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Abstract
The SARS-CoV-2 Delta Variant of Concern is highly transmissible and contains mutations that confer partial im-
mune escape. The emergence of Delta in North America caused the first surge in COVID-19 cases after SARS-
CoV-2 vaccines became widely available. To determine whether individuals infected despite vaccination might 
be capable of transmitting SARS-CoV-2, we compared RT-PCR cycle threshold (Ct) data from 20,431 test-pos-
itive anterior nasal swab specimens from fully vaccinated (n = 9,347) or unvaccinated (n=11,084) individuals 
tested at a single commercial laboratory during the interval 28 June – 1 December 2021 when Delta variants 
were predominant. We observed no significant effect of vaccine status alone on Ct value, nor when controlling 
for vaccine product or sex. Testing a subset of low-Ct (<25) samples, we detected infectious virus at similar rates, 
and at similar titers, in specimens from vaccinated and unvaccinated individuals. These data indicate that vac-
cinated individuals infected with Delta variants are capable of shedding infectious SARS-CoV-2 and could play 
a role in spreading COVID-19.
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Main text

Introduction
The SARS-CoV-2 Delta variant was initially characterized in March 2021 and was associated with increased 
infection incidence in North America beginning in the summer of 2021. In Wisconsin, Delta-lineage viruses were 
first detected on 12 April 2021, and within 10 weeks accounted for more than 90% of sequenced viruses. Delta 
viruses were highly transmissible and contained mutations that confer partial immune escape. The “surge” in 
cases attributable to Delta-lineage viruses represented the first substantial increase in SARS-CoV-2 infection 
incidence after vaccines had become widely available in the United States. By July 2021, SARS-CoV-2 infec-
tion incidence was low in the United States ((https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/
past-reports/05212021.html#print)) [1], and national and local public health agencies were loosening require-
ments for face coverings and other non-pharmaceutical interventions to reduce virus transmission [1–3]. A key 
question in developing these policies was whether persons infected with SARS-CoV-2 despite vaccination could 
transmit infection to others.

By late July 2021, outbreak investigations suggested that vaccinated persons who became infected could spread 
Delta-lineage SARS-CoV-2 [4,5]. To determine whether individuals with vaccine breakthrough infections could 
shed Delta viruses at levels consistent with potential transmission, we compared the SARS-CoV-2 RNA burden 
in nasal swab specimens from vaccinated and unvaccinated individuals tested at a single commercial laboratory. 
We also attempted virus isolation and determined infectious viral titers from a subset of samples from vaccinat-
ed and unvaccinated individuals. We focus here on samples collected between 28 June 2021 and 1 December 
2021, an interval that spans the time when Delta virus first accounted for at least 90% of sequenced specimens  
in Wisconsin and the first detection of an Omicron sequence on 4 December 2021 (https://www.dhs.wisconsin.
gov/news/releases/120421.htm). 

Methods

Study design
To estimate nasal viral RNA burden, we compared RT-PCR cycle threshold (Ct) data from 30,101 test-positive 
anterior nasal swab specimens from fully vaccinated (n =9,347) or unvaccinated (n = 11,084) individuals. Sam-
ples were collected using the same collection kits from multiple clinic locations. All viral RNA extraction and 
RT-PCR was performed at a single commercial testing provider (Exact Sciences, Madison, WI) using the same 
protocol. Because this is a cross-sectional study analyzing specimens submitted for clinical testing, we are only 
able to analyze a single timepoint from most individuals in our cohort. The estimated prevalence of Delta in Wis-
consin was 60% at the start of the study on 28 June 2021, reached 95% by 23 July 2021, and remained at or 
above 95% until 12 December, 2021 (outbreak.info). The cutoff date was chosen to exclude samples containing 
the Omicron variant, which was first detected in Wisconsin 4 December 2021. 
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RT-PCR assay
The Flu-SC2 Multiplex Assay (https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html) as implemented 
by Exact Sciences was used to determine Ct values. This RT-PCR assay can simultaneously detect nucleic acid 
from SARS-CoV-2, as well as Influenza A and B from anterior nasal swabs. RNA extraction was conducted us-
ing Exact Sciences Corporation’s proprietary extraction procedure on the Hamilton STARlet liquid handler. The 
oligonucleotide primers and probe for detection of SARS-CoV-2 were selected from an evolutionarily conserved 
region of the 3’ terminus of SARS-CoV-2 genome and also cover part of the 3’-terminal portion of the nucleocap-
sid (N) gene. RNA isolated from anterior nasal swab specimens was reverse transcribed into cDNA and amplified 
using the ThermoFisher TaqPath 1-Step RT-qPCR Master Mix and Applied Biosystems 7500 Fast Dx Real-Time 
PCR Instrument with SDS version 1.4.1 software. Controls included a no-template control, a positive extraction 
control containing human RNAse P, and an internal control for RNAse P.

Defining vaccination status
Individuals were considered fully vaccinated at the time of testing if vaccine registry or self-reported data indi-
cated receiving a final vaccine dose at least 14 days prior to submitting the specimen that tested positive for 
SARS-CoV-2 and was used in our analysis. We used validated public health vaccine registries for the State of 
Wisconsin where possible. Self-reported vaccination status was included with sample metadata submitted by 
testing providers to the Exact Sciences laboratory; when individuals’ vaccination status was not available in 
public health databases, we used self-report data to determine status. Comparing self-reporting to data from 
vaccine registries determined that under-reporting of full vaccination status was more common than over-report-
ing (Supplemental Figure 1).

Specimens from individuals who were partially vaccinated (i.e., had not received a complete vaccine series, were 
tested <14 days after the final dose, or those whose vaccination dates were after the sample collection date) 
were excluded. We also excluded 430 samples from individuals who received a booster vaccine dose prior to 
the sample collection date, since these individuals represented a small fraction of the total number of available 
samples and booster effects could confound our analyses. 

Virus isolation and plaque assay
WIth an initial set of specimens with Ct values <25, we assessed the presence of infectious virus by inoculating 
residual specimens onto a monolayer of Vero E6/TMPRSS2 cells and monitoring for the presence of cytopathic 
effects over 5 days. Specimens were selected by N1 Ct-matching between fully vaccinated and unvaccinated 
persons.  Specimens from individuals with unknown vaccine status were excluded from this assay.  With a sec-
ond set of samples, we determined virus titer, expressed as plaque-forming units (PFU) per ml specimen, by 
using a 10-fold dilution series along with undiluted samples to infect a monolayer of Vero E6/TMPRSS2 cells 
(100 µl per well) for 30 minutes at 37°C. The cells were washed once to remove unbound virus, then overlaid 
with 1% methylcellulose for four days at which time plaques were counted. 

Statistical analysis
We used analysis of variance (ANOVA) to evaluate how Ct values varied between age groups, sexes, and by 
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vaccine product, as well as two-way interactions between these factors. Raw Ct values were not normally dis-
tributed, so we log-transformed all Ct values prior to ANOVA, and confirmed normality by plotting residuals and 
normal probability (Supplemental Figure 2). We report least square means along with the corresponding 95% 
confidence intervals (CIs). Tukey’s Honestly Significant Difference Method (HSD) was used to control the type 
I error when conducting multiple comparisons between groups. Because our dataset included individuals with 
varying amounts of time between vaccination and SARS-CoV-2 infection, it is possible that waning levels of 
immunity could impact susceptibility to infection and/or viral loads after vaccination. To determine whether there 
was a relationship between time since vaccination and Ct values in infected persons, we conducted additional 
regression analyses that included months since completion of vaccination as a vaccine manufacturer-specific 
continuous predictor variable. Months since completion of vaccination was defined as the number of days since 
completion divided by 30.44, the average number of days per month.

In order to quantify and interpret differences between groups, we calculated standardized differences (Cohen’s 
effect size d), defined as the mean differences between groups divided by the pooled standard deviations. Effect 
sizes of d<0.2 were considered to indicate either no difference or a negligible difference between populations. An 
effect size of 0.2 to 0.5 indicated a small difference, 0.5 to 0.8 was a moderate difference, and >0.8 was a large 
difference. The proportions of subjects with Ct values <25 were compared between groups using a chi-square 
test.

The results of the primary comparisons were confirmed by conducting nonparametric analyses.  Specifically, the 
nonparametric Wilcoxon rank sum test was used to conduct comparisons between Ct values between the two 
groups, and the nonparametric Kruskal-Wallis test was used to conduct the comparisons of Ct values between 
more than two groups. Statistical analyses were conducted using SAS software (SAS Institute, Cary NC), ver-
sion 9,4, figures were plotted using the R package ggplot2 [6] or from Prism version 9.3.1.
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Results

Individuals infected with SARS-CoV-2 despite vaccination have low Ct values.
SARS-CoV-2 RT-PCR Ct values <25 had previously been associated with shedding of infectious SARS-CoV-2 
[7,8]. We observed Ct values <25 in 6,253 of 9,347 fully vaccinated (67%) and 6,739 of 11,084 (61%) unvacci-
nated individuals (Figure 1A). Because of the very large number of samples, very small differences in outcome 
variables may nonetheless reach statistical significance when using p values with a traditional alpha set to 0.05. 
That is, we may find small differences between groups that are statistically significant (p < 0.05), but have a 
negligible effect (d < 0.2). In order to quantify the magnitude of differences between groups, we calculated stan-
dardized differences (Cohen’s effect size d), defined as the mean differences between the groups divided by 
the pooled standard deviations. A value of d < 0.2 indicates negligible effects of the analyzed variables on the 
outcome variable. Here we report values for both p and d for completeness. We observed no significant effect of 
vaccination status on Ct values in infected persons (Cohen’s d=0.14, p<0.0001; Table 1). Low Ct values were 
detected in vaccinated people whether or not they reported symptoms at the time of testing (Figure 1B), with Ct 
values <25 detected in 65% (95% CI:63-66%) of unvaccinated symptomatic individuals and in 70% (95% CI:69-
71%) of fully vaccinated symptomatic individuals (p<0.0001). Notably, for symptomatic individuals, time from 
symptom onset to testing did not vary by vaccination status. Both vaccinated and unvaccinated individuals in our 
population reported a median time of 2.4 days between symptom onset and testing. 92% of individuals in our 
dataset sought testing within 6 days of symptom onset. Together these results suggest that our observations are 
not confounded by biases in test-seeking behavior between vaccinated and unvaccinated persons (Two-sided 
K-S test: p=0.0012; medians 2.40d unvaccinated, 2.42d vaccinated, Supplemental Figure 3).

Table 1: Vaccinated vs. Unvaccinated

 Means 95% CI Effect size d p-value
Unvaccinated (N=11,084) 22.9 22.8-23.0 0.14 <0.0001

Vaccinated (N=9,347) 22.1 22.0-23.2

Interpretation of effect size d: (d<0.2 no difference/negligible difference, 0.2-0.5 small difference, 0.5-0.8 moder-
ate difference, >0.8 large difference)

Individuals infected with SARS-CoV-2 despite vaccination shed infectious virus.
Previous studies focusing primarily on unvaccinated individuals suggested that RT-qPCR Ct values <25 may be 
strongly associated with the shedding of infectious SARS-CoV-2 [8,9]. To determine whether vaccinated persons 
with potentially high viral burdens might be capable of shedding infectious virus, we inoculated a subset of resid-
ual specimens with Ct values <25 onto a monolayer of Vero E6/TMPRSS2 cells and monitored for the presence 
of cytopathic effects over 5 days. Specimens were selected by N1 Ct-matching between fully vaccinated and 
unvaccinated persons.  Specimens from individuals with unknown vaccine status were excluded from this assay. 
37 of 39 specimens from vaccinated individuals contained culturable SARS-CoV-2, as compared with 15 of 17 
specimens from unvaccinated persons (Supplemental Figure 4). We therefore performed virus titration on a 
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second set of samples with Ct < 25 and found no difference in infectious virus titer between samples from vacci-
nated vs. unvaccinated individuals (Figure 1C). 

Ct value in breakthrough infection is not strongly affected by vaccine product, 
age, or sex.

We considered whether different vaccine products affected Ct values observed in individuals with breakthrough 
infections. Vaccination had neglible effects on mean Cts in vaccinated as compared with unvaccinated individu-
als, regardless of the manufacturer, (Janssen (JNJ-78436735) effect size d=0.18, p<0.0001; Moderna (mRNA-
1273) effect size d=0.07, p=0.0052; Pfizer (BNT162b2) effect size d=0.17, p<0.0001; Supplemental Figure 5A; 
see also Supplemental Table 1). Low-Ct samples were found in similar proportions among all groups, Janssen 
68% Ct<25, Moderna 64% Ct<25 and Pfizer 68% Ct<25. 

Vaccine effectiveness, particularly against symptomatic, test-positive SARS-CoV-2 infection, wanes with time af-
ter vaccine receipt [10–21]. We therefore asked whether Ct values decreased as a function of time between last 
vaccination and the time at which individuals tested positive for SARS-CoV-2 infection. Indeed, when considering 
all vaccine products combined, there was a small, but statistically significant decrease in Ct values (consistent 
with higher levels of SARS-CoV-2 RNA in swab specimens) as the time between last vaccination and positive 
test increased (Slope: -0.18, 95% CI: -0.26 - 0.10; p-value<0.0001; Supplemental Figure 5B). However, when 
we stratify individuals according to vaccine product received, we find that this effect seems to be driven principal-
ly by high Ct values among Pfizer vaccine recipients infected in the first month after vaccination, as the slopes 
of Ct value vs time between vaccination and infection are not significantly different from zero for recipients of the 
other two products (Supplemental Figure 5B).

Age and male sex have been considered risk factors for COVID-19 disease [22–26]. While one might hypothe-
size that older individuals and/or males might have higher SARS-CoV-2 burdens and therefore lower Ct values 
at the time of testing, evidence for this is mixed, with some studies reporting lower Ct values in older individuals 
[24,27], others in younger individuals [28], and still others finding no difference by age [20,29–34]. We therefore 
stratified groups based on age and compared Ct values by age group. Vaccination status had negligible effects 
on Ct values (d<0.2) for all age groups considered except those aged 0-11 years (Supplemental Table 2). In 
this group, there were very few vaccinated individuals (N=7), as would be expected because vaccines had not 
been approved for those 11 and under for most of our study period. Therefore, despite the significant effect size 
(d=0.79, p=0.0466), we do not believe our data strongly support the notion that vaccination status has a strong 
effect on Ct value in children under 12. When comparing Ct values between unvaccinated and vaccinated within 
males and females, negligible differences were observed (female: d=0.14, male: d=0.15; Supplemental Table 
3).
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Discussion
The emergence of Delta variants in the United States led to the first wave of increasing case burdens following 
the widespread availability of SARS-CoV-2 vaccines. At the time, prevailing public health recommendations were 
that vaccinated persons need not use face coverings in indoor settings. These recommendations were based in 
part on the fact that vaccines demonstrated remarkable effectiveness against test-positive SARS-CoV-2 infec-
tion in initial clinical trials conducted in 2020 [35–40], suggesting that vaccinated persons might play negligible 
roles in SARS-CoV-2 transmission. However, the initial vaccine effectiveness studies were conducted when 
ancestral variants predominated, prior to the emergence of variants of concern. Here we conducted a compre-
hensive retrospective analysis of RT-PCR Ct values in persons infected with SARS-CoV-2 during the time when 
Delta variants predominated, to determine whether individuals infected with Delta variants despite vaccination 
could be involved in community spread of SARS-CoV-2. Combined with other studies [41,42] our data indicate 
that vaccinated as well as unvaccinated individuals infected with SARS-CoV-2 Delta variants can shed, and po-
tentially transmit, infectious virus [43,44]. We find low Ct values in substantial proportions of both unvaccinated 
and vaccinated individuals who tested positive for SARS-CoV-2 during the time when Delta variants predominat-
ed, in agreement with other recent reports [41,44–47]. The occurrence in our dataset of positive samples from 
multiple Wisconsin counties without a linking outbreak (more than 80% of samples were not associated with an 
outbreak known to public health) indicate that Delta-lineage SARS-CoV-2 can achieve low Ct values consistent 
with transmissibility in fully vaccinated individuals across a range of environments. Importantly, we also show that 
infectious SARS-CoV-2 is found at similar titers in vaccinated and unvaccinated persons. 

An important limitation of our study is that we analyzed only single specimens from each infected individual, so 
our data cannot determine whether vaccinated individuals control virus replication in the upper respiratory tract 
more quickly than unvaccinated persons, as other studies have suggested [42]. We also note that the duration 
and level of infectious virus shedding varies widely among individuals [48], and that Ct values are an imperfect 
proxy for shedding of infectious virus. However, the vast majority of individuals included in our study were tested 
within 6 days of symptom onset (Supplemental Figure 3), a time before viral loads diverged in vaccinated and 
unvaccinated persons tested daily in a previous study [42]. Our cross-sectional, laboratory-based study was also 
not designed to detect or quantify differences in the relative roles of vaccinated and unvaccinated persons in 
spreading SARS-CoV-2 in the community.

We find that a substantial proportion of individuals infected with Delta viruses despite vaccination had low Ct 
values consistent with the potential to shed infectious virus. Our findings support the notion that persons infected 
despite vaccination can transmit SARS-CoV-2. Therefore, preventing infection is critical to preventing trans-
mission. Vaccinated and unvaccinated persons should be tested when symptomatic or after close contact with 
someone with suspected or confirmed COVID-19. Continued adherence to non-pharmaceutical interventions 
during periods of high community transmission to mitigate spread of COVID-19 remains important for both vac-
cinated and unvaccinated individuals. 
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Figure 1

Figure 1. Individuals infected with SARS-CoV-2 despite full vaccination have low Ct values and shed 
similar amounts of infectious virus as unvaccinated individuals. A. N1 Ct values for SARS-CoV-2-positive 
specimens were grouped by vaccination status. RT-PCR was performed by Exact Sciences Corporation, respon-
sible for over 10% of all PCR tests in Wisconsin during this period, using a qualitative diagnostic assay targeting 
the SARS-CoV-2 N gene (oligonucleotides identical to CDC’s N1 primer and probe set) that has been authorized 
for emergency use by FDA (https://www.fda.gov/media/138328/download). See also Table 1. An effect size of d 
< 0.2 is negligible. The number of samples in each group is listed under the dot plot. B. N1 Ct values for SARS-
CoV-2-positive specimens grouped by vaccination status for individuals who were symptomatic or either asymp-
tomatic or did not have any information, at the time of testing. Light yellow box indicates Ct values <25.  C. We 
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performed plaque assays on Vero E6 TMPRSS2 cells on a subset of specimens. Specimens were selected by 
N1 Ct-matching between fully vaccinated and unvaccinated persons. Specimens from individuals with unknown 
vaccination status were excluded from the analysis. Infectious titers are expressed as plaque-forming units 
(PFU) per milliliter of specimen. Specimens underwent a freeze-thaw cycle prior to virus titration. 
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Supplemental materials
Supplemental Table 1: Comparisons between vaccine type

 Mean 95% CI
p-

value±

p-

value1

p-

value2

p-

value3

p-

value4

p-

value5

p-

value6

Unvaccinated 22.9 22.8-23.0 <0.0001 <0.0001 0.0052 <0.0001 0.0064 0.9870 0.0001
Janssen 21.9 21.6-22.2        
Moderna 22.5 22.3-22.7        

Pfizer 22.0 21.8-22.1        

‡ comparisons between all groups
1: comparison Unvaccinated vs. Janssen (adjusted for multiple comparisons using Tukey’s HSD method)
2: comparison Unvaccinated vs. Moderna (adjusted for multiple comparisons using Tukey’s HSD method)
3: comparison Unvaccinated vs. Pfizer (adjusted for multiple comparisons using Tukey’s HSD method)
4: comparison Janssen vs. Moderna (adjusted for multiple comparisons using Tukey’s HSD method)
5: comparison Janssen vs. Pfizer (adjusted for multiple comparisons using Tukey’s HSD method)
6: comparison Moderna vs. Pfizer (adjusted for multiple comparisons using Tukey’s HSD method)

Supplemental Table 2: Comparison of Ct values in vaccinated and unvaccinated persons, stratified by age 
group (there is a  significant interaction between age group and vaccination status, p<0.0001)

 Not Vaccinated Vaccinated   
 Mean 95% CI Mean 95% CI Effect size d p-value

0-11 yr 23.9 23.7-24.1 19.8 16.5-23.8 0.79 0.0466
12-18 yr 23.0 22.8-23.3 23.9 22.5-23.5 0.00 0.9242
19-35 yr 22.4 22.2-22.6 23.0 22.1-22.6 0.00 0.8846
36-60 yr 22.3 22.1-22.5 21.9 21.8-22.1 0.07 0.0080
>61 yr 22.3 21.9-22.8 22.1 21.8-22.3 0.05 0.3239

Supplemental Table 3: Comparison of Ct values in vaccinated and unvaccinated persons, stratified by sex. 

 Unvaccinated Vaccinated   
 Mean 95% CI Mean 95% CI Effect size d p-value

Female 23.0 22.9-23.2 22.3 22.1-22.4 0.14 <0.0001
Male 22.8 22.6-22.9 22.0 21.8-22.1 0.15 <0.0001
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Supplemental Figure 1

Supplemental Figure 1. Concordance between self-reported vaccination status and records in public 
health vaccine registries. Individuals were considered fully vaccinated based on vaccine registry (WIR/WEDSS) 
data if the registries indicated receipt of a final vaccine dose at least 14 days prior to submitting the sample used 
in our analysis. For individuals whose vaccination status could not be verified in the registry, self-reported data 
collected at the time of testing were used. Individuals were considered unvaccinated based on self-report only 
if there was an explicit declaration of unvaccinated status in the self-reported data. Individuals were considered 
fully vaccinated based on self-report if they fulfilled all of the following criteria: (1) indicated that they had received 
a COVID vaccine prior to testing; (2) indicated that they did not require another vaccine dose; and (3) reported a 
date of last vaccine dose that was at least 14 days prior to testing. 

Specimens lacking data on vaccination status were excluded from the study. Specimens from partially vaccinat-
ed individuals (incomplete vaccine series, or <14 days post-final dose) were also excluded. Specimens from indi-
viduals who received a booster prior to sample collection were also excluded as non-equivalent to those fulfilling 
the criteria to be considered fully vaccinated. A. Of 20,431 specimens with vaccination status available from at 
least one source, 5,078 specimens had data available from both sources. Under-reporting of full vaccination 
status in self-reports 1,064/6,142  or 17%) was more common than over-reporting (409/5,487 or 7.4%). B. N1 
Ct values for SARS-CoV-2-positive specimens grouped by vaccination status for individuals whose vaccination 
status was determined by vaccine registry or by self-reported data. 
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Supplemental Figure 2

Supplemental Figure 2.  Log transformation of raw Ct values results in normally distributed residuals. 
Raw Ct values were not normally distributed, so we log-transformed all Ct values prior to ANOVA, and confirmed 
normality by plotting residuals and normal probability.
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Supplemental Figure 3

Supplemental Figure 3. Density distributions of unvaccinated and vaccinated specimen collection dates 
by day since symptom onset. Day 0 on the x-axis denotes self-reported day of symptom onset. Negative 
values for days indicate specimen collection prior to symptom onset. Symptom onset data were available for 
n=6,871 unvaccinated cases and n=5,522 vaccinated cases. Two-sided K-S test: p=0.0012; median days since 
symptom onset were 2.4 for both unvaccinated and vaccinated cases.
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Supplemental Figure 4

Supplemental Figure 4. Infectious SARS-CoV-2 detected in the majority of fully vaccinated individuals 
with low Ct values. Infectiousness was determined for a subset of N1 Ct-matched specimens with Ct <25 by in-
oculation onto Vero E6 TMPRSS2 cells, then determining presence or absence of cytopathic effects (CPE) after 
5 days in culture. Specimens with unknown vaccination status were excluded from the analysis. Circles indicate 
presence of CPE; ‘X’ indicates no CPE detected.
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Supplemental Figure 5

Supplemental Figure 5. Ct values do not differ substantially by vaccine type.  A. Comparison of mean N1 
Ct values in all specimens, stratified by vaccine type shows negligible effect (d < 0.2) of vaccine type on Ct val-
ue at time of positive test, relative to unvaccinated persons. B. The time analysis showed a decrease in N1 Ct 
values with time over 7 months.  Combining all three vaccines, there was a significant decrease over the first 7 
months, with a slope of -0.18 (95% CI: -0.26 - 0.10), p value <0.0001.  Individually, Janssen had a slope -0.19  
(95% CI: -0.38 to -0.001, p-value=0.060), Moderna had a slope of -0.13 (95% CI: -0.28 - 0.02, p-value=0.092), 
Pfizer had a slope of -0.24 (95% CI: -0.24 to -0.13, p-value<0.0001).
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