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Abstract (150 words) 

Introduction: While aging is the strongest overall risk factor for Alzheimer’s disease (AD), it is 

unclear whether telomere shortening, a hallmark of accelerated biological aging, plays a role in 

development of AD. 

Methods: Data from the large prospective UK Biobank cohort (n=435,046) were used to 

evaluate whether mid-life leukocyte telomere length (TL) is associated with AD/AD-related 

dementia (AD/ADRD) over a mean follow-up of 12.2 years. In a subsample without AD/ADRD 

and with brain imaging data (n=43,390), we linked TL to brain magnetic resonance imaging 

phenotypes with indications of AD or vascular dementia pathology. 

Results: Longer TL was associated with a lower risk of AD/ADRD, larger hippocampus 

volume, lower total volume of white matter hyperintensities, higher fractional anisotropy and 

lower mean diffusivity in the fornix. 

Discussion: Longer TL in midlife may play a protective role against AD/ADRD. A better 

understanding of underlying mechanisms may help improve diagnosis and management of 

dementia.   

KEYWORDS 

dementia, cognitive tests, magnetic resonance imaging, fractional anisotropy, mean diffusivity, 

APOE genotypes, volume of hippocampus, white matter hyperintensities 
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HIGHLIGHTS 

1. Longer telomere length is associated with a lower risk of incident Alzheimer’s Disease or 

Alzheimer’s Disease Related Dementia (AD/ADRD), similarly with subtypes 

Alzheimer’s disease and vascular dementia, and in subsamples of APOE e3e3, e2, and e4 

genotypes. 

2. Longer telomere length also is associated with better cognitive performance in specific 

cognitive domains, larger hippocampus volume, lower total volume of white matter 

hyperintensities, and higher fractional anisotropy and lower mean diffusivity in the 

fornix. 

3. Longer telomere length, however, is associated with lower fractional anisotropy and 

higher mean diffusivity in several white matter tracts such as sagittal stratum, 

retrolenticular part of internal capsule, and posterior corona radiata. 
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RESEARCH IN CONTEXT 

1. Systematic Review: The authors conducted a literature review using PubMed. Previous 

studies reported unclear and at times, contradictory associations of telomere length with 

Alzheimer’s disease (AD) and cognitive performance. Few studies investigated 

associations between telomere length and brain magnetic resonance imaging features and 

their focuses were limited to brain structures. Relevant publications were properly cited. 

2. Interpretation: Our findings suggest that longer TL is associated with a lower risk of 

AD or AD Related Dementia (AD/ADRD), which is also revealed by better cognitive 

performance and less severe atrophy in brain structures but microstructural differences 

from tensor diffusion imaging show conflicting results. 

3. Future Directions: Further investigation is needed to understand 1) the conflicting 

associations between telomere length and brain magnetic resonance imaging markers and 

their impacts on health outcomes; 2) by which mechanisms telomere length can have 

protective or harmful effects on AD/ADRD. 
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1 | BACKGROUND  

Telomeres are nucleoprotein structures that cap the end regions of chromosomes with 

repetitive base pair sequences of TTAGGG. They are crucial in protecting DNA from damage 

and preserving genome stability [1]. In somatic cells, telomeres progressively shorten with each 

successive cell division. Telomere length (TL) is maintained by the telomerase enzyme activity, 

which is most active at early developmental stages but almost completely inactive in somatic 

tissues during adulthood and older age [2]. Critically short TL signals cells to stop replicating 

and can trigger cellular senescence changes [3]. A significant consequence of cellular senescence 

is the change in the cellular secretome and a shift towards a pro-inflammatory state (i.e., the 

Senescence-Associated Secretory Phenotype, SASP) that can exert deleterious effects in 

different tissues and organs, including the brain [4]. The accumulation of senescent cells can lead 

to accelerated aging phenotypes, increased incidence of age-related diseases, and a higher 

mortality risk [5]. Additionally, shorter leukocyte TL is associated with increased mortality risks 

[6] and cardiovascular disease [7]. In contrast, longer TL is associated with increased risks of 

certain cancers, including glioma, ovarian, and lung cancer [8]. More recently, an expanding 

body of literature suggests that TL may also play an important role in the development of 

neurodegeneration and neurodegenerative disorders [9].  

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease associated 

with aging. The association between TL and AD remains unclear and at times conflicting. In a 

recent meta-analysis of 13 retrospective case-control studies, eight showed a significantly shorter 

mean TL in AD patients, one showed a longer mean TL in AD patients, and four reported no 

significant difference between AD patients and controls [10]. The conflicting results may be 

explained by small samples, pathology of other neurodegenerative disorders in AD patients, and 

controls including possible preclinical AD cases. Due to shared pathological features, AD, 
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frontotemporal, Lewy body, vascular, and mixed dementia are classified as AD/AD-related 

dementia (ADRD) for research purposes [11].  

Cognitive decline and brain changes occur many years before AD diagnosis [12]. 

Previous studies examined the association between TL and cognitive function using general 

population samples or cognitively unimpaired samples. Despite some inconsistent results, recent 

meta-analyses reported that longer TL was associated with better general cognition [13] and 

performance in several cognitive domains, including processing speed, memory, and executive 

functioning [14,15]. In addition, a prospective study showed that shorter leukocyte TL 

significantly predicted memory decline over a 20-year follow-up period [16].  

Few population-based studies have explored TL in relation to brain MRI imaging 

features. All such studies found in the literature were cross-sectional with a limited sample size, 

which makes causal inference difficult. Two studies reported positive associations with regional 

and global brain volumes [15,17] and inverse associations with the presence of white matter 

hyperintensities (WMH) and ventricular enlargement [18]. Another study, however, observed an 

unexpected positive association between longer leukocyte TL and greater load and score of 

WMH [15].  

Given previous inconsistent results, we designed this study to better assess the causal 

relationship between TL and AD/ADRD. We leveraged the unprecedentedly large population-

based cohort UK Biobank (UKB) to not only estimate associations between TL and risk of 

incident AD/ADRD, but to also assess associations with early indications of AD/ADRD, 

including cognitive performance and brain imaging derived phenotypes (IDPs) [19,20] in 

participants who were dementia-free at the time of multi-modality imaging assessment. We 

analyzed incident AD/ADRD overall and by APOE genotype or subtype of AD/ADRD, namely 
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AD or vascular dementia, plus brain MRI markers sensitive to AD or vascular pathology. 

Finally, as a means of avoiding any possibility of confounding, we also carried out genetics-

based Mendelian randomization (MR) analyses to estimate causal effects of genetically 

determined TL on AD/ADRD and related measures.  

2 | METHODS 

2.1 | UK Biobank 

UKB is a large population-based prospective study recruiting volunteers aged 40 to 69 

years between 2006 and 2010 [21,22]. At recruitment, participants completed an extensive 

questionnaire and provided biological samples for genetic and other future assays. Since 2014, 

UKB re-invited participants from the baseline cohort to undergo a multimodal imaging 

assessment of the brain, heart, and body. During the visit, baseline and additional cognitive tests 

were administered online.  

2.2 | Inclusion and Exclusion Criteria 

Data were from active UKB participants excluding dropouts. We excluded from our 

analysis participants with 1) non-European ancestry based on genome-wide genotype data 

(n=51,131) to compare with genetics-based MR analysis results using genetic variants identified 

from populations of European descent (genome-wide association studies (GWASs) using other 

ancestries remain scarce); 2) TL outside the range of the 0.01th to 99.9th percentile (n=15,644): 

extreme TL of participants outside of this range was likely due to diseases strongly associated 

with TL; 3) diagnosed AD/ADRD prior to or at baseline (n=393); 4) diagnosed with other cause-

dementia at any time before the last follow-up (n=190). After these exclusions, we had a total of 

435,046 participants in the baseline cohort. Additionally, we restricted to the subsample of 

participants who attended the first imaging visit between 2014 and 2019 and were free of 
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AD/ADRD at the imaging visit (termed “imaging cohort”) (n=43,390) (Figure 1). The baseline 

cohort was used to assess associations of TL with incident AD/ADRD and baseline cognitive 

performance. The imaging cohort was used to test for associations of TL with IDPs and 

performance of cognitive tests first implemented at the first imaging visit. For specific analyses, 

participants with any missing outcome or covariates were further excluded. 

 

2.3 | Data 

2.3.1 | Telomere Length Measurement 

Using DNA extracted from peripheral blood leukocytes, data of leukocyte TL were 

produced on behalf of UKB [23]. TL was measured using a multiplex quantitative polymerase 

chain-reaction-based technique by comparing the amount of the telomere amplification product 

(T) to that of a single-copy gene (S). A T/S ratio was derived representing the mean TL that was 

adjusted for the influence of technical parameters and was log- and z-transformed among the 

included samples before analysis. 

2.3.2 | Genotype Data 

UKB participants were genotyped using DNA extracted from the baseline blood samples 

[21]. Genetic principal components (PCs) to account for ancestry differences were derived 

within participants of European descent using the genome-wide genotype data. APOE genotypes 

were determined based on the genotypes of the two single nucleotide polymorphisms (SNPs), 

rs429358 and rs7412, on chromosome 19. Genetic variants strongly associated with leukocyte 

TL at the genome-wide significance level (p<8.31×10-9, threshold for GWASs incorporating 

variants with minor allele frequencies <0.1%) in the UKB GWAS [24] were selected as genetic 

instruments (n=130) (Table SA.1) to estimate TL-outcome associations using MR methods. 
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These genetic variants were uncorrelated and robust to pleiotropy, and they were enriched with 

functional variants near genes underlying telomere and telomerase biology [24].  

2.4 | Assessment of Outcomes 

2.4.1 | AD/ADRD 

AD/ADRD was confirmed using the first occurrence data of UKB by mapping multi-

source data to 3-charcter ICD codes (Table SB.1). A dementia case was first diagnosed with 

AD/ADRD or other-cause dementia (ICD-10: F02) depending on which occurred first. Other-

cause dementia as described previously was excluded from our analyses. AD and vascular 

dementia as subtypes of AD/ADRD were analyzed, allowing the cases to have other diagnoses in 

AD/ADRD, e.g., a patient may have both AD and vascular dementia diagnoses.  

2.4.2 | Cognitive Tests 

We selected UKB cognitive tests a priori, previously shown to have moderate to high 

concurrent validity with well-validated reference tests and test-retest reliability (specifically, 

reaction time, numeric memory, symbol digit substitution, trail making part B, and matrix pattern 

completion) [25]. We also included tests mostly correlated with general cognitive ability, i.e., 

fluid intelligence [25], and derived general cognitive ability scores combining five baseline 

cognitive test scores via the first principal component from Fawns-Ritchie et al. [25]. Data were 

from baseline or the first imaging visit depending on when the cognitive test was first 

implemented. Cognitive assessments are detailed in Text SC.1. Their associated cognitive 

domains, data field IDs, and weblinks are provided in Table SB.2.  

2.4.3 | Image-Derived Phenotypes (IDPs) 
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We utilized the IDPs generated by an image-processing pipeline developed and run on 

behalf of UKB [26]. Specifically, we selected IDPs showing evidence of association with 

dementia [19,20]: 1) AD-signature region volumes from T1-weighted structural imaging: 

hippocampus, parahippocampal cortex, entorhinal cortex, inferior parietal lobule, precuneus, and 

cuneus; 2) total volume of WMH derived from combined T1 and T2-weighted fluid-attenuated 

inversion recovery (FLAIR) structural imaging; and 3) weighted mean FA and MD of white 

matter tracts from diffusion-weighted imaging. Left and right hemisphere measurements for the 

same tract were averaged before analysis. A description of the selected IDPs is provided in Table 

SB.3. 

2.5 | Covariates 

Baseline covariates included demographics (age, sex, assessment center near 

residence), socioeconomic status (education, Townsend deprivation index), lifestyle 

factors (BMI, smoking status, alcohol intake frequency, physical activity), APOE 

genotype, and top 10 genetic PCs (PC1-PC10) based on genome-wide genotype data to 

account for ancestry differences. Townsend deprivation index score was a measure of 

material deprivation at the postcode level based on the preceding national census data. 

Higher scores represent greater levels of deprivation. Smoking status and alcohol intake 

frequency were accessed through a touchscreen questionnaire. Physical activity (low, 

moderate, or high) was self-reported and measured following the short International 

Physical Activity Questionnaire guidelines [27].  

2.6 | Statistical Methods 

The association between TL and time from baseline to first incident AD/ADRD diagnosis 

was estimated using a Cox proportional hazards model, adjusting for the covariates previously 
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described. Participants who did not develop AD/ADRD but died during follow-up were censored 

at date of death; otherwise, at the last follow-up date (March 31, 2021). Sensitivity analyses were 

performed by APOE genotype (e3e3, e4, or e2), for AD and vascular dementia, separately. 

Linear regression models were used to examine the associations of TL with cognitive measures 

and IDPs adjusting for the same covariates as for AD/ADRD and head size additionally for IDPs. 

Before modelling, each continuous outcome was transformed by the rank-based inverse normal 

transformation to correct for the distributional skewness, followed by a z-transformation to unify 

the scales.  

To estimate the causal effects of TL on AD/ADRD and related outcomes, we applied 

several MR methods to ensure our results are robust to MR assumptions: 1) inverse-variance 

weighting (IVW) method [28] (primary) that meta-analyzes causal estimates from individual 

genetic instruments; 2) a weighted median-based method [29] that assumes that the majority of 

genetic variants are valid instrumental variables; 3) MR-Egger [30] that allows us to assess 

horizontal pleiotropy additionally; 4) robust adjusted profile score (MR-RAPS) method [31], 

accounting for any residual weak instrument bias, pleiotropy, and extreme outliers. Both 

instrument-TL associations and instrument-outcome associations from the present study were 

adjusted for age, sex, genotyping array and the first ten genetic principal components (PC1-

PC10). 

Prior to the MR analysis, the instrument-TL associations (regression coefficients and 

standard errors) were adjusted for winner’s curse using (see the method in Text SC.2 and R code 

in Text SC.3). Before and after winner’s curse adjustment, we calculated the mean F-statistic 

[32] and percent of variance in TL attributed to the genetic instruments to evaluate the weak 
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instrument bias, and the I2-statistic [33] to evaluate the no measurement error (NOME) 

assumption of MR-Egger.  

Observational p-values or MR p-values from the primary IVW method were evaluated at 

the level of false discovery rate less than 5%. All the statistical analyses were performed in R 

version 3.4.1.  

3 | RESULTS 

Participant characteristics at recruitment of the baseline cohort (n=435,046) are presented 

in Table 1. The mean follow-up time from baseline to first imaging visit for participants in the 

imaging cohort (n=43,390) was 8.97 years (SD=1.75). Participants who subsequently underwent 

the first imaging visit were healthier than the baseline sample (Table 1), which had also been 

shown by a previous study [34], and similarly AD/ADRD cases versus non-AD/ADRD controls 

(Table SB.4). 

3.1 | Observational Association Analysis 

3.1.1 | Telomere length and risk of incident AD/ADRD  

During a mean follow-up of 12.2 years, we identified 6,424 incident AD/ADRD cases 

(mean age at diagnosis 72.8 years, SD=6.06): 2527 AD cases (mean age at diagnosis 73.5 years, 

SD=5.09) and 1,330 vascular dementia cases (mean age at diagnosis 73.5 years, SD=5.03). The 

incidence of AD/ADRD or its subtype linearly decreased as TL increased (Figure SB.1). 

Compared with non-AD/ADRD controls (0.83±0.13), AD/ADRD cases (0.80±0.12, p<2.2×10-16) 

had a shorter mean TL and similarly, AD (0.80±0.12, p<2.2×10-16) and vascular dementia 

(0.79±0.12, p<2.2×10-16) cases.  

Longer leukocyte TL at baseline was associated with a lower risk of incident AD/ADRD 

(Figure 2). The hazard ratio (HR) of AD/ADRD was 0.93 per SD longer in TL (p=3.37×10-7), 
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after adjusting for the covariates. Similar results were found for different APOE genotypes, as 

well as for vascular dementia and AD (Figure 2). One SD of TL corresponds to approximately 

650 base pairs in a European adult population, which is approximately 26 years of telomere 

attrition given the telomere shortening rate in the population is about 25 base pairs per year [35].  

3.1.2 | Telomere length and cognitive performance 

Longer TL was significantly associated with better cognitive performance at baseline, 

including faster reaction time (mean SD change per SD longer in TL (β)= -0.005, p=0.003), 

higher fluid intelligence (β=0.011, p=1.41×10-5), and higher numeric memory (β=0.013, 

p=0.009). Although not statistically significant at the level of FDR<5%, longer TL was 

suggestive of higher general cognitive ability (β=0.009, p=0.066) [25] (Figure 3). For cognitive 

tests measured at the first imaging visit (but not implemented at the baseline visit), each SD 

increase in TL was associated with better scores on tests of processing speed/executive 

functioning, including more symbol digit substitution (β=0.012, p=0.029) and shorter duration to 

complete trail making part B (β= -0.013, p=0.022). Additionally, each SD increase in TL was 

associated with better non-verbal reasoning measured with matrix pattern completion (β=0.013, 

p=0.027). 

3.1.3 | Telomere length and regional brain MRI features 

Figure 4 presents the associations between TL and volumetric IDPs of AD signature 

regions [19,20] and total WMH volume. Longer TL was significantly associated with higher 

hippocampus volume (β=0.012, p=0.012) and lower total WMH volume (β= -0.015, p=0.002). 

There were no significant associations between TL and other AD signature volumes (Figure 4). 
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We also evaluated the associations between TL and markers of white matter 

microstructural damage assessed by diffusion tensor imaging. Longer TL was associated with 

higher FA (indicating better white matter fiber integrity) and lower MD (indicating more glial 

cellularity and lower inflammatory burden) in the fornix. Interestingly, most of the other white 

matter tracts analyzed showed the opposite direction of association between TL and FA or MD. 

(Figures 5 and 6).  

 

3.2 | Mendelian Randomization Analysis 

The effect sizes of genetic variants associated with TL and their standard errors were 

corrected for winner’s curse (Table SA.1). A single instrument (rs35671754) was dropped from 

the analysis after this correction due to its sign reversing. The mean F-statistics before and after 

winner’s curse adjustment were 127.11 and 120.25, respectively, indicating that our instrument 

set remained strong. The uncorrected and corrected coefficients explained 3.61% and 3.42% of 

the variance in TL, respectively. Additionally, the I2 statistic before and after winner’s curse 

adjustment were close to 1 (97.6% and 97.4%, respectively), suggesting a low risk of violating 

the NOME assumption of MR-Egger.  

Using the IVW MR method, there was no evidence showing that genetically determined 

TL was associated with AD/ADRD or its subtypes (Figure SB.2). Genetically determined TL 

was not associated with any of the cognitive measures (Figure SB.3), volumetric IDPs of AD 

signatures, or total volume of WMH (Figure SB.4). Genetically determined TL was not 

associated with FA or MD in the fornix. The MR analysis, however, confirmed observational 

associations between longer TL and lower FA in tracts such as sagittal stratum, posterior corona 

radiata, and retrolenticular part of internal capsule (Figure SB.5), as well as those between longer 

TL and higher MD in tracts, e.g., sagittal stratum, superior longitudinal fasciculus, and posterior 
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thalamic radiation (Figure SB.6). Different MR methods showed consistent results (Figures 

SB.7-SB.11). MR-Egger tended to produce a larger effect size than the other methods, which 

may be inflated by horizontal pleiotropy (indicated by an estimated intercept significantly 

different from zero; see Figures SD.1-SD.71). MR-RAPS accounted for pleiotropy and the 

results of IVW and MR-RAPS were similar across outcomes. 

4 | DISCUSSION  

Using middle-aged adults with a mean follow-up of 12.2 years, we found that longer 

leukocyte TL was associated with a lower risk of AD/ADRD, and specifically of AD and 

vascular dementia. In the population without dementia diagnoses, longer TL was associated with 

better performance across multiple cognitive domains. We also found that longer TL was 

associated with brain MRI features linked to a lower risk of dementia, including higher 

hippocampus volume, lower total volume of WMH, along with higher FA and lower MD in the 

fornix. 

Our results are consistent with previous observational studies suggesting a protective 

effect of longer TL on AD, including those reported in recent meta-analyses of case-control 

studies [10]. Contrary to our findings, Fani et al. [36] reported a U-shaped relationship between 

TL and risk of AD, where both shorter and longer TL were associated with a higher AD risk. 

Significantly higher risk of AD with shorter leukocyte TL was also reported in non-APOE e4-

carriers only in a prospective population cohort [37]. While previous MR studies reported a 

protective effect of genetically determined longer TL on AD risk [38,39], we did not find 

significant genetic associations with AD/ADRD or its subtypes in our MR analyses. Our samples 

were younger and we used more genetic instruments of TL to increase statistical power. 

However, the percent of variance in TL explained by the genetic instruments is still not sufficient 
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to power the outcomes due to limited numbers of cases in this young cohort. Our analysis was of 

leukocyte TL. Perhaps TL in brain or other tissues may show a stronger causal effect. 

The relationship we observed between TL and alterations in the fornix is commensurate 

with the study by Staffaroni et al. [40] that showed TL attrition over time was associated with 

decreased fornix FA, increased fornix MD, and greater hippocampal volume loss. The fornix is a 

white matter bundle in the limbic system that functions as the principal outflow pathway from 

the hippocampus [41]. Microstructural changes in the fornix had been reported as an early 

predictor of cognitive decline in older adults with normal cognition and an indicator of AD 

progression [42]. Moreover, reduced FA and increased MD in the fornix have been suggested as 

promising imaging markers for AD [41]. Our findings on associations of longer TL with lower 

FA and higher MD in several white matter tracts suggest that longer TL may also have 

deleterious effects on related health outcomes including dementia. Further investigation is 

needed to understand the conflicting associations between TL and brain MRI markers. 

The mechanism linking leukocyte TL with AD/ADRD and related brain MRI markers is 

still unclear. Telomere dysfunction has a major impact on stem cell exhaustion and genomic 

instability, where the biological changes including reduced neurogenesis and increased mosaic 

DNA content variation have been lined to AD [43–45]. Additionally, shorter TL may reflect an 

increased pool of senescent cells, which is associated with SASP [4]. Neuroinflammation plays 

an important role in exacerbating amyloid-β burden and tau hyperphosphorylation that are two 

core pathologies of AD [46]. Pro-inflammatory cytokines and other SASP factors are associated 

with brain structural abnormalities, cerebrovascular pathology, cognitive impairment, and 

elevated risk of AD [47,48]. Taken together, TL can be linked to AD/ADRD and related brain 
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MRI markers through direct and indirect pathways. Future studies are necessary to address by 

which mechanisms TL can have protective or harmful effects. 

Several limitations need to be considered when interpreting the results of the current 

study. First, TL was measured in leukocytes in peripheral blood, which may not represent TL in 

the brain. However, peripheral blood TL is positively correlated with cerebellum TL and plays a 

direct role in AD pathogenesis [49]. Second, while we attempted to investigate AD and vascular 

dementia, we included cases with diagnosis of other AD/ADRD. However, we also included 

volumetric AD signatures and brain IDPs that have indications for vascular dementia. Third, 

study participants were relatively young, with many not yet old enough to have developed 

AD/ADRD. Lastly, our results may not be generalized to non-European populations. Healthy 

volunteers are over-represented in our baseline and imaging cohorts, which could lead to 

underestimated exposure-outcome associations. However, the impact is alleviated by the large 

sample size and significant heterogeneity of exposures [50]. Moreover, we believe that the above 

limitations would diminish rather than enhance our ability to reject the null hypothesis, thus 

raising the robustness of our statistically significant findings. 

Together with our findings that longer TL is associated with better cognitive performance 

and lower risks of incident AD, vascular dementia, and their related brain markers, this suggests 

that TL is a robust indicator of neurodegeneration or cognitive impairment toward the 

development of AD/ADRD. Further research is needed to elucidate the biological mechanisms 

linking TL and dementia and to understand the health impact of lower FA and higher MD 

associated with longer TL in several white matter tracts.  
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Table 1 Baseline characteristics of participants in the baseline or imaging cohort 

Characteristics  Baseline Cohort 

(n=435,046)  

Imaging Cohort  

(N=43,390)  

Baseline age, years (mean ± SD)  56.8 ± 8  55.3 ± 7.5  

Sex, female (%)  236,117 (54%)  22,373 (52%)  

Death (%) 

 

30,504 (7%) 425 (1%) 

  Age at death (mean ± SD) 71.1 ± 7.3 71.6 ± 6.4 

Education (%)      

   None  75,541 (18%)  2,984 (7%)  

   CSEs or equivalent  16,231 (4%)  1,122 (3%)  

   O levels/GCSEs or equivalent  59,497 (13%)  4,705 (11%)  

   A/AS levels/NVQ/HND/HNC  79,609 (18%)  7,778 (18%)  

   Other professional qualifications 64,394 (15%)  6,946 (16%)  

   College or university degree  137,941 (32%)  19,721 (46%)  

Townsend deprivation index  -1.5 ± 3  -1.9 ± 2.7  

BMI, kg/m2 (mean ± SD) 27.4 ± 4.8  26.6 ± 4.3  

Smoking status (%)      

   Never  234,004 (54%)  26,022 (60%)  

   Previous  154,156 (36%)  14,596 (34%)  

   Current  45,343 (10%)  2,687 (6%)  

Alcohol intake frequency (%)     

   Never 29,060 (7%) 1,847 (4%) 

   Special occasions only 46,553 (11%) 3,323 (8%) 

   1-3 times a month 48,359 (11%) 4,619 (11%) 

   1-2 times a week 114,513 (26%) 11,195 (26%) 

   3-4 times a week 104,311 (24%) 12,345 (28%) 

   Daily or almost daily 91,947 (21%) 10,053 (23%) 

IPAQ activity group (%)     

   Low  57,696 (14%)  5,742 (14%)  

   Moderate  177,073 (44%)  18,504 (45%)  

   High  163,435 (41%)  16,902 (41%)  

APOE genotype (%)     

   e3e3 254,331 (58.46%) 25,619 (59.04%) 

   e2e3 53,573 (12.31%) 5,388 (12.42%) 

   e2e2 2,766 (0.64%) 250 (0.58%) 

   e2e4 10,931 (2.51%) 1,036 (2.39%) 

   e3e4 103,077 (23.69%) 10,122 (23.33%) 

   e4e4 10,350 (2.38%) 975 (2.25%) 

   e1e2 3 (<0.01%) 0 (0.00%) 

Telomere length (T/S ratio), adjusting 

for technical parameters 

0.83 ± 0.13 0.84 ± 0.13 

Abbreviations: SD, standard deviation; APOE, apolipoprotein E; CSE, certificate of secondary education; GCSE, 

general certificate of secondary education; NVQ, national vocational qualification; HND, higher national diploma; 

HNC, higher national certificate. BMI, body mass index; IPAQ, International Physical Activity Questionnaire. 
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Figure 1 Flowchart of study participant selection. 

 

 

Figure 2 Associations between telomere length and AD/ADRD or related phenotypes. 

*Significant at the false discovery rate < 0.05 level; AD is defined as AD or dementia in AD; N: 

sample size; NCases: number of cases; Hazard Ratios (HRs) per Standard Deviation (SD) longer 

in Telomere Length (TL) from Cox proportional hazards models adjusting for age, sex, 

education, Townsend deprivation index, BMI, smoking status, alcohol intake frequency, and 

IPAQ physical activity group, APOE genotype, PC1-PC10, and baseline assessment center; P-

Value: unadjusted p-value for multiple testing. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2022. ; https://doi.org/10.1101/2022.06.30.22277121doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277121
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 

 

 

Figure 3 Associations between telomere length and cognitive function measures. 

*Significant at the false discovery rate <0.05 level; N: sample size; Mean Standard Deviation 

(SD) changes per SD longer in Telomere Length (TL) from linear regression models adjusting 

for age, sex, education, Townsend deprivation index, BMI, smoking status, alcohol intake 

frequency, and IPAQ physical activity group, APOE genotype, PC1-PC10, and baseline 

assessment center; P-Value: unadjusted p-value for multiple testing. The two ends representing 

best and worst performance are labelled. 

 

 

Figure 4 Associations between telomere length and volumetric IDPs of AD signatures and white 

matter hyperintensities (WMH). 

*Significant at the false discovery rate < 0.05 level; N: sample size; Mean Standard Deviation 

(SD) changes per SD longer in Telomere Length (TL) from linear regression models adjusting 

for age, sex, education, Townsend deprivation index, BMI, smoking status, alcohol intake 

frequency, IPAQ physical activity group, APOE genotype, PC1-PC10, baseline assessment 

center, and head size; P-Value: unadjusted p-value for multiple testing. 
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Figure 5 Associations between telomere length and weighted-mean fractional anisotropy IDPs. 

*Significant at the false discovery rate < 0.05 level; N: sample size; Mean Standard Deviation 

(SD) changes per SD longer in Telomere Length (TL) from linear regression models adjusting 

for age, sex, education, Townsend deprivation index, BMI, smoking status, alcohol intake 

frequency, IPAQ physical activity group, APOE genotype, PC1-PC10, baseline assessment 

center, and head size; P-Value: unadjusted p-value for multiple testing. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2022. ; https://doi.org/10.1101/2022.06.30.22277121doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.30.22277121
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 

 

 

Figure 6 Associations between telomere length and weighted-mean mean diffusivity IDPs. 

*Significant at the false discovery rate < 0.05 level; N: sample size; Mean Standard Deviation 

(SD) changes per SD longer in Telomere Length (TL) from linear regression models adjusting 

for age, sex, education, Townsend deprivation index, BMI, smoking status, alcohol intake 

frequency, IPAQ physical activity group, APOE genotype, PC1-PC10, baseline assessment 

center, and head size; P-Value: unadjusted p-value for multiple testing. 
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