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Supplementary Note 1: Mathematical details of LDAK-GBAT 

Suppose we have a GWAS of n individuals, and we wish to test a gene containing m SNPs. Suppose 

the length-n vector 𝑌 contains the phenotypic values, the 𝑛 × 𝑚 matrix 𝑋 contains the SNP genotypes, 

and the 𝑛 × 𝑝 matrix 𝑍 contains covariates (note that for simplicity, we ignored covariates in the main 

text). For convenience, we assume 𝑌 and 𝑋𝑗, the jth column of 𝑋, have been standardized to have mean 

zero and variance one. 

The heritability model 

When analyzing SNP data, the heritability model describes the prior belief regarding how much each 

SNP will contribute towards the phenotype. Specifically, it models how 𝐸[ℎ𝑗
2], the expected heritability 

of SNP j, varies across the genome. Simple heritability models take the form 

𝐸[ℎ𝑗
2] ∝ 𝑞𝑗 

where the SNP annotations 𝑞𝑗 are specified in advance (more complex heritability models replace 𝑞𝑗 

with multiple sets of SNP annotations 1. The majority of SNP-based analyses in human statistical ge-

netics use 𝑞𝑗 = 1; we refer to this as the Uniform Model, because it corresponds to a prior belief that 

each SNP is expected to contribute equally to heritability 2. Based on our previous works1,3-5, we rec-

ommend setting 𝑞𝑗 = [𝑝𝑗(1 − 𝑝𝑗)]
0.75

, where pj is the minor allele frequency of SNP j; we refer to this 

as the Human Default Model. 

Assumptions of LDAK-GBAT 

When testing the association between 𝑋 and 𝑌, LDAK-GBAT assumes 

𝑌𝑖 = 𝑍𝑖𝜃 + 𝑋𝑖𝛽 + 𝑒𝑖 = 𝑍𝑖,1𝜃1+. . . +𝑍𝑖,𝑝𝜃𝑝 + 𝑋𝑖,1𝛽1+. . . +𝑋𝑖,𝑚𝛽𝑚 + 𝑒𝑖 

where 𝜃𝑘 and 𝛽𝑗 are the coefficients for the kth covariate and the jth SNP, respectively, while 𝑒𝑖 is the 

environmental noise for the ith individual. We treat the 𝜃𝑘 as fixed effects, while the 𝛽𝑗 and 𝑒𝑗 are con-

sidered to be random effects, assigned the prior distributions 

𝛽𝑗 ∼ 𝑁(0, 𝑞𝑗𝜎𝑔
2)     and     𝑒𝑖 ∼ 𝑁(0, 𝜎𝑒

2) 

where 𝜎𝑔
2 and 𝜎𝑒

2 denote genetic and environmental variances, respectively. Note that because both 𝑌 

and 𝑋𝑗 are standardized, the heritability of SNP j is 𝛽𝑗
2, which has expected value 𝑞𝑗𝜎𝑔

2. Therefore, the 

values for 𝑞𝑗 determine the heritability model. When 𝑞𝑗 = 1, LDAK-GBAT assumes the same model 

as FaST-LMM-Set6. 



Estimating the variance components 

REML seeks the values of 𝜎𝑒
2 and 𝜎𝑔

2 that maximize the restricted log likelihood. We start with the full 

likelihood, whose logarithm is 

𝑙𝐹(𝜎𝑒
2, 𝜎𝑔

2, 𝜃, 𝛽) =
−(𝑌 − 𝑍𝜃 − 𝑋𝛽)𝑇(𝑌 − 𝑍𝜃 − 𝑋𝛽)

2𝜎𝑒
2

−
𝑛

2
𝑙𝑜𝑔(2𝜋𝜎𝑒
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𝛽𝑇𝑄−1𝛽

2𝜎𝑔
2
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𝑚

2
𝑙𝑜𝑔(2𝜋𝜎𝑔

2) −
1

2
∑ 𝑙𝑜𝑔(𝑞𝑗) 

where 𝑄 is a diagonal matrix with entries 𝑞𝑗. We integrate the full likelihood across 𝜃 and 𝛽, then log, 

in order to obtain the restricted log likelihood 

𝑙𝑅(𝜎𝑒
2, 𝜆) =

−𝛾

2𝜎𝑒
2

−
𝑛 − 𝑝

2
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1

2
𝑙𝑜𝑔|𝐵| 

where  

𝛾 = 𝑌𝑇𝐶𝑌 − 𝑌𝑇𝐶𝑋𝐵−1𝑋𝑇𝐶𝑌,     𝐶 = 𝐼 − 𝑍(𝑍𝑇𝑍)−1𝑍,     𝐵 = (𝑋𝑇𝐶𝑋 + 𝑄−1𝜆)     and     𝜆 = 𝜎𝑒
2 𝜎𝑔

2⁄  

Note that introduction of 𝜆 is only for convenience (we find it easier to maximize the restricted log 

likelihood with respect to 𝜎𝑒
2 and 𝜆, than with respect to 𝜎𝑒

2 and 𝜎𝑔
2). By differentiating with respect to 

𝜎𝑒
2, we find that the restricted log likelihood is maximized when 𝜎𝑒

2 = 𝛾 (𝑛 − 𝑝)⁄ , and therefore our 

aim is now to find 𝜆′, the value of 𝜆 that maximizes 
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We do this using the Newton-Raphson algorithm, where at each iteration, the current value of 𝜆 is re-

placed by 

𝜆 −
𝑙𝑅

′

𝑙𝑅
′′      where     𝑙𝑅

′ = 𝑑𝑙𝑅 (
𝛾

𝑛 − 𝑝
, 𝜆) 𝑑𝜆⁄      and     𝑙𝑅

′′ = 𝑑2𝑙𝑅 (
𝛾

𝑛 − 𝑝
, 𝜆) 𝑑𝜆2⁄  

stopping when the restricted log likelihood changes by less than 0.001 (the user can change this thresh-

old if desired). In order to compute 𝑙𝑅
′  and 𝑙𝑅

′′, it is necessary to differentiate 𝛾 and 𝑙𝑜𝑔|𝐵|. This is fa-

cilitated by first computing the eigen-decomposition 𝑋𝑇𝐶𝑋 = 𝑈𝐸𝑈𝑇 , as then we have  

𝛾 = 𝑌𝑇𝐶𝑌 − 𝐷𝑇(𝐸 + 𝑄−1𝜆)−1𝐷 = 𝑌𝑇𝐶𝑌 − ∑ 𝐷𝑗
2 (𝐸𝑗 + 𝜆 𝑞𝑗⁄ )     where     𝐷 = 𝑈𝑇𝑋𝑇𝐶𝑌 

and 

𝑙𝑜𝑔|𝐵| = 𝑙𝑜𝑔|𝑈(𝐸 + 𝑄−1𝜆)𝑈𝑇| = 𝑙𝑜𝑔|(𝐸 + 𝑄−1𝜆)𝑈𝑇𝑈| = 𝑙𝑜𝑔|𝐸 + 𝑄−1𝜆| = ∑ 𝑙𝑜𝑔 (𝐸𝑗 + 𝜆 𝑞𝑗⁄ ) 

both of which expressions can be easily differentiated with respect to 𝜆. 



Note that to calculate a likelihood ratio test (LRT) statistic, we must also maximize the restricted log 

likelihood under the null model. This is obtained by excluding from the full likelihood all terms corre-

sponding to 𝑋 or 𝛽, then integrating across 𝜃 and taking the logarithm 

𝑙0(𝜎𝑒
2) =

−𝑌𝑇𝐶𝑌

2𝜎𝑒
2

−
𝑛 − 𝑝

2
𝑙𝑜𝑔(2𝜋𝜎𝑒

2) −
1

2
𝑙𝑜𝑔|𝑍𝑇𝑍| 

which is maximized when 𝜎𝑒
2 = 𝑌𝑇𝐶𝑌 (𝑛 − 𝑝)⁄ . Therefore, the LRT statistic is 

𝑆 = 2 × [𝑙𝑅 (
𝛾

𝑛 − 𝑝
, 𝜆′) − 𝑙0 (

𝑌𝑇𝐶𝑌

𝑛 − 𝑝
)] 

Computing a p-value 

Suppose there are G genes, let 𝑆𝑔 denote the LRT statistic for Gene g. Following the approach of FaST-

LMM-Set, we assume that 𝑆𝑔 has a scaled gamma distribution 

𝑆𝑔 = 𝑓𝛤(𝑎, 𝑏) + (1 − 𝑓)𝛿0 

where 𝑓, 𝑎 and 𝑏 are estimated by permutation, as explained below. Thus, the p-value for gene g is 

𝑃𝑔 = {
𝑓𝑃(𝑆𝑔, 𝑎, 𝑏),   𝑖𝑓𝑆𝑔 > 0 

0.5 + 𝑓 2⁄ ,    𝑖𝑓𝑆𝑔 = 0
 

where 𝑃(𝑆𝑔, 𝑎, 𝑏) is the probability that a random variable drawn from a 𝛤(𝑎, 𝑏) distribution is greater 

than 𝑆. 

Our permutation procedure for estimating 𝑓, 𝑎 and 𝑏 is almost identical to that used by FaST-LMM-

Set. First, we repeat the analysis 𝐾 times using permuted genotypes (i.e., replacing 𝑋 with 𝑋[𝐻, ], 

where 𝐻 is a permutation of the integers from 1 to n). Suppose 𝑉 of the 𝐺𝐾 permuted LRT statistics are 

greater than zero. Our estimate of 𝑓 is 𝑉 𝐺𝐾⁄  (i.e., the fraction of statistics greater than zero). We then 

select the 𝑊 = 𝑚𝑖𝑛 (𝑉, 𝐺𝐾 10⁄ ) largest permuted LRT statistics (in practice, we have never encoun-

tered a scenario where less than 10% of the permuted test statistics are positive, so 𝑊 always equals 

𝐺𝐾 10⁄ ). Let 𝑇1, … , 𝑇𝑤 denote the selected LRT statistics, ordered so that 𝑇1 is the largest. Our esti-

mates of 𝑎 and 𝑏 are the values that minimize the mean squared difference between 𝑙𝑜𝑔 (𝑃(𝑇𝑗, 𝑎, 𝑏)) 

and 𝑙𝑜𝑔 (𝐸𝑗), where 𝐸𝑗 = (𝑗 + 1) (𝑉 + 1)⁄  is the expected value of the jth of 𝑉 draws from a standard 

uniform distribution. 

The small difference between our procedure and that of FaST-LMM-Set is that we generate a new 

permutation vector 𝐻 for every gene (i.e., 𝐺𝐾 times in total), whereas FaST-LMM-Set only generates a 



new permutation vector at the start of each re-analysis (i.e., 𝐾 times in total). We chose to update 𝐻 for 

each gene because we feel that introducing more randomness might lead to more accurate estimates of 

the null distribution of 𝑆𝑔. However, we note that our change has limited impact on the final p-values 

(evidenced by Supplementary Figure 1). 

Using summary statistics and a reference panel 

Here we explain how it is possible to compute the LRT statistic for a gene using only summary statis-

tics from single-SNP analysis and a reference panel. The following derivations make four assumptions 

(which are common to most summary statistic methods): 

1 - The single-SNP analysis used least-squares linear regression (note that previous works show that 

they remain good approximations if the analysis instead used mixed-model linear regression or lo-

gistic regression 7,8).  

2  - That 𝐶𝑋𝑗 ≈ 𝑋𝑗 j and 𝑋𝑗𝐶𝑋𝑘 ≈ 𝑋𝑗𝑋𝑘  (note that 𝐶𝑋𝑗 is the residual from regressing 𝑋𝑗 on 𝑍, so 

these assumptions hold if there is negligible correlation between each SNP and the covariates).  

3 - That 1 − 𝐶𝑜𝑟(𝐶𝑋𝑗, 𝐶𝑌)
2

≈ 1 (i.e., the phenotypic variance explained by any individual SNP is 

relatively small).  

4 – That (𝑛 − 𝑝) 𝑛⁄ ≈ 1 (i.e., that the sample size is much larger than the number of covariates). 

Further, we continue to assume that both phenotypes and SNPs are standardized (this is just for con-

venience and does not affect the mathematics). 

In order to compute the LRT statistic, we must compute the restricted log likelihood and its first and 

second derivatives. These involve the data (𝑌, 𝑋 and 𝑍) only through the variables 𝛾 and 𝐵. Specifical-

ly, 𝛾 and 𝐵 involve terms of the form 𝑋𝑇𝐶𝑋and 𝑋𝑇𝐶𝑌 (note that although 𝛾 also involves the term 

𝑌𝑇𝐶𝑌, the term’s value is arbitrary, because it is canceled out when computing the LRT statistic). 

Our estimate of 𝑋𝑇𝐶𝑋 is 𝑛𝑋′𝑇
𝑋′ 𝑛′⁄  , where 𝑋′ is the matrix of genotypes for the 𝑛′ samples in the 

reference panel (standardized so columns have mean zero and variance one). Our estimate of 𝑋𝑇𝐶𝑌 is 

𝑍𝑗√𝑛. This reflects that when regressing 𝑌 on 𝑋𝑗 and 𝑍, the estimate of the SNP effect size is 

𝛽𝑗 =
𝑋𝑗

𝑇𝐶𝑌

𝑋𝑗
𝑇𝐶𝑋𝑗

≈
𝑋𝑗

𝑇𝐶𝑌

𝑛
 

and the variance of this estimate is 



𝑉𝑎𝑟(𝛽𝑗) =
1 − 𝐶𝑜𝑟(𝐶𝑋𝑗, 𝐶𝑌)

2

𝑋𝑗
𝑇𝑋𝑗

≈
1

𝑛
 

It follows that the Wald test statistic from single-SNP analysis is 

𝑍𝑗 =
𝛽𝑗

√𝑉𝑎𝑟(𝛽𝑗)

≈
𝑋𝑗

𝑇𝐶𝑌

√𝑛
 

Having calculated the LRT statistics for each gene, we must then repeat the analyses using permuted 

genotypes. This requires us to estimate 𝑋𝑇𝐶𝑌, and 𝑋𝑇𝐶𝑋, where 𝑋 now contains permuted genotypes. 

Our estimate of 𝑋𝑇𝐶𝑌 is 𝑛𝑋′𝑇
𝑌′ 𝑛′⁄  , where 𝑌′ is a fake phenotype for the individuals in the reference 

panel (generated by drawing values from a standard Gaussian distribution). Meanwhile, our estimate of 

𝑋𝑇𝐶𝑋 remains 𝑛𝑋′𝑇
𝑋′ 𝑛′⁄   (reflecting that permuting the individuals does not affect the correlation 

between SNPs). Note that because our estimate of 𝑋𝑇𝐶𝑋 is unchanged, it is only necessary to eigen-

decompose this matrix once (rather than 1 + 𝐾 times), which leads to substantial time savings. 

Implementation details 

Most of the following decisions were made to increase robustness when using summary statistics. 

Prior to analyzing each gene, we prune SNPs in high linkage disequilibrium. Specifically, when we 

encounter a pair, whose correlation squared is above a threshold, we exclude one of the two SNPs at 

random. By default, the correlation-squared threshold is 0.98 when using individual-level data, or 0.5 

when using summary statistics. Supplementary Figure 5 shows that this pruning has limited impact 

when using individual level data, but can increase power when using summary statistics. We suspect 

this is because LDAK-GBAT becomes more sensitive to misspecification of 𝑋𝑗
𝑇𝑋𝑘 for pairs of SNPs 

that are highly correlated. 

When analyzing summary statistics, we begin by estimating 𝑅2, the proportion of phenotypic variance 

explained by the gene under least squares regression (i.e., when regressing 𝐶𝑌 on 𝐶𝑋). If the estimate 

of 𝑅2 is below 0 or above 1, this suggests errors with the reference panel (e.g., perhaps one or more of 

the SNPs are poorly genotyped), so we set the LRT statistic for this gene to zero. Similarly, if the value 

of 𝜆 that maximizes the restricted log likelihood corresponds to a heritability higher than 10 × 𝑅2, we 

decide the results are unreliable and set the LRT statistic to zero. We recognize that this second check 

is unsatisfactory (because the choice of 10 is fairly arbitrary). However, we note that across the ten UK 

Biobank phenotypes, this test never failed when using our recommended reference panel (10,000 UK 



Biobank individuals), and in total failed only five times when using 404 non-Finnish, European indi-

viduals from the 1000 Genome Project 9.  

When maximizing the restricted log likelihood, we start by performing a grid search. For this, we com-

pute the restricted log likelihood for 19 different values for 𝜆, corresponding to the heritabilities 0, 

1×10-6, 5×10-6, 1×10-5, 5×10-5, 1×10-4, 2×10-4, 5×10-4, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 

0.5, 0.99 and 0.995. We first use this grid search to determine a suitable starting value for 𝜆 (i.e., we 

start with the value that resulted in highest restricted log likelihood). We subsequently use it to restrict 

the search space when performing Newton-Raphson iterations (e.g., if the starting heritability is 0.002, 

then the Newton-Raphson search is constrained to heritabilities between 0.001 and 0.005, the two adja-

cent values). 

Finally, it is fairly common for summary statistic methods to use shrinkage when using the reference 

panel to estimate SNP-SNP correlations 10,11. While LDAK-GBAT offers an analogous feature (e.g., 

the user can request that the estimate of 𝑋𝑇𝐶𝑋 is 0.9 × 𝑛𝑋′𝑇
𝑋′ 𝑛′⁄ , instead of 𝑣𝑛𝑋′𝑇

𝑋′ 𝑛′⁄ ), we find 

that this has limited effect on the performance of LDAK-GBAT. 

 

  



Supplementary Note 2: Existing summary statistic tools for gene-based association testing 

Note that all the following tools require summary statistics and a reference panel, with the exception of 

sumFREGAT-ACAT, that requires only summary statistics. 

MAGMA (multimarker analysis of genomic annotation) computes a gene-based test statistic by 

summing the chi-squared test statistics from single-SNP analysis. A p-value is obtained by comparing 

the gene-based test statistic to its expected distribution under the mean (in the most recent version of 

MAGMA, the null distribution is assumed to be mixture of chi-squared distributions) 12.  

GCTA-fastBAT (genome-wide complex trait analysis fast set-based association test) computes a gene-

based test statistic by summing the chi-squared test statistics from single-SNP analysis (the same as 

MAGMA). A p-value is obtained via permutations 13. 

sumFREGAT (Fast Region-Based Association Tests on Summary Statistics) implements a variety of 

gene-based association test tools, of which we use ACAT, SKAT-O, and PCA 14,15. 

ACAT computes a gene-based test statistic by first converting p-values from single-SNP analysis to 

Cauchy variables, then taking a weighted sum. A p-value is obtained analytically. 

STAT-O (optimized SNP-set (sequence) kernel association test) uses a random-effects linear model (the 

same as LDAK-GBAT), where the prior distributions for effect sizes depend on the minor allele 

frequency (MAF) of SNPs. A p-value is obtained via a score test. 

PCA (principal component analysis) use a fixed-effect linear model, where the predictors are the top 

principal components (i.e., linear combinations of genotypes). 

Note that we briefly considered MLR and FLM, two other tools within sumFREGAT. However, our 

analysis of permuted phenotypes (Supplementary Table 4) indicated that these tools have inflated type 

1 error rates (e.g., the number of genes with P≤1x10-6 was approximately 1000 times higher than 

expected if the tools were well-calibrated), and hence we excluded these from subsequent analyses. 

 

  



Supplementary Note 3: Further details of data 

Ten UK Biobank phenotypes 

The ten phenotypes are body mass index (data field 21001), college education (6138), forced vital ca-

pacity (3062), height (50), hypertension (20002), impedance (23106), neuroticism score (20127), pref-

erence for evenings (1180), pulse rate (102) and systolic blood pressure (4080). Note that these are a 

subset of the 14 we used in our previous work 2 (we excluded difficulty falling asleep, ever smoked, 

reaction time and snorer because for these there were no significant genes from either gene-based asso-

ciation testing or single-SNP analysis). For each phenotype, we had between 220,398 and 253,313 un-

related, white British individuals. When performing gene-based association testing, we used only 

50,000 individuals (picked randomly for each phenotype); however, for single-SNP analysis, we used 

up to 200,000. We computed summary statistics for each of the 7,186,768 SNPs in our primary refer-

ence panel (see below) by performing classical linear regression (including for the two binary pheno-

types, college education and hypertension), including 13 covariates (age, sex, Townsend Deprivation 

Index and ten principal components). 

72 ICD10 Phenotypes 

In total, the UK Biobank details 19155 ICD10 codes (data field 41202) that span four levels. We re-

stricted to the 349 Level 2 codes with prevalence at least 1% (note that for some codes, over 80% of 

cases were male or female; for these, we excluded the less-common sex when computing prevalence 

and for all subsequent analyses). For each of the 349 codes, we constructed a GWAS using all 𝑛𝐴 cases 

and 𝑛𝑈 randomly-picked controls, where 𝑛𝑈 = 𝑚𝑖𝑛 (10𝑛𝐴, 50000). We used REML to estimate SNP 

heritability (assuming the LDAK-Thin Model) 1,3. Then we selected the 72 phenotypes with most sig-

nificant SNP heritability (Z-statistic >10), and computed summary statistics as described above (i.e., 

using classical linear regression including 13 covariates). Supplementary Table 1 provides details for 

each phenotype. 

18 Million Veterans Project and nine Psychiatric Genomics Consortium phenotypes. 

Summary statistics for Million Veterans Project and Psychiatric Genomics Consortium phenotypes 

were acquired from the respective consortia and are detailed in Supplementary Tables 2 and 3. If a 

GWAS provided information scores, we excluded SNPs with score below 0.8. 

 

 



Reference panels 

Our primary reference panel comprises 10,000 unrelated UK Biobank individuals genotyped for 

7,186,768 SNPs with MAF ≥ 0.01 and imputation information score ≥0.8. We ensured the 10,000 indi-

viduals were distinct from the 200,000 individuals used for each of the ten UK Biobank phenotypes 

(however, there will be by-chance overlap with the individuals used for the ICD10 GWAS). 

For Supplementary Figure 3, we constructed a reference panel using 404 non-Finnish, European indi-

viduals, recorded for the same 7,186,768 used in our primary reference panel. 

  



 

 

 

Supplementary Figure 1:  Comparison of FaST-LMM-Set and LDAK-GBAT.  

For the UK Biobank phenotypes height (top row) and body mass index (bottom row), we compare the 

estimated heritabilities (left), likelihood ratio test statistics (middle) and -log10(P) (right) from FaST-

LMM-Set (x-axis) and LDAK-GBAT (y-axis). To enable a fair comparison, we run LDAK-GBAT 

using individual-level data, assuming the Uniform Model and do not prune genes (i.e., so its model 

matches exactly that used by FaST-LMM-Set). In general, we see almost perfect concordance (and 

although not shown, this is also the case for the remaining eight UK Biobank phenotypes). Although 

there are small differences between estimates of heritabilities, they occur only for non-significant 

genes, and we expect these reflect minor details in the implementations of each tool (for example, 

while both tools estimate heritability using Newton Raphson iterations, LDAK-GBAT decides the 

starting values based on a grid search, whereas FaST-LMM-Set sets it agnostically). 

 

 

 

 

 

 



 
 

Supplementary Figure 2:  Comparison of LDAK-GBAT using individual-level data and summary 

statistics.  

For the UK Biobank phenotypes height (top row) and body mass index (bottom row), we compare the 

estimated heritabilities (left), likelihood ratio test statistics (middle) and -log10(P) (right) from LDAK-

GBAT using individual level data (x-axis) or using summary statistics (y-axis). We run LDAK-GBAT 

assuming the Human Default Model and using the default pruning of genes (when analyzing 

individual-level data, LDAK-GBAT ensures no pair of SNPs in a gene has squared correlation above 

0.98; when analyzing summary statistics, the threshold is reduced to 0.5). In general, we see high 

concordance (and although not shown, this is also the case for the remaining eight UK Biobank 

phenotypes), indicating that it is feasible to test genes for association using only summary statistics. 

  



 
 

Supplementary Figure 3: Impact of changing the reference panel.  

For the UK Biobank phenotypes height (top row) and body mass index (bottom row), we compare the 

estimated heritabilities (left), likelihood ratio test statistics (middle) and -log10(P) (right) from LDAK-

GBAT using as a reference panel 10,000 individuals from the UK Biobank (x-axis) or 404 non-Finnish, 

European individuals from the 1000 Genomes Project reference panel (y-axis). In general, we see good 

concordance (and although not shown, this is also the case for the remaining eight UK Biobank 

phenotypes). However, we note that power is slightly reduced when using the 1000 Genomes Project 

reference panel (for example, there are eight genes that are no longer significant for height when 

switching from the UK Biobank reference panel). This reflects that LDAK-GBAT benefits from use of 

a large reference panel (e.g., at least 2000 individuals) that is very closely matched (with respect to 

ancestry) to the GWAS from which the summary statistics were obtained.  



                    72 ICD10 Phenotypes                 18 Million Veterans Project Phenotypes 

 

    
 

Nine Psychiatric Genomics Consortium Phenotypes 

 

 
 

Supplementary Figure 4: Overlap between significant genes from different tools.  

The Venn Diagrams show the overlap between the significant genes found by LDAK-GBAT, MAGMA, 

sumFREGAT-PCA, sumFREGAT-ACAT and single-SNP analysis, for the three groups of phenotypes. 

For example, the first Venn Diagram shows that across the 72 ICD10 phenotypes, LDAK-GBAT found 

1874 significant genes, of which 865 were also found by all four other tools, 60+117+1+6=184 were 

also found by sumFREGAT-PCA, while 265 were not found by any other tool. 

 

 

 

 

 

 



 
Supplementary Figure 5: The impact of pruning genes. 

Prior to analyzing each gene, LDAK-GBAT prunes its SNPs so that no pair remains with squared 

correlation above a threshold. We compare the mean number of significant genes (P≤2.8x10-6) across 

the ten UK Biobank phenotypes for different pruning thresholds. We see that when using individual 

level data (top plot), pruning has limited impact. When using summary statistics with a reference panel 

of 10,000 UK Biobank individuals (middle plot), it is beneficial to have light pruning. When using 

summary statistics with a reference panel of 404 non-Finnish, European individuals from the 1000 

Genome Project (bottom plot), it is beneficial to have moderate pruning. Based on these results, we set 

the default threshold to 0.98 when analyzing individual-level data (although pruning does not appear to 

increase power, removing very highly correlated SNPs will reduce the computational demands), and to 

0.5 when analyzing summary statistics (this potentially makes LDAK-GBAT more robust when using 

smaller and/or less well-matched reference panels).  



 
 

Supplementary Figure 6: Impact of number of permutations.  

LDAK-GBAT uses permutations to obtain gene-based p-values. We analyze the UK Biobank 

phenotypes forced vital capacity (red), height (green) and systolic blood pressure (blue) twenty times 

each, and compare how the mean (top plot) and standard deviation (bottom plot) of the number of 

significant genes varies with the number of permutations. Based on these results, we set the default 

number of permutations to ten. This is because although increasing the number of permutations 

produces more robust results (i.e., the number of significant genes varies less across replicates), there 

appears limited benefit to using more than ten permutations (because the standard deviation reaches a 

plateau).   
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