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Web Figure 1 Deduplication algorithm for overlap between THIN and CPRD
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Web Figure 2 Source of heart failure diagnoses in linked primary care (CPRD) and secondary care (HES) and cause of death (ONS) data.
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Web Figure 3 Study population for subtyping analysis
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Web figure 4. Variable importance for dimensionality reduction (n=87)
	[image: A picture containing chart

Description automatically generated]

	[image: Chart

Description automatically generated]







Web Figure 5. Comparison of Clustering Methods
1) Cluster similarity metrics
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2) Selection of representative clusters 
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Web figure 6. Selected continuous variables across five subtypes of individuals with incident heart failure.
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Web figure 7. Mortality in subtypes of heart failure by continuous variables
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Web figure 8. Risk of non-fatal cardiovascular diseases and all-cause hospitalisation in five heart failure subtypes before or after diagnosis.
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Web Figure 9.   Rates of medication use in five heart failure subtypes ever or after diagnosis.

[image: ]
[image: ]


Web Table 1: Covariates included in clustering analyses (n=635) 

See Web Table 1 Excel attachment.











Web Table 2. Supplementary methods[image: ]
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Web Table 3. External validation: performance of four clustering methods in two UK primary care populations (CPRD and THIN)
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Web Table 4. Heart failure single nucleotide polymorphisms (SNPs) included in analysis of biologic validity for subtypes of heart failure.

	HERMES
	UKB

	CHR
	SNP
	POS
	Gene Region
	effect allele
	other allele
	OR (95% CI)
	P value
	A1*
	A2
	Flip UKB Dosage 

	1
	rs660240
	1.1E+08
	CELSR2 
	C
	T
	1.06 (1.04–1.08)
	3.25E-10
	T
	C
	TRUE

	4
	rs17042102
	1.12E+08
	PITX2, FAM241A 
	A
	G
	1.12 (1.09–1.14)
	5.71E-20
	G
	A
	TRUE

	5
	rs11745324
	1.37E+08
	KLHL3 
	G
	A
	1.05 (1.03–1.07)
	2.35E-08
	G
	A
	FALSE

	6
	rs4135240
	36647680
	CDKN1A 
	T
	C
	1.05 (1.03–1.07)
	6.84E-09
	T
	C
	FALSE

	6
	rs55730499
	1.61E+08
	LPA 
	T
	C
	1.11 (1.08–1.14)
	1.83E-11
	C
	T
	TRUE

	6
	rs140570886
	1.61E+08
	LPA 
	C
	T
	1.24 (1.16–1.3)
	7.69E-11
	T
	C
	TRUE

	9
	rs1556516
	22100176
	9p21/CDKN2B-AS1 
	C
	G
	1.06 (1.05–1.08)
	1.57E-15
	G
	C
	TRUE

	9
	rs600038
	1.36E+08
	ABO, SURF1 
	C
	T
	1.06 (1.04–1.08)
	3.68E-09
	T
	C
	TRUE

	10
	rs4746140
	75417249
	SYNPO2L, AGAP5 
	G
	C
	1.07 (1.05–1.09)
	1.10E-09
	G
	C
	FALSE

	10
	rs17617337
	1.21E+08
	BAG3 
	C
	T
	1.06 (1.04–1.08)
	3.65E-09
	C
	T
	FALSE

	12
	rs4766578
	1.12E+08
	ATXN2 
	T
	A
	1.04 (1.03–1.06)
	4.90E-08
	T
	A
	FALSE

	16
	rs56094641
	53806453
	FTO 
	G
	A
	1.05 (1.03–1.06)
	1.21E-08
	A
	G
	TRUE


12 independent variants associated with HF at the genome-wide significance level (P < 5 × 10−8) (Shah et al 2020). A1 is the reference allele for the expected allelic dosage in UKB. Table indicates which HF SNPs will require dosages to be flipped prior to analysis. 















Web Table 5. Polygenic risk scores examined from the Polygenic Score Catalog.
	Phenotype
	PGS score ID
	Number of SNPs in score
	Number of score SNPs found in our sample
	Percentage of all Score SNPs included in study

	Atrial arrhythmias
	PGS000016
	                      6,730,541 
	                   276,790 
	4.1

	Diabetes
	PGS000014
	                      6,917,436 
	                   282,965 
	4.1

	Heavy alcohol intake
	PGS000201
	                      1,094,954 
	                   140,902 
	12.9

	Hypertension
	PGS000706
	                          186,726 
	                   172,158 
	92.2

	Myocardial infarction
	PGS000710
	                          183,566 
	                   169,242 
	92.2

	Obesity
	PGS001228
	                            27,126 
	                     24,904 
	91.8

	Severe anaemia
	PGS001305
	                                  121 
	                              98 
	81

	Smoking
	PGS001129
	                                  974 
	                           832 
	85.4

	Stable angina
	PGS000703
	                          183,692 
	                   169,372 
	92.2

	Thyroid disorders 
	PGS001043
	                                     69 
	                              55 
	79.7

	Unstable angina
	PGS001048
	                                  687 
	                           548 
	79.8



* PGS score ID is a unique identifier which can be used to lookup details of the score and how it was developed from the PGS catalog (pgscatalog.org). Number of SNPs in score, indicates how many SNPs was included in the PGS score. The last two columns show number and percentage of the score SNPs could be found in our sample, and thus used to calculate the scores with.

Web Table 6.  Pairwise comparisons (p-values) of survival probability of discovered subtypes in CPRD and THIN data using Log-rank test.
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StepsApproachDescriptionFormulas

Longitudinal EHR 

transformation

Diagnostic code and 

Lookup table

Using medical diagnostic codes from primary 

and secondary cares [1] to build disease 

phenotypes (Lookup tables) and searching 

events in EHR to obtain analysis-ready cohort 

which contains comorbidity, drug prescription, 

lab test and mortality information.

Variable V  (j=1…m) was created by using 

phenotype j looking up diagnostic events and 

their medcode x in EHR

Missing data 

handling

Factor analysis for 

mixed data

1. In current setting, if percentage of missing 

values in one variable is above 30%, that 

variable will be excluded from the clustering 

analysis; 2. Missing values in continuous 

variables were imputed by Gaussian mean of 

the observed data, and then the fitted matrix 

via iterative PCA was applied to impute 

missing values until convergence of mean 

squared error [2]; 3. Imputing missing values in 

categorical variables is similar to PCA for 

continuous variables, but with the use of MCA 

and converting factors to dummy indicator 

variables.

After initial imputation with Gaussian mean and 

PCA to the completed matrix, the first S 

components of loadings and scores of the PCA 

was used to build fitted matrix:  

Covariate 

importance ranking

Random forest

Ranking importance of covariates to predict 

specific variable which is connected to study 

outcome; in this study, we selected one-year 

mortality status as the predicted variable. As a 

measure of determining which variables are 

more probable to split cases into categorical 

classes, Gini impurity index was calculated for 

each variable which were ranked according to 

the results [3]. 

Gini index of each variable on a node was 

determined by probability of the class pi, 

observed in the dataset; and number of classes 

c.  

Dimensionality 

reduction and 

visualization

Principal component 

analysis

Standard PCA calculates squared correlations 

(loadings) between variables and scores for 

continuous variables, while as a special 

extension for categorical variables, MCA which 

calculates correlation ratios between variables 

and principal components [4]. 

P is principal component loading vector and T is 

score vector. The first c (c<d) principal 

components capture most of the variance. E is 

modelling residual.

Hierarchical

Hierarchical clustering, which used Gower’s 

general dissimilarities of cases with the 

consideration of co-existence of continuous 

and categorical variables [5]. Each case was 

assigned to its own cluster at the beginning, 

followed by choosing complete linkage 

method to locate similar clusters, which should 

be combined in an agglomerative way. This 

‘searching-joining’ process continued to the 

next level until a single cluster was formed. 

The created hierarchical tree could then be cut 

into several groups by specifying number of 

clusters.  

K-means

In traditional K-means clustering, distances 

between each case and initialised centroids of 

all pre-defined sub-groups were calculated and 

compared. Sub-group with minimum distance 

was assigned to the case. Centroids were 

iteratively updated to converge minimum 

squared error. To deal with mixed type data, an 

extended K-means which has kernel density 

function for modelling continuous variables 

and multinomial model for categorical 

variables was applied [6]. Contribution weights 

for each variable were searched based on 

certain strategy.

Assume continuous variables V with P 

dimensions, and categorical variables W with Q 

dimensions are independent, joint probability 

density of (V,W) at k-th cluster is 

K-medoids

K-medoids performs differently from K-means 

by using cases as centres of clusters. K-

medoids is less affected by noise as it 

minimises a sum of dissimilarity rather than a 

squared distance [7]. This feature allows the 

algorithm to accept dissimilarity matrix 

between cases as the input to the clustering 

model. 

The medoid, M

k

, as a case was initially selected 

according to its centralised location, and 

repeatedly updated by minimising sum of 

dissimilarity between itself to other cases within 

current cluster.

Mixture models

The algorithm assumed mixed data were 

conditionally independent, and that each case 

of the population arose from a mixture 

probability distribution [8]. The Gaussian 

density function estimated by Expectation-

maximization was implemented in mixture 

models . 

If a dataset X is modelled by a mixture of 

Gaussians with K components, its unconditional 

density can be given as:

Clustering with 

multiple 

algorithms

ݒሺݔௗௗሻൌ݈݇ݑሺݔ�ǡݔௗௗሻGiniൌͳെσሺሻଶୀଵ^1cTTiicciXXEtpETPEܩௗ௦ሺݔǡݔሻൌͳെͳܦܵௗሺݔǡݔௗୀଵሻܵௗݔௗǡݔௗൌͳെݔௗെݔௗܴௗܵௗݔௗǡݔௗൌ�ቊൌͳǡ݅�ܽ݊݀�݆�ݏܽ݉݁�݅݊�݀ൌͲǡ݅�ܽ݊݀�݆�݂݂݀݅݁ݎ�݅݊�݀Gower distance between cases i and j with values xi and xj, i, j = 1,. . .,n, withind variable is defined asFor continuous variables, For categorical variables, ݂ܞǡܟǡሺ܄ǡ܅Ǣߤ�ǡσǡߠ) = ݂ܞǡሺ܄Ǣߤ�ǡσ) ς݉ሺݓǡொୀଵߠ) Where ߤ�ǡσand ݂ܞǡare mean vector, covariance matrix and Gaussian density of k-th cluster; while ߠand mare multinomialparameter vector and mass function for k-thcluster of q-th categorical variable. ܯଵǡܯଶǡǡǥܯൌܽݎ݃݉݅݊ݔെܯ௫אୀଵܺǢߤǡǡσൌݓܲሺܺǡߤǡσሻୀଵ�Where ݓǡߤ�ܽ݊݀�σare prior probability,meanvector and covariance of k-th component. ݔᇱൌߣௌെߪଶߣ௦ௌ௦ୀଵݑ௦ݒ௦Where ߪଶis a noise variance estimator, and used to update imputed data ܺᇱ.
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Prediction strength

Prediction strength approach regards finding 

number of clusters as a cross validation 

problem, where training X

tr

 and testing X

te 

set were both clustered into k clusters, C

tr

 and 

C

te

 respectively. Cases in C

te

 were then 

classified based on clusters in C

tr

 and 

examined if each pair of test cases that were 

grouped to the same C

te

-cluster are also 

predicted to the same cluster in C

tr

. [9]

The prediction strength for each clustering is the 

minimum relative frequency that testing pairs 

X

te

 were correctly grouped into same clusters by 

training clusters C

tr

. 

Silhouette width

Silhouette width calculates average distance of 

one case to the others in its cluster as well as 

average distance to cases in other clusters; this 

index not only measures how closed are cases 

in one cluster but also indicates how 

distinctive a cluster is from other clusters. [10]

For each case xi, a(xi) is the average distance 

between xi and other cases within the same 

cluster. b(xi) defines the average distance of xi 

from all cases in the nearest cluster. 

Similarity 

evaluation for 

multiple clustering 

results

Similarity measures

There were four clustering approaches used for 

each fold of data, and four clustering results 

can be obtained for one fold of data. To select 

reliable clustering result, five similarity indices 

were calculated to measure similarity between 

four partitions: Rand index, Hubert and 

Arabie's adjusted Rand index, Morey and 

Agresti's adjusted Rand index, Fowlkes and 

Mallows's index, and Jaccard index[11]. The 

clustering partition for assigning groups to 

patients was selected based on the number of 

times the clustering partition was calculated as 

the most similar partition to other ones[12]. 

Let C

1

 and C

2

 be the two clustering partitions to 

same dataset which has number of cases n. We 

calculated number of pairs of cases that are 

found in same clusters in C

1

 and same clusters in 

C

2

 as N

c1=c2

, and number of pairs of cases that 

are found in different clusters in C

1

 and C

2

 as 

N

c1!=c2. 

Rand index can be given as:

Supervised cross-

validation

Calculating similarity indices solved the 

problem of assigning which group of partition 

to single fold of data. There were 10 folds of 

subsets for each of CPRD and THIN dataset. To 

decide which fold to be used to represent the 

overall data, we built a multinomial model for 

each fold data, labelled the data with 

clustering partitions, and obtained 10 

supervised models, P

k

(k=1:10). We used other 

fold data X

-k

(k=1:10) to test against the 

established models P

k

 to get predicted cluster 

partitions, which were then compared with 

actual cluster partitions in each fold clustering. 

[13]

For each fold k = 1, 2, . . . 10, fit the model with 

data X

k

 and clustering label y

k

, to get P

k

. Error 

between predicted labels and actual labels can 

be given:



Kaplan-Meier survival 

analysis

Based on clustering results, Kaplan-Meier 

survival curves were generated for each cluster 

across two datasets – THIN and CPRD. In this 

study, a statistical test, Log-rank p values 

between survival curves are applied to see 

whether survival curves from same dataset are 

distinctive from each other(examine  if 

patients can present different survival 

characteristics), and to find if there are any 

pairs of curves from different datasets are 

similar ( validating if similar groups of patients 

can be found across two independent 

datasets).

If log-rank p < 0.01, difference between the 

groups is statistically significant [14]. If p value 

between two curves is higher and > 0.01, these 

two curves can be regarded as similar rather than 

different.  Given two groups of patients with 

observed number of deaths O

1

 and O

2

; and 

expected number of deaths E

1

 and E

2

.  The test 

statistic is (O

1

 - E

1

)2/E

1

+ (O

2

 - E

2

)2/E

2 

for the pair 

of two groups. p value can then be looked up 

from χ2 distribution table according to null 

hypothesis test. 

Selecting optimal 

number of clusters

External validation 

by independent 

cohort
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