x) :=
1

2
[p̂f,plain(k|x) + p̂f,robust(k|x)], k = 0, 1. (2)

As saliency methods often require logits f instead of probabilities, we defined
logits for the ensemble as fk := log

(
p̂f,ensemble(k|x)

)
. All models are calibrated

via temperature scaling by minimizing the expected calibration error [16].
Experiments were done on an Nvidia Tesla V100 GPU with 32GB RAM,

using PyTorch. Code for pre-processing and training as well as the trained models
will be available upon acceptance.

2.3 Generating visual counterfactual explanations (VCEs)

Following [6], a VCE x̃ should have high probability p̂f (k|x̃) in a chosen class k
(”validity”). It should be similar to the starting image x0 (”sparsity”) and close
to the data manifold (”realism”). For generating an lp-VCE x̃ for a classifier f
we solved

x̃ = argmax
x∈Bp(x0,ϵ)∩[0,1]d∩M

log
(
p̂f (k|x)

)
(3)

where M is the mask for the region of the eye obtained by our pre-processing.
The formulation of VCEs suggests that some “robustness” is required as Eq. 3 is
similar to the formulation of adversarial examples [6]. Compared to saliency maps
the advantage of VCE is that the generated images are purely based on the be-
havior of the classifier. We used adaptive projected gradient descent (APGD) [7]
and Frank-Wolfe [19, 24] based schemes as optimizers. APGD requires projec-
tions onto lp-balls which are available in closed form for l2 and l∞ or can be com-
puted efficiently for l1 [8]. However, for p /∈ {1, 2,∞}, there is no such projection
available and thus we used for the generation of lp-VCEs the Auto-Frank-Wolfe
scheme of [6].

2.4 Saliency maps

We used Guided Backprop (GBP) [29] and Integrated Gradients (IG) [30] from
a public repository [25] to generate saliency maps for the models’ decisions.
GBP and IG are among the best saliency techniques for DR detection [5, 33].
Based on our VCEs, we also introduced the VCE Saliency Map (VSM) as the
difference between VCE and the original image. For all saliency methods, we
used absolute saliency values summed over color channels in order to better
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Table 1: Evaluation of plain and robust classifier and their ensemble in terms of
standard, balanced and l2-robust accuracy. The ensemble maintains the accuracy
but gains sufficient robustness required for better interpretability (see Tab. 2).

Kaggle Messidor
acc. bal. acc. rob. acc. acc. bal. acc. rob. acc.

Plain 89.5 85.8 15.2 89.5 89.5 20.6
Robust 78.4 71.6 66.6 66.1 66.5 60.9

Ensemble 89.7 85.2 19.4 87.9 87.9 24.4

cover salient regions [5]. Then, saliency scores were normalized to [0, 1] via min-
max normalization and thresholded at the τ -quantile for sparsity. The threshold
τ was optimized for each method on 40 out of 81 images in the IDRiD dataset
by computing the intersection over union (IoU) with respect to the pixel-wise
annotation of DR lesions. This yielded τ = 0.98 for GBP, τ = 0.96 for both IG
and VSM. For the VSMs we additionally optimized over the norm p ∈ {1.5, 2, 4}
and different ϵ per norm and found p = 1.5, ϵ = 30 to be the best.

2.5 Model evaluation

We evaluated the performance of models on the Kaggle test set and Messidor
images using accuracy (acc.), and balanced accuracy (bal. acc., mean of TPR and
TNR). Additionally, we reported l2-robust accuracy (rob. acc.) for a perturbation
budget of ϵ = 0.1 which we evaluated using 9 restarts of 100 iterations of APGD
[7] maximizing the confidence in the wrong class. The robust accuracy is the
fraction of test inputs where the decision could not be changed by the attack.

For a quantitative evaluation of our visual explanations, we used the 41
images on which τ had not been optimized from the IDRiD dataset. Tab. 2
shows the mean IoU for all models and saliency techniques (including T-VSMs
for different p-norms) with the pixel-level DR lesion annotations.

This evaluation indicates that the saliency maps derived from VCEs are
on par with state-of-the-art techniques, such as GBP and IG. However, VCEs
go beyond those techniques as they can be used to generate images and even
animations that illustrate how an image would have to change to affect the
prediction of the classifier.

3 Results

First, we analyzed the properties of the plain and robust classifiers, and the
ensemble introduced in Eq. 2. Then, we explored VCEs as an alternative for ex-
plaining classifier decisions and studied the sparsity-realism trade-off for VCEs.
Finally, we show the effect of different perturbation budgets on VCEs.
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Table 2: Evaluation of saliency maps and T-VSMs on IDRiD. The IoU-score of
the ensemble is higher than for the plain model for all interpretability methods
including VCEs (higher is better, mean ± std).

GBP IG l1.5, ϵ = 30 l2, ϵ = 6 l4, ϵ = 0.2

Plain 0.09± 0.03 0.08± 0.03 0.07± 0.03 0.07± 0.03 0.07± 0.03
Robust 0.15± 0.06 0.14± 0.06 0.13± 0.06 0.12± 0.06 0.12± 0.05

Ensemble 0.15± 0.06 0.14± 0.06 0.13± 0.06 0.12± 0.06 0.12± 0.05

3.1 Ensembling plain and adversarially trained DNNs

We found that the plain model achieved good standard and balanced accuracy
for classifying DR from fundus images (Tab. 1), but with comparably low robust
accuracy (see Sec. 2.5). In contrast, the robust classifier achieved high robust ac-
curacy, but suffered a large drop in accuracy of more than 10-20%. Interestingly,
and in line with the literature [10, 23], the saliency maps of the robust model
were much better than those of the plain model (Tab. 2, Fig. 1) for both of
the tested saliency methods, Guided Backprop (GBP) and Integrated Gradients
(IG). In fact, the saliency maps of the plain classifier were of rather low quality,
focusing on less prominent disease-related regions of the image (Fig. 1).

We found that an ensemble of the plain and robust models (Eq. 2) combined
their advantages: It had about equal standard and improved robust accuracy
compared to the plain model (Tab. 1) and its saliency maps were as good as
those of the robust model (Tab. 2, Fig. 1).

3.2 VCEs as an alternative to saliency maps

We next explored VCEs (Eq. 3) as an alternative for explaining classifier deci-
sions. The properties of the VCEs depend on the chosen model for the perturba-
tion, which in this paper was always an lp-ball, and the perturbation budget in
form of the radius of lp-ball. Small values of p close to one lead to sparse changes
whereas for larger p one can realize much more outspread changes affecting larger
parts of the image. As discussed in Sec. 2.4 we chose l1.5-VCEs of radius ϵ = 30
as they produced the best quality of T-VSMs. We found that the robust model
and the ensemble allowed for the computation of realistic VCE (Eq. 3, Fig. 1).
T-VSMs (see Sec. 2.4) also provided good explanations for the classifiers’ deci-
sion (Tab. 2), highlighting exudates and haemorrhages. In contrast, the VCE of
the plain model was not very meaningful as its main changes were only vaguely
related to the diseased regions.

3.3 Sparsity versus Realism of VCEs

We then analyzed the effect of different perturbation models in terms of different
lp-balls (Fig. 2). We first studied the VCEs for enhancing the correct decision for
a DR image. We found that the changes of l1.5-perturbation model were sparser
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Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:0.97 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.92

Fig. 2: VCEs for the ensemble with varying degree of sparsity: p ∈ {1.5, 2, 4}.
For a correctly classified DR image, we show VCEs when transformed further
into the DR or the healthy class. Below VCEs, T-VSMs are shown. The VCE
radius was adapted to the sparsity condition. In addition, the confidence of the
classifier is reported above the image.

and thus looked more cartoon-like than for l4. The VCEs of the l4 model ap-
peared much more natural although they even introduced new diseased regions
not present in the original image. Thus the classifier seems to have picked up
certain disease signs very well and can integrate even new disease patterns in a
natural fashion into fundus images. We next studied the VCE for changing the
decision of the classifier to ‘no DR’. Here, all lp-perturbation models attempted
to ”smooth out” the main lesions as well as the exudates. This provides com-
plementary evidence that the classifier picked up the right disease signal in the
data. Note that the artefact around the optic nerve was not changed in the VCE,
showing that the classifier has correctly identified it as a feature which is not
discriminatory for the disease decision. Not all VCEs, however, provided by our
method are perfectly realistic: for example, the algorithm often tried to cover
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lesions with vessels when creating a VCE turning a diseased image into a healthy
one. Further failure cases are discussed in App. A.

3.4 VCEs for different budgets

Finally, we investigated how the VCEs changed with increasing budget parame-
terized with ϵ (Fig. 3). We found that an increasing number of new lesions were
introduced for both the sparse l1.5-VCE as well as the realistic l4-VCE, when
increasing the budget for more DR evidence. Here, the difference between the
two models — that l4-VCEs appeared more realistic — became even more clear.
When generating VCEs for turning the diseased image into an healthy one, also
increasingly large regions of lesions were covered, e.g. through artificial vessels.
Such VCE with different budgets could be useful to generate gradual changes in
either directions, providing good intuitions for a classifiers decision.

Orig.(GT:DR) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

DR:0.95 →DR: 1.00 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.74 →healthy: 0.95 →healthy: 0.99 →healthy: 1.00

Fig. 3: VCEs show increasingly strong modification for different radii. For one
correctly classified DR image, we show for the ensemble the l4-VCEs for ϵ ∈
{0.1, 0.2, 0.3, 0.4} when transforming into the DR and healthy class, respectively.

4 Discussion

We showed that the ensemble of plain and robust models can preserve accuracy
of plain models, yet provide better visual explanations. In agreement with the
literature [10,23], the resulting saliency maps highlight clinically relevant lesions
more reliably. Therefore, the explanations obtained for diseased images are often
satisfying, while those for healthy images are less so — showing the absence of
lesions is difficult in this framework. The ensemble model allowed us to com-
pute also realistic VCEs [6], to yield interpretable explanations of the classifier’s
decision, pinpointing the features in the image the classifier picks up on.
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In related work, iterative augmentation of saliency maps has been used to
improve saliency-based visual explanations [13]. Also, VCEs have been generated
using GANs [20] (no models/code is available) but the advantage of our VCE
is that they depend only on the classifier and thus there is no danger that the
prior of the GAN “hides” undesired behavior of the classifier. Finally, models
interpretable-by-design such as BagNets [18] have been advocated for medical
imaging tasks [27]. As many high-performing DNNs do not fall into this category,
we view our work as complementary.

We believe realistic VCEs and derived T-VSMs will be a useful tool to better
understand the behavior of DNN-based classifiers in medical imaging, in par-
ticular when gradually morphing an image from one class to the other which is
the main complementary strength of VCEs compared to saliency maps. As the
sparseness and the degree of changes allowed can be precisely controlled, it is
straightforward to yield more or less natural VCEs. Even extreme and therefore
less natural VCEs can be useful, as they provide a ”cartoon” version of what
the classifier believes the disease looks like.
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A Failure cases

Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:0.99 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.86

Fig. 4: Failure: when transforming to DR using ensemble, l1.5-VCE has visible
artifacts, unlike l2-,l4-VCEs.

Orig.(GT:DR) l1.5-VCE, ϵ=30 l2-VCE, ϵ=6 l4-VCE, ϵ=0.2

DR:1.00 →DR: 1.00 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 0.82

Fig. 5: Failure: when transforming to healthy using ensemble, l2- and l1.5-VCEs
have visible artifacts (yellow spots), unlike l4-VCE.
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B Further examples of VCEs

Orig.(GT:healthy) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

healthy:0.77 →healthy: 0.95 →healthy: 0.99 →healthy: 1.00 →healthy: 1.00

→DR: 0.95 →DR: 1.00 →DR: 1.00 →DR: 1.00

Fig. 6: For one correctly classified healthy image, we show for the ensemble the
l4-VCEs for ϵ ∈ {0.1, 0.2, 0.3, 0.4} when transforming into the healthy and DR
class, respectively.

Orig.(GT:DR) l4-VCE, ϵ=0.1 l4-VCE, ϵ=0.2 l4-VCE, ϵ=0.3 l4-VCE, ϵ=0.4

healthy:0.69 →DR: 0.77 →DR: 0.98 →DR: 1.00 →DR: 1.00

→healthy: 0.99 →healthy: 1.00 →healthy: 1.00 →healthy: 1.00

Fig. 7: For one wrongly classified DR image, we show for the ensemble the l4-
VCEs for ϵ ∈ {0.1, 0.2, 0.3, 0.4} when transforming into the DR and healthy
class, respectively.
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