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Supplementary note

Brief summary of cognitive function-associated genes identified

ADGRB2. ADGRB?2 (adhesion G protein-coupled receptor B2; also known as BAI2) encodes an
adhesion G protein coupled receptor (GPCR) that is one of the main mediators of signal
transduction in the central nervous system. ADGRB?2 is considered as an orphan GPCR
(0GPCR), for which endogenous ligands have not yet been identified !. ADGRB? is primarily
expressed in the brain (neurons and astrocytes in hippocampus, amygdala and cerebral cortex)
23, Variants near ADGRB2 have been associated with educational attainment in a genome-wide
association study #, and also found associated with other traits such as body mass index 3,
smoking, Intraocular pressure 6, or parental longevity ’.

KDMSB. KDM5B (lysine demethylase 5B; also known as JARIDIB or PLUI) encodes a lysine-
specific histone demethylase in the jumonji/ARID domain-containing family of histone
demethylases. The encoded protein can demethylate tri-, di- and monomethylated lysine 4 of
histone H3 (H3K4me1/2/3) 3-1°, which is broadly associated with enhancers and promoters of
actively transcribed genomic loci. Mutations in KDMJ5B are the cause for an autosomal-recessive
intellectual disability syndrome '! (OMIM # 618109) and have further been found associated
with schizophrenia 2 and autism spectrum disorder '*!# in sequencing studies, where disrupted
neuronal differentiation was suggested as a potential mechanism. A search on GWAS Catalog
(https://www.ebi.ac.uk/gwas/; accessed on Feb. 6, 2022) did not identify significant associations
of KDM5B variants in previous GWAS. However, we note that the association of KDM5B with
RT may be influenced by its association with reduced handgrip strength we observed in UKB,
which might contribute to the epidemiological observation in UKB that hand grip strength and
cognitive function share common mechanisms !°.

GIGYF1. GIGYFI (GRBI1O interacting GYF protein 1) encodes an adaptor protein (a member of
the gyf family) that binds growth factor receptor-bound 10 (GRB10), which in turn binds
activated insulin receptors and insulin-like growth factor-1 (IGF-1) receptors '%!7. By influencing
the insulin and IGF-1 signaling pathway, GIGYFI plays a role in metabolic diseases and related
anthropometric traits. For instance, significant associations were identified in previous GWAS
for hemoglobin '8, total cholesterol, low density lipoprotein cholesterol, glucose and
apolipoprotein B levels 1°. GIGYFI was also associated with mosaic loss of chromosome Y
(LOY) ?° and metabolic diseases including glucose and HbA lc levels and type 2 diabetes 2! in
previous exome sequencing studies.



ANKRD12. ANKRD12 (ankyrin repeat domain 12; also known as ANCO-2) encodes a member
of the ankyrin repeats-containing cofactor (ANCO) family. ANCOs are transcriptional co-
regulators that interact with both co-activators and co-repressors 2. ANKRD ]2 interacts with the
p160 co-activators (by recruiting HDACs [histone deacetylases]) and the co-activator ADA3
(alteration/deficiency in activation 3) 2223, ANKRD12 was found to be associated with
corpuscular measures in GWAS >,

SLC8A1. SLC841 (solute carrier family 8 member Al; also known as NCX1) encodes a
bidirectional calcium transporter, the cardiac sarcolemmal Na(+)-Ca(2+) exchanger, which is the
primary mechanism for cardiac myocyte returning to its resting state following excitation
(through extrusion of calcium) and plays a critical role in cardiac contractility 2. SLC8A1
expression is enriched in human heart tissue. SLC8A41 has been shown to be associated with bone
mineral density 2°, blood pressure?’, blood biomarkers (for example IGF-1 '),
electrocardiographic traits (PR interval 2%, QT interval %, etc.) and hand grip strength 3 among
others.

RC3H2. RC3H?2 (ring finger and CCCH-type domains 2) encodes roquin-2 that belongs to a
family of highly conserved RNA-binding proteins (roquins) that regulate their target genes on
the post-transcriptional level. Roquins contain a RING (Really Interesting New Gene)-type E3
ubiquitin ligase domain, followed by a ROQ domain and a CCCH-type ZnF domain 3!-33,
Roquins play key roles in maintaining peripheral immunological tolerance and autoimmune
diseases 3. It has been shown that RC3H2 (and RC3H]) restricts T-cell activation and
costimulation via /COS and OX40 to prevent inappropriate Tth cell differentiation *°. Roquin-2 is
widely expressed in all human tissues. RC3H2 showed genome-wide significant association with
insomnia 3¢ and HbAlc ° in GWAS.

CACNAI1A. CACNAIA (calcium voltage-gated channel subunit alphal A) encodes the alpha-1A
subunit of the voltage-dependent calcium channels. It is primarily expressed in neuronal tissue.
Mutations in CACNAIA are a cause for type 2 episodic ataxia (OMIM #108500), spinocerebellar
ataxia 6 (OMIM #183086), developmental and epileptic encephalopathy 42 (OMIM #617106)
and familial hemiplegic migraine (OMIM #141500). CACNA A was implicated in a previous
educational attainment GWAS*, but the top associated SNP and LD peak do not fall into the
CACNA 1A gene region, but rather located in the intergenic region between CACNA 1A and
RPL12P42. Other GWAS associations for CACNA 1A include depressive symptoms %7, age at
first birth 3 and brain region volume 3°.

BCAS3. BCAS3 (BCAS3 microtubule associated cell migration factor) encodes a large, highly
conserved cytoskeletal protein involved in human embryogenesis and tumor angiogenesis “>4. Tt

has recently been shown that BCAS3 loss-of-function variants can cause Hengel-Maroofian-
Schols syndrome (HEMARS; OMIM # 619641), which is an autosomal recessive



neurodevelopmental disorder characterized by severe global developmental delay starting from
infancy or early childhood with facial dysmorphism and brain abnormalities *!. BCAS3 has also
been associated with glomerular filtration rate *?, bone mineral density 2°, serum creatinine level
3, hemoglobin concentration 24, serum urate level #*, red blood cell count °, ophthalmologic
measures (e.g. macular thickness #*), coronary artery disease *° and additional traits in GWAS.
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Fig. S1. Impact of exome-wide burden of rare protein coding variants on educational
attainment (EDU), reaction time (RT) and verbal-numerical reasoning (VNR) in South

Asian (SAS) samples in the UK Biobank.
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Fig. S2. Impact of exome-wide burden of rare protein coding variants on educational
attainment (EDU), reaction time (RT) and verbal-numerical reasoning (VNR) in African
samples (AFR) in the UK Biobank.
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Fig. S3. PTV burden-based phenome-wide association analysis (3,150 phenotypes) for
KDMSB in the UK Biobank European samples. FEV1 Z-score is Inverted GLI 2012 z-score
for FEV1. Phenotypes were grouped and color-coded from left to right in the following
categories: biomarker; composite phenotypes; family history; ICD-10 cause of death, ICD-10
congenital malformations; deformations and chromosomal abnormalities; ICD-10 diseases of the
circulatory system; ICD-10 diseases of the digestive system; ICD-10 diseases of the eye and
adnexa; ICD-10 diseases of the genitourinary system; ICD-10 diseases of the musculoskeletal
system and connective tissue; ICD-10 diseases of the nervous system; ICD-10 diseases of the
respiratory system; ICD-10 diseases of the skin and subcutaneous tissue; ICD-10 endocrine,
nutritional and metabolic diseases; ICD-10 mental, behavioral and neurodevelopmental
disorders; ICD-10 neoplasms; ICD-10 pregnancy, childbirth and the puerperium; ICD-10
symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified;
operation code; self-reported illness: cancer; self-reported illness: non—cancer; self-reported

medication.
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Fig. S4. Phenome-wide association analysis (3,150 phenotypes) for ADGRB2, GIGYF1,
ANKRDI12, SLC8A41, RC3H2, CACNAIA and BCAS3 in unrelated European samples in the
UK Biobank. Phenotypes were grouped and color-coded from left to right in the following
categories: biobmarker; composite phenotypes; family history; ICD-10 cause of death, ICD-10
congenital malformations; deformations and chromosomal abnormalities; ICD-10 diseases of the
circulatory system; ICD-10 diseases of the digestive system; ICD-10 diseases of the eye and
adnexa; ICD-10 diseases of the genitourinary system; ICD-10 diseases of the musculoskeletal
system and connective tissue; ICD-10 diseases of the nervous system; ICD-10 diseases of the
respiratory system; ICD-10 diseases of the skin and subcutaneous tissue; ICD-10 endocrine,
nutritional and metabolic diseases; ICD-10 mental, behavioral and neurodevelopmental
disorders; ICD-10 neoplasms; ICD-10 pregnancy, childbirth and the puerperium; ICD-10
symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified;
operation code; self-reported illness: cancer; self-reported illness: non—cancer; self-reported
medication.

13



Educational attainment
DDG2P genes

Reaction time
DDG2P genes

Verbal-numerical reasoning
DDG2P genes

PTV{ 1604 . | >
Missense (MPC > 3) 251 1 I —— —— 1
Missense (3 >= MPC >2){ 546 \ i .
Missense (other){ 1741 : : :
Synonymous 1609 ! 1 1
! : :
-0.25 -0.15 -0.05 0.05 -0.05 0.00 0.05 0.10 0.15 -0.2 -0.1 0.0 0.1
i i
Educational attainment
PTV DNM enrichment DeNovoWEST
121 ADGRB2 12 /ADGHB2 Exome-wide significant
2 2 ® ASD
w w
210 £ 10 ® ASD & DDG2P
Ed E
5 GIGYF1 H SLosAT GIG|YF1 DDG2P
g g
% SLCSA1 KDMS5B ﬁ 8 (] KDM5B e EDU
hd BCAS3 s BCAS3 ° ® EDU& DDG2P & ASD
5 6 1 3 6 ./
2 H
> >
g . £ . pLI
5 s @ o
% 5 ° ? %'9‘ 5 @ ox0
T ee ~ T ° ¥ ° @ o5
0 r ® / . . 0 0.® ® o
0 2 4 6 8 10 12 14 16 >16 0 2 4 6 8 10 12 14 16 18 20 22
—logio(P) for PTV DNM enrichment with DD —logio(P) for DeNovoWEST with DD
Verbal-numerical reasoning
PTV DNM enrichment DeNovoWEST
Exome-wide significant
12 12
e ASD
2 o
a B ® ASD& DDG2P
£ 10 = 10
E E DDG2P
S RC3H2 ANKRD12 2 ANKRD12
§ 7 KDMS5B g 8 KDMS5B ® DDG2P& VNR
& ACNATA ¢ g RC3H2 . CACNA1A e VA
g 5 N 5 5 ® VNR& DDG2P & ASD
3 3
2 2
£y £ LI
5 . 8 ¢ ’
T T ® o0
° 2 S 2
g ; o) ? o @ os0
! . & ! - > 075
0 ﬂ b . 0 e o
® 1o
0 2 4 6 8 10 12 14 16 >16 0 2 4 6 8 10 12 14 16 18 20 22

—logio(P) for PTV DNM enrichment with DD —logio(P) for DeNovoWEST with DD

Fig. S5. Impact of rare coding variants in genes identified in the Developmental Disorder
Genotype - Phenotype Database (DDG2P) on cognitive function.

a. The effects of protein-truncating, missense (stratified by MPC) and synonymous variant
burden in exome sequencing study identified DDG2P on EDU, RT and VNR. DDG2P database
(https://www.deciphergenomics.org/ddd/ddgenes) was accessed on December 23, 2020.
Missense variants were classified by deleteriousness (MPC) into 3 tiers: tier 1 with MPC > 3; tier
2 with 3 > MPC > 2; tier 3 includes all missense variants not in tier 1 or 2. We note that the
effect of damaging missense variants out scaled that of PTV burden for DDG2P genes. This is
most likely explained by UKB participants being depleted for highly penetrant PTVs in this gene
set that cause disease onset in childhood*®.

b. Comparison between gene-based associations for genes from DDG2P database, EDU and
VNR (PTV DNM enrichment and DeNovoWEST for DD; rare PTV burden for EDU and VNR).
Each dot represents a gene that is identified for DD in Kaplanis et al. 2020 and for EDU or VNR
in the current exome analysis. The dots are color-coded according to the phenotypes (DD, ASD,
or EDU) that the gene is exome-wide significantly associated with. The size and shade of the
dots are representing the pLI for the gene. EDU and VNR genes are labeled with gene names.
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Fig. S6. Distribution of cognitive phenotypes (educational attainment and verbal-numerical
reasoning) for CACNAIA PTV carriers. ClinVar pathogenic/likely pathogenic variants for
epileptic encephalopathy (OMIM #617106) and/or type 2 episodic ataxia (OMIM #108500) was
annotated. Samples with inpatient ICD-10 (International Classification of Diseases version-10)
records of psychiatric (schizophrenia, bipolar disorder, depression, substance use disorder and/or
anxiety and stress disorders), neurodegenerative and neurodevelopmental disorders were
annotated. Phenotypes were residualized by sex, age, age®, sex by age interaction, sex by age?
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Fig. S7. Kdm5b loss-of-function impacts craniofacial and skeletal features in mice in a dose-

dependent manner. An intermediate effect on cranial length (additive genotype effect

P=0.0268) and height (additive genotype effect P=0.0056) is detected in Kdm5b*" mice, but not

in cranial width (additive genotype effect P=0.3090). A fully penetrant transitional vertebrae
phenotype seen in Kdm5b” mice (N=21, Fisher’s exact test vs Kdm5b"" [N=46] P<0.001) is

observed at a lower frequency in Kdm5b"" mice (N=40, Fisher’s exact test vs Kdm5b*"*
P=0.0189).
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Fig. S8. Correlation in differential gene expression between heterozygous and homozygous
KdmS5b mutant mice. LOG2-fold change of differentially expressed genes plotted for Kdm5b""
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Fig. S10. GO term enrichment for differentially expressed genes in Kdm5bh mutant mice.
Differentially expressed genes (DEGs) from E18.5 and adult brain tissues of Kdm5b" and
Kdm5b”- mice were subject to Gene ontology (GO) pathway enrichment analysis using the
gprofiler R package, with a threshold of 5% FDR and an enrichment significance threshold of
P<0.05 (hypergeometric test with FDR correction for multiple testing). For the E18.5 sample, we
only showed results with enrichment p-value<0.0001 (for display purposes). Full results are
provided in Table S14. The European Nucleotide Archive accession numbers for the RNA-seq
sequences reported are provided in Table S15. Background comprised only expressed genes in
each tissue of interest.
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Fig. S11. Overlap between educational attainment GWAS (Lee et al. 2018%) locus on
chromosome 1 and ADGBR? identified in PTV burden analysis in UKB. Regional plot of
educational attainment GWAS association test results were generated around top independent

SNP rs10798888. Additional associations from GWAS catalog were annotated with the

associated phenotypes in the regional plot. EDU and VNR score for ADGRB2 PTV carriers in
UKB were plotted (both phenotypes were residualized by sex, age, age?, sex by age, sex by age?,
top 20 PCs and recruitment centers and were inverse rank-based normal transformed). Samples

with inpatient ICD-10 (International Classification of Diseases version-10) records of
psychiatric, neurodegenerative, and neurodevelopmental disorders were annotated.
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Fig. S13. Rare coding variant burden in genes identified in GWAS for cognitive function,
educational attainment, schizophrenia, bipolar disorder and depression and non-cognitive
function related genes on educational attainment (EDU). The impact of rare coding variant
burden in genes identified through common variant association in GWAS for cognitive function
(COQG), educational attainment (EDU), schizophrenia (SCZ), bipolar disorder (BIP) and
depression (DEP) and in non-cognitive function/non-psychiatric disorder-related (non-
cog/psych) genes on EDU. Missense variants were classified by deleteriousness (MPC) into 3
tiers: MPC>3; 3>MPC>2; and all missense variants not in the previous two tiers. The number of
genes included in each burden was labeled in each panel.
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function related genes on reaction time (RT).
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Fig. S16. Gene set-based PTV burden analysis in European samples in the UK Biobank for
educational attainment, Reaction time and verbal-numerical reasoning. Top 30 gene sets
were labeled in the figure. A total of 13,011 gene set from MSigDB v7.2 were identified,
including C2 canonical pathways (N=2,808) and C5 Gene Ontology biological process (N =
7,531), cellular component (N = 996), and molecular function (N = 1,676).
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Fig. S17. The effects of protein-truncating, missense (stratified by MPC) and synonymous
variant burden in genes stratified by brain-specific expression. Genes were stratified by

elevated expression in brain tissue (2,587 genes), elevated expression in other tissues but also

expressed in brain (5,298 genes) and no tissue specific expression (8,342 genes). Number of
genes included in the burden is annotated for each set.
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