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Abstract:

The pathogenesis of depression is complex involving the interplay of genetic and 

environmental risk factors including diet, lifestyle and the gut microbiome. Metabolomics 

studies may shed light on the interplay of these factors.  We study over 63,000 individuals 

including 8462 cases with a lifetime major depression and 5403 cases with recurrent major 

depression from the UK Biobank profiled for nuclear magnetic resonance (NMR) 

spectroscopy based metabolites with the Nightingale platform. We identify 124 metabolites 

that are associated with major depressive disorder (MDD), including 49 novel associations. 

No differences were seen between the metabolic profiles of lifetime and recurrent MDD.  

We find that metabolites involved in the tricarboxylic acid (TCA) cycle are significantly 

altered in patients with MDD. Integrating the metabolic signatures of major depression and 

the gut microbiome, we find that the gut microbiome might play an important role in the 

relationship between these metabolites, lipoproteins in particular, and MDD. The order 

Clostridiales, and the phyla Proteobacteria and Bacteroidetes were the most important taxa, 

which link the lipoprotein particles to MDD. Our study shows that at the molecular level 

energy metabolism is disturbed in patients with MDD and that the interplay between the 

gut microbiome and blood metabolome may play a key role in the pathogenesis of MDD.
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Introduction 

Major depression is an important determinant of population health, affecting people across 

the life span from adolescence to old age. The disease is associated with a plethora of 

debilitating symptoms beyond emotional dysregulation1, spanning from cognition, motoric 

function, neurovegetative symptoms to inflammation and disturbances of the immune 

system. MDD is further linked to increased risks of cardiometabolic disorders and mortality2. 

Currently, most antidepressant therapies modulate the monoamine pathway, but evidence 

is increasing for a more complex interplay of multiple pathways involving a wide range of 

metabolic alterations spanning energy metabolism3 lipid metabolism4 and inflammation5.  

There is increased interest in energy metabolism and mitochondrial dysregulation as a 

contributor to the pathogenesis of major depression6,7. The brain has high aerobic activity 

requiring 20 times more energy than the rest of the body8 and is vulnerable to impaired 

energy production6. A decreased brain energy production has been found in depressed 

patients 9. An excess of structural mutations in the mitochondrial DNA have been reported 

in individuals diagnosed with depression compared to controls6. There is a high prevalence 

(54%) of depression in patients with mitochondrial diseases10. Symptoms of depression such 

as loss of energy and appetite, tiredness, weakness, cognitive impairments, and sleep 

disturbance are also frequent in mitochondrial diseases9,11 Mitochondria are cell organelles 

that provide energy in the form of adenosine triphosphate via oxidative phosphorylation. 

Simultaneously, mitochondria are also responsible for generating reactive oxygen species 

(ROS) and anti-oxidants such as creatine, coenzyme Q10, niconitamide and glutathione, 

which protect cells from various deleterious effects of ROS12. The imbalance in the 

generation of ROS and antioxidants leads to oxidative stress, damages to lipids and proteins, 

inflammation and apoptosis 13,14.   

Disturbed plasma lipid concentrations have been implicated in the development of 

mitochondrial dysfunction13, with high density lipoprotein (HDL) inversely correlating with 

mitochondrial DNA damage15. A recent study using Nightingale’s proton nuclear magnetic 

resonance (NMR) metabolomics platform in nine Dutch cohorts (5,283 patients with 

depression and 10,145 controls) showed a shift towards decreased levels of high density 
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lipoprotein (HDL)-cholesterol and increased levels of very low density lipoprotein (VLDL)-

cholesterol and tri- and diglycerides particles in patients with depression 16. The relevance 

and molecular mechanisms underlying this shift are not understood.  Gut microbiome has 

been shown to be a major determinant of the circulating lipids, specifically triglycerides and 

HDL17 and is also known to regulate mitochondrial function through the production of 

microbial metabolites including short chain fatty acids (SCFA), lipids, vitamins and amino 

acids.18 Disruptions to the gut microbiome have been found in patients with major 

depressive disorder19,20. Metabolic signatures of the gut microbiome can be found in feces 

and blood17,21,22. In our recent study connecting the gut microbiome with the Nightingale’s 

metabolites21 we observed association of metabolites in plasma with 32 gut microbial 

groups. A higher abundance of family Christensenellaceae, genera ChristensenellaceaeR7 

group, Ruminococcaceae (UCG002, UCG003, UCG005, UCG010, UCG014), Coprococcus, 

RuminococcaceaeNK4A214group and Ruminiclostridium6 associated with a favourable lipid 

profile, i.e., decreased VLDLs and increased HDLs. Interestingly, decreased abundance of the 

same groups of gut microbiota we also find associated with higher scores on depressive 

symptoms in our study of gut microbiome and depression20. This raises the questions 1) 

whether the gut microbiome explains part of the shift in VLDL and HDL levels seen in 

patients with depression 16 and 2) can we use the metabolic signatures of the disease based 

on Nightingale’s metabolites as a tool to infer the association between gut microbiome and 

the disease.  

In this study, we harness the power of the UK biobank (UKB) to study over 63000 individuals 

including 8462 patients with MDD and 5403 patients with recurrent MDD, who are profiled 

for NMR spectroscopy based metabolites with the Nightingale platform. The largest study 

conducted to date discovers dysregulation of metabolites involved in the mitochondrial 

functioning in patients with MDD. When integrating the data with those of the Rotterdam 

Study to understand the interplay between the blood metabolome, gut microbiome and 

MDD, we find evidence that the altered gut microbiome in patients is a key player in the 

shift of the VLDL/HDL axis in MDD patients.
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Methods

Study design and participants

The study was performed in the UK Biobank dataset, which comprises of more than 500,000 

participants aged from 37 to 73 years during recruitment (2006 to 2010) for whom blood 

sampling was performed23. A random subset of 118,466 individuals was profiled for 

metabolites using a high-throughput 1H-NMR metabolomics (Nightingale Health, Helsinki, 

Finland) platform. The participants were registered with the UK National Health service and 

from 22 assessment centres across England, Wales, and Scotland using standardised 

procedures for data collection which included a wide range of questionnaires, anthropological 

measurement, clinical biomarkers, genotype data, etc. All participants provided electronically 

signed informed consent. UK Biobank has approval from the Northwest Multi-centre 

Research Ethics Committee, the Patient Information Advisory Group, and the Community 

Health Index Advisory Group. Further detail on the rationale, study design, survey methods, 

data collection are available elsewhere23. The current study is a part of UK Biobank projects 

30418 and 54520.

Definition of traits

For the initial analyses we considered two phenotypes including 1) lifetime major depressive 

disorder (MDD) and 2) recurrent major depressive disorder. Both lifetime and recurrent major 

depressive disorder were defined using the UK Biobank field code 20126, ICD10 codes F32 

(single episode) and F33 (recurrent) or if participants were on antidepressant therapy at the 

baseline. Individuals who reported any other mental illnesses (e.g., bipolar disorder, 

schizophrenia, psychosis, etc.) were excluded from the study. Controls included individuals 

who had not reported depression at the baseline.  

Definition of covariates

The covariates considered in the analysis included baseline age, sex, ethnicity, fasting time, 

assessment center, lifestyle factors including body mass index (BMI), smoking status, alcohol 

intake frequency, education and status regarding multiple medication from touchscreen or 

verbal interview and technical variables during the NMR measurement, i.e., batch and 
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spectrometer. Fasting time was defined as the time interval between the consumption of 

food or drink and blood sampling and natural log-transformed. Ethnicity was categorized to 

White, Asian (excluding Chinese), Black, Chinese, mixed and others. Smoking status was 

categorized to never, previous and current. Alcohol intake frequency was categorized to 1) 

daily or almost daily, 2) three to four times a week, 3) once or twice a week, 4) less than once 

a week. Education was categorized to 1) College or University degree, 2) A levels, advanced 

subsidiary (AS) levels or equivalent, 3) Certificated of secondary education (CSEs) or 

equivalent, 4) National vocational qualification (NVQ) or higher national diploma (HND) or 

higher national certificate (HNC) or equivalent, 5) O levels, general certificate of secondary 

education (GCSEs) or equivalent, 6) Other professional qualifications, and 7) none of the 

above based on the highest qualification. Information for those who chose “prefer not to 

answer”, was put as missing. Medication status was based on the medication codes collected 

from the verbal interview which were further coded to Anatomical Therapeutic Chemical (ATC) 

codes9. The medications considered in the covariates were selected based on our previous 

publication24, including five anti-hypertensives (C08, C09, C07, C03 and C02), anti-diabetes 

(metformin and other anti-diabetes under A10), lipid-lowering drugs (C10), digoxin (C01AA), 

anti-thrombotic (B01AC06), proton pump inhibitors (PPI, A02BC), hypnotics and sedatives 

(N05) and antidepressants (N06).  

Imputation of missing values in the covariates

Fast imputation of missing values by chained random forests was performed through the R 

package missRanger to impute the missing values for the shared covariates, including 

smoking status, BMI, alcohol intake frequency, education, and ethnicity. The information 

used in the imputation included baseline age, sex, smoking status, pack-years of smoking, 

alcohol intake frequency, physical activity from International Physical Activity Questionnaire 

(IPAQ) groups, ethnicity, BMI, education, blood pressure and waist-hip ratio. In brief, the large 

matrix was imputed with maximum of ten chaining interactions and 200 trees and weighted 

by the number of non-missing values; three candidate non-missing values were selected from 

in the predictive mean matching steps. 
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Metabolite profiling

The metabolites were measured in plasma using the targeted high-throughput 1H-NMR 

metabolomics platform of Nightingale (Nightingale Health Ltd; biomarker quantification 

version 2020)25,26 which includes 249 metabolites. They include clinical lipids, lipoprotein 

subclass profiling with lipid concentrations within 14 subclasses, fatty acid composition, and 

various low-molecular weight metabolites such as amino acids, ketone bodies and glycolysis 

metabolites quantified in molar concentration units. The technology is based a standardized 

protocol of sample quality control and sample preparation, data storage and automated 

spectral analyses. 

The data obtained from the baseline sampling was used25. For the samples with repeated 

measurements of the metabolites, one of the values was extracted at random. The 

metabolite values which were suggested to be technical errors in the quality control provided 

by Nightingale Health during the measurement procedure were treated as missing. A natural 

logarithm transformation of each metabolite was performed for the analysis. The zero values 

were replaced by the lowest value except for zero. Finally the transformed values were scaled 

to standard deviation units. 

Replication 

For replication we considered the results from the previously published study performed in 

Dutch cohorts by the BBMRI-NL consortium16. The study included 5,283 patients with 

depression and 10,145 controls, who were characterized using the Nightingale platform. We 

further looked up the association of metabolites in the Predictors of Remission in Depression 

to Individual and Combined Treatments (PReDICT) study. The design and clinical outcomes of 

PReDICT have been detailed previously 27. Briefly, the PReDICT study aimed to identify 

predictors and moderators of response to 12 weeks of randomly-assigned treatment with 

duloxetine (30-60 mg/day), escitalopram (10-20 mg/day) or cognitive behaviour therapy 

(CBT, 16 one-hour individual sessions). Eligible participants were adults aged 18-65 years with 

an active untreated major depressive episode without psychotic features. Severity of 

depression at the randomization visit was assessed with the 17-item Hamilton Depression 

Rating Scale (HRSD17) 28. Eligibility required an HRSD17 score ≥18 at the screening visit and ≥15 
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at the randomization visit, indicative of moderate-to-severe depression. Active significant 

suicide risk, current illicit drug use (assessed with urine drug screen) or a history of substance 

abuse in the three months prior to randomization, pregnancy, lactation, and uncontrolled 

general medical conditions were all excluded. Details on metabolomics profiling and 

statistical analysis are provided in the Supplemental text.

Statistical analysis

All analyses were performed in R statistical software. Descriptive analysis was performed 

using the ‘CBCgrps’ 29 library of R.

Metabolome-wide association analysis 

We used logistic regression to test the association of the metabolite levels with lifetime and 

recurrent depression. We considered four models with increasing number of covariates in the 

subsequent models to identify the effects of most known confounders in the regression 

analysis. Model 1 was adjusted for age, sex, fasting time, ethnicity, assessment centre, and 

technical variables during the NMR measurement, i.e., batch and spectrometer; model 2 was 

additionally adjusted for BMI; model 3 further for antidepressant use and model 4 

additionally adjusted for most known lifestyle factors including smoking status, alcohol intake 

frequency, physical activity, level of education and medication use for most chronic diseases. 

The current analysis included all 249 metabolites measured by Nightingale. False discovery 

rate (FDR) of 0.05 was used to identify significantly associated metabolites. We further 

performed a sensitivity analysis by removing those on antidepressant therapy. Finally, we 

performed forward regression analysis in R on model 4 adjusted residuals of depression-

associated metabolites to identify independent metabolites. A multivariate regression 

analysis was performed including all metabolites selected from forward regression analysis. 

Multiple testing correction was performed using false discovery rate (FDR).

Integration of metabolic signatures of human gut microbiome and MDD 

To identify patterns of correlation in the metabolic signatures of MDD and the human gut 

microbiome we estimated correlation coefficients from the effect estimates from linear 
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mixed regression of 1) Z-scoreMDD on Z-scoreMicrobe and 2) Z-scoreMicrobe on Z-scoreMDD. Z-

scoreMDD are the results of association analysis of MDD with Nightingale metabolites from the 

current study while Z-scoreMicrobe are the results of association analysis of the gut microbiome 

ascertained with 16S RNA sequencing and with the Nightingale metabolites published earlier 

by Vojinovic et al.21. Metabolites were clustered to 20 groups based on the method of Li & Ji 

30. These groups were used as random effects in the linear mixed regression. This step was 

performed to control for inflation in the statistic because of high correlation between the 

metabolites. Correlation between the metabolic profiles of the 361 gut microbial taxa and 

MDD was estimated as the square root of the product of the effect estimates from the two 

regressions described above. Significance of the correlation was tested using the Student’s T 

test. FDR was applied to correct for multiple testing. Next, we compared these T-Statistics 

(proxy association for MDD-Microbiome based on the MDD-metabolome) as obtained in the 

present study with the Z-scores (direct association of MDD-Microbiome) from Djawad et al. 

20.  

Mendelian Randomisation (MR) 

To elucidate the causal relationships between depression and the associated metabolites, 

we performed bi-directional two-sample MR using the R package of TwoSampleMR for the 

inverse variance weighted MR, heterogeneity test and pleiotropy test from MR-Egger 

regression31. The default pipelines in the packages were used. In brief, for the analysis 

using TwoSampleMR, the genetic score was based on the top SNPs (P-value < 10-6) with 

linkage disequilibrium R2 < 0.001 within 10,000kbps clumping distance. The overlapping 

SNPs were used without seeking proxy SNPs as we assumed that each meaningful locus 

should have multiple SNPs significant and overlapped. The metabolite GWAS were obtained 

from the MRC IEU OpenGWAS in MRbase31 using all the UK Biobank participants who were 

profiled for Nightingale metabolites (n=118,000). For MDD we used the publicly available 

results of the largest GWAS by Howard et al. 32.  

Results 

Baseline characteristics of the studied samples are provided in Table 1. Cases consisted of 

8462 individuals with a lifetime major depression and 5403 patients with recurrent major 
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depression and the controls included > 55420 participants. Patients are significantly 

younger, are more often female, smokers, have higher education and have a higher body 

mass index, are less physically active, consume less alcohol and have a black/mixed ethnic 

background compared to the controls (Table 1). Of the patients with history of depression, 

1958 (23%) were using anti-depressants at the time blood was drawn for the metabolomic 

characterization. The patients were found to use more often medication related to gastric 

diseases, pain and addiction (Table 1).  

Metabolome-wide association analysis for major depression using the Nightingale platform 

Results of the analysis are shown in Figure 1 and Supplementary Figures 1-4. Adjusting for 

age, sex and technical covariates, 178 (71.0%) metabolites of the 249 metabolites tested 

were significantly (false discovery rate (FDR) < 0.05) associated with MDD in the basic model 

1. When adjusting for BMI (model 2), 163 (65.5%) metabolites remained significantly 

associated with MDD and further adjusting for antidepressant use (model 3) yielded 132 

(53.0%) metabolites significantly associated (FDR<0.05). In the full model further adjusted 

for lifestyle factors including physical activity, alcohol consumption, smoking, education and 

medication use for cardio-vascular morbidity (model 4), a total of 124 (49.8%) metabolites 

remained significantly associated with MDD (Figure 1, Supplementary Table 1). These 

include 27 small to extremely large VLDL particles (chylomicrons) that were increased in 

individuals with MDD patients, 18 medium to very large sized HDL particles all of which 

were decreased in MDD, except the triglycerides in the small and medium HDL particles, 

and 5 intermediate density lipoprotein (IDL) particles all of which, except the triglyceride 

content in IDL, were decreased in MDD patients. Among fatty acids, total monounsaturated 

fatty acids (MUFA) and its ratio to total fatty acids was significantly increased in MDD while 

the ratios of linoleic acid (LA), omega 6 and polyunsaturated fatty acid (PUFA) to total fatty 

acids were significantly decreased in MDD patients. Further, apolipoprotein A1 (ApoA1), 

cholesteryl esters, citrate and sphingomyelins were significantly decreased in MDD while 

alanine and pyruvate were significantly increased in MDD patients (Figure 1, Supplementary 

Table 1). Findings were very similar when excluding those with antidepressant use instead 

of adjusting for antidepressants (Supplementary Figure 5, Supplementary Table 2). 

Comparing the results of lifetime MDD with that of the recurrent depression, the metabolic 

profiles were found to be highly correlated (Supplementary Figures 1-4). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276700doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276700
http://creativecommons.org/licenses/by/4.0/


11

Comparing our results with those of the BBMRI-NL 16, 113 of the metabolites that we find 

associated to major depression were also studied by BBMRI-NL. Supplementary Figure 6 

shows that the effect direction of the identified metabolites from model 4 in our study is 

consistent with that seen in the previous study by the BBMRI-NL consortium 

(Supplementary Figure 6, Supplementary Table 3. In the present study, we identified 49 

metabolites that were FDR significant that were not reported in the BBMRI-NL study 

(Supplementary Table 4). These include metabolites involved in mitochondrial functioning, 

including alanine, citrate, pyruvate, fatty acids including PUFA%, LA% and omega6%, 

sphingomyelins, IDL subfractions in addition to some VLDL and HDL subfractions that were 

not associated earlier. The association of depression to omega 6, PUFA, citrate and pyruvate 

was replicated in the PReDICT study (Supplementary Table 5). We could not replicate the 

finding on alanine and no data were available on sphingomyelins, IDL or other lipid 

fractions, although most of these show consistency in direction of effects in the BBMRI-NL 

study (Supplementary Figure 6). 

Mendelian Randomization (MR) analysis 

Results of bidirectional MR are provided in the Figure 2 and Supplementary Table 6. No 

significant pleiotropy was observed (Supplementary Table 7) in the MR analysis. However, 

significant heterogeneity was observed for most metabolites (Supplementary Table 8) 

suggesting violation of assumptions of MR. We therefore considered the results of the 

weighted median method as these have shown to produce consistent results in the 

presence of heterogeneity33. Significant MR results were obtained after multiple testing 

correction using FDR < 0.05 (Figure 2) when MDD was used as the exposure and metabolites 

as the outcome. Changes in all metabolites except ApoA1, citrate, pyruvate, alanine, total 

cholesteryl ester, sphingomyelins, medium and large HDL particles, HDL cholesterol, total 

concentration of HDL particles, total lipids in HDL and average diameter of HDL particles,  

and a few VLDL subfractions Figure 2) appeared to be associated to the genes that are 

associated to depression.  

Integration of human gut microbiome and metabolic signatures

We compared the pattern of association of MDD with the metabolites (metabolic signature 

of MDD) to the pattern of association of human gut microbial taxa with the metabolites 
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(metabolic signatures of the gut microbial taxa) (Supplementary Table 9, Figures 3 & 4). The 

association of the gut microbiota and the Nightingale metabolites is based on an 

independent study published earlier21. Figure 3 shows all taxa whose metabolic signatures 

show significant positive correlation (r > 0.50 & FDR < 0.05) with that of MDD and Figure 4

illustrates all taxa whose metabolic signatures show significant negative correlation (r < -

0.50 & FDR < 0.05) with the metabolic signature of MDD. We henceforth refer to this 

correlation of the metabolic signatures of MDD and gut microbial taxa as ‘proxy association’ 

between MDD and gut microbiome. When comparing this proxy association with the direct 

association of depression with the gut microbiome from a previous independent study20, we 

find a  highly significant correlation (r=0.58, p-value < 10-16)( Figure 5). This finding suggests 

that the Nightingale platform can be used as a proxy measure for the microbiome and that 

the correlation of the microbiome and MDD are mainly driven by lipoproteins, especially 

VLDL and HDL particles. Of note is that the bacteria which were associated with a healthy 

lipid profile, i.e., increased levels of HDL subfractions and decreased VLDL lipid levels, were 

found to be decreased in MDD (Figure 3).  Conversely, bacteria which were associated with 

an unhealthy lipid profile, i.e., decreased levels of lipids in HDL particles and increased levels 

of lipids in VLDL, were found to be increased in patients with MDD (Figure 4). 

Overall, we observed 223 bacterial taxa significantly associated with MDD using proxy 

association (FDRcorr < 0.05) (Figure 6, Supplementary Table 9). Figure 6 shows the complete 

gut microbiome profile of MDD at hierarchical levels. Family Ruminococcaceae (r=-0.60, 

FDR=2.9*10-13) and most of its genera were significantly negatively correlated with MDD 

patients. Several other families belonging to the order Clostridiales (Clostridiaceae (r=-0.59, 

FDR=8.8*10-13), Christensenellaceae (-0.68, FDR=1.8*10-17), Peptostreptococcaceae (r=-0.50, 

FDR=2.1*10-09), Defluviitaleaceae (r=-0.45, FDR=9.4*10-08) and Peptococcaceae (r=-0.41, 

FDR=2.3*10-06)) also showed significant negative correlation with MDD.  Families 

Lachnospiraceae (r=0.43, FDR= 6.3*10-07) and Eubacteriaceae (r=0.38, FDR=1.3*10-05) were 

significantly positively correlated with MDD, however, some genera belonging to these 

families were significantly negatively correlated with MDD (Figure 6). Further, several 

families belonging to the phylum Proteobacteria including Methanobacteriaceae, 

Rhodospirillaceae, Desulfovibrionaceae, Pasteurellaceae, Neisseriaceae and 

Oxalobacteraceae and phylum Bacteroidetes including Porphyromonadaceae, Rikenellaceae 
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and Prevotellaceae were significantly negatively correlated with MDD (Figure 6, 

Supplementary Table 9).  

Discussion  

We have identified 124 metabolites associated with major depression. No differences were 

observed between the metabolic profiles of lifetime MDD and recurrent MDD.  The findings 

of our study corroborate well with those of the previously published large study of the 

BBMRI-NL consortium16 in that most metabolites (90%) show consistency in the direction of 

association. Compared to the study of the BBMRI consortium, we find 49 metabolites that 

were not significantly associated to MDD earlier, including the amino acid alanine as well as 

citrate and pyruvate, which are two key metabolites of the energy metabolism pathway. 

The shift of the metabolites observed in depression was associated with bacterial taxa 

belonging to order Clostridiales, and phyla Proteobacteria and Bacteroidetes. 

Our findings extend previous reports on the major changes in lipid metabolism seen in 

patients with MDD. These include novel associations with polyunsaturated fatty acids 

(PUFA%, LA%, omega6%), sphingomyelins and various lipoprotein subfractions. In this study 

we replicate the shift in the VLDL / HDL axis in patients with MDD16. VLDLs are produced by 

the liver and are rich in triglyceride. The removal of triglycerides from VLDL by muscle and 

adipose tissue results in the formation of IDL particles, which we also find significantly 

associated with MDD in the present study (not reported earlier in BBMRI-NL). VLDL, IDL and 

LDL particles are atherogenic and are found to be increased in cardio-vascular morbidities34. 

HDL, on the other hand is synthesized in the liver and the intestine35. Apolipoprotein A1 

(ApoA1) is the major structural protein of HDL accounting for 70% of HDL protein35. HDL 

particles are responsible for reverse cholesterol transport and have anti-oxidant, anti-

inflammatory, anti-thrombotic, and anti-apoptotic properties34. HDLs have been shown to 

be protective against mitochondrial dysfunction and positively associated with 

mitochondrial oxidative function15. 

The finding that various VLDL particles and MUFA are increased and HDL particles and 

APOA1 are decreased in depression are consistent with those of previous studies16,36. Our 

study provides evidence suggesting that the microbiome is a key player in the shift in 
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VLDL/HDL axis in MDD. Integrating metabolic profiles of MDD and the gut microbiome, we 

find that the shift in most metabolites, particularly the HDL and VLDL fractions are 

associated to several families of gut microbiota. Those belonging to the order Clostridiales, 

and phylum Proteobacteria and Bacteroidetes are decreased in MDD patients and are 

associated with high HDL lipid levels and low VLDL lipid levels in blood while families 

Lachnospiracea and Eubacteriaceae are predicted to be increased in MDD patients and are 

associated with low levels of HDL subfractions and high levels of VLDL subfractions.  Earlier 

studies have shown that gut microbiome is a major determinant of the circulating lipids and 

has a bidirectional relationship with mitochondrial function17,18. Members of microbiota 

from order Clostridiales are known to provide transforming growth factor β enriched 

environment for promotion and accumulation of regulatory T cells in the gut37. These 

regulatory T cells have been found to be reduced in mood disorders38. It is interesting to 

note that we find several families belonging to the order Clostridiales associated with MDD 

in our proxy association. Our findings are in line with the previous study where Clostridiales

were found to be the predominant microbes mediating psychiatric disorders including 

depression39. 

This significant link between the microbiome and MDD may also shed light on the 

interpretation of the Mendelian Randomization experiments that did not yield significant 

evidence that any of the human genes associated to the metabolites investigated here. 

However, we find evidence that changes in lipoproteins and their subfractions and fatty 

acids associate with genes involved in MDD. We hypothesise that the metabolic change we 

observe is part of the disease process and that the genes that have been implicated in MDD 

explain the shift towards increased VLDL and decreased HDL subfractions (except medium 

and large HDL particles) in MDD. This may be explained by the pleiotropic effects of the 

genes determining lipid metabolism or by the changes in diet and physical activity that are 

consequences of the changes in a patient’s mood. Alternatively, we hypothesise that the 

change in these metabolites may be due to altered composition of the gut microbiome in 

depressed individuals, which may be driven by the genes that determine MDD. Such a 

genetically driven shift in microbiome is also seen in transgenic models for Alzheimer’s 

disease (AD) in which the introduction of the major genes involved in AD in mice, resulted in 

a shift of the microbiome40.  Although we cannot exclude that the VLDL levels in the blood 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 22, 2022. ; https://doi.org/10.1101/2022.06.21.22276700doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.21.22276700
http://creativecommons.org/licenses/by/4.0/


15

drive the gut microbiome and MDD, this mechanism is not supported by the Mendelian 

Randomization. Based on the Mendelian Randomization analysis, we hypothesize that MDD 

genes drive the gut microbiome, which determines the metabolic spectrum (VLDLs and 

small HDLs) in the blood17. The exact mechanism is to be determined in future experiments.  

The second major finding is the disruption in the mitochondrial metabolism, more 

specifically the tricarboxylic acid (TCA)/Krebs cycle. We find significantly increased levels of 

pyruvate and decreased levels of citrate, which are major components of the mitochondrial 

Krebs cycle41. To our knowledge, there is no evidence in human data for an association of 

these metabolites to MDD. Decreased citrate levels were found in the urine of rats in 

chronic unpredictable mild stress depression model42,43. Further, increased mitochondrial 

activity generating citrate and reduced oxidative stress parameters has been observed in 

patients with bipolar depression treated with lithium compared to untreated patients44. In 

the brain, citrate contributes to the regulation of neuronal excitability chelating and 

controlling the availability of divalent ions such as Ca+2 and Mg+2 41,45. Extracellular citrate is 

also used for neurotransmitter synthesis41,45. In animal models of induced oxidative stress, 

oral administration of citrate decreased brain lipid peroxidation and inflammation, liver 

damage, and DNA fragmentation46. 90% of the total citrate in the body is localized in 

bones47,48. Osteoblast metabolic production of citrate provides the source of citrate in bone 

in the presence of zinc, which inhibits the oxidation of citrate in mitochondria48,49.  Citrate is 

released in the plasma during bone resorption47. Decreased levels of blood citrate 

(hypocitricemia) causes loss of bone citrate and osteoporosis. The relationship of depression 

and osteoporosis is well established50, however, Mendelian randomisation study showed no 

causal effect of depression on osteoporosis51. Interestingly, administration of vitamin D 

increases the plasma and bone citrate concentrations by inhibiting mitochondrial citrate 

oxidation47. This implies that, if plasma citrate deficiency has a causal influence on major 

depression, the subgroup of individuals with MDD exhibiting low citrate levels may very well 

be treated with zinc and/or vitamin D supplements, both of which have shown to 

ameliorate symptoms of depression52,53.  

Low citrate levels may also be a result of intestinal dysbiosis or impairment of the pyruvate 

dehydrogenase complex that catalyses the conversion of pyruvate into acetyl-CoA54.  One of 
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the questions to answer in future studies is whether acetyl-CoA links the findings on lipids 

and amino acids. Cholesterol synthesis initiates from acetyl coenzyme A (acetyl-CoA)55. 

Acetyl-CoA is synthesized in mitochondria from the oxidative decarboxylation of pyruvate, 

oxidation of fatty acids or oxidative degradation of some amino acids (e.g., phenylalanine, 

tyrosine, leucine, lysine, and tryptophan)56. Acetyl-CoA is transported out of the 

mitochondria after being converted into citrate56. Cytosolic acetyl-CoA is used in fatty acid 

metabolism and lipid biosynthesis 57. We hypothesize that citrate, which we found to be 

decreased in depression may be the key metabolite connecting both the lipid and energy 

metabolism pathways via Acetyl-CoA.  

In conclusion, we have performed the largest and most comprehensive study investigating 

the association of NMR metabolites with major depression. We find that metabolites 

involved in the tricarboxylic acid (TCA) cycle are significantly altered in patients with MDD, 

suggesting perturbations in metabolites involved in energy metabolism in patients with 

MDD. Our finding that the interplay between the gut microbiome and the blood 

metabolome may play a key role in MDD and suggests that the gut microbiome may be a 

target for novel preventive and therapeutic interventions for MDD.
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Table 1: Descriptive Statistics for the patients with MDD and controls and recurrent depression 

Lifetime MDD Recurrent MDD 

Variables 0 (n = 55420) 1 (n = 8462) p 0 (n = 67805) 1 (n = 5403) p 

age0, Median (Q1,Q3) 59 (51, 64) 57 (49, 62) < 1e-10 58 (50, 64) 57 (49, 62) < 1e-10 

sex, n (%) < 1e-10 < 1e-10 

Female 25987 (47) 5474 (65) 32638 (48) 3529 (65) 

Male 29433 (53) 2988 (35) 35167 (52) 1874 (35) 

BMI, Median (Q1,Q3) 26.67 (24.17, 29.65) 26.81 (24.11, 30.32) 1.31E-06 26.68 (24.15, 29.72) 26.93 (24.1, 30.55) 1.44E-07 

Fasting_time, Median (Q1,Q3) 1.1 (0.69, 1.39) 1.1 (1.1, 1.39) < 1e-10 1.1 (0.69, 1.39) 1.1 (1.1, 1.39) 2.30E-09 

Ethnicity, n (%) 2.00E-10 3.13E-06 

  Asian 992 (2) 153 (2) 1420 (2) 111 (2) 

  Black 751 (1) 140 (2) 1078 (2) 102 (2) 

  Chinese 182 (0) 11 (0) 248 (0) 8 (0) 

  Mixed 247 (0) 81 (1) 312 (0) 51 (1) 

  Others 461 (1) 83 (1) 670 (1) 55 (1) 

  White 52787 (95) 7994 (94) 64077 (95) 5076 (94) 

Education, n (%) < 1e-10 < 1e-10 

  A_levels_AS_levels_or_equivalent 6127 (11) 1042 (12) 7413 (11) 655 (12) 

  CSEs_or_equivalent 2816 (5) 480 (6) 3636 (5) 304 (6) 

  College_or_University_degree 18209 (33) 2954 (35) 21836 (32) 1918 (35) 

  NVQ_or_HND_or_HNC_or_equivalent 4054 (7) 547 (6) 4921 (7) 346 (6) 

  None 9374 (17) 1117 (13) 11925 (18) 700 (13) 

  O_levels_GCSEs_or_equivalent 11742 (21) 1884 (22) 14414 (21) 1194 (22) 

  Other_professional_qualifications 3098 (6) 438 (5) 3660 (5) 286 (5) 

Smoking status, n (%) < 1e-10 < 1e-10 

  current 4752 (9) 1101 (13) 6217 (9) 749 (14) 

  never 31917 (58) 4232 (50) 38827 (57) 2673 (49) 
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  previous 18751 (34) 3129 (37) 22761 (34) 1981 (37) 

alcohol_freq, n (%) < 1e-10 < 1e-10 

  Daily_or_almost_daily 11791 (21) 1661 (20) 14071 (21) 1070 (20) 

  Less_than_once_a_week 14831 (27) 2938 (35) 19037 (28) 1917 (35) 

  Once_or_twice_a_week 14867 (27) 2038 (24) 18101 (27) 1265 (23) 

  Three_or_four_times_a_week 13931 (25) 1825 (22) 16596 (24) 1151 (21) 

physical_activity, n (%) 8.48E-06 0.06170695 

  high 22422 (40) 3299 (39) 27078 (40) 2100 (39) 

  low 9806 (18) 1678 (20) 12358 (18) 1051 (19) 

  moderate 23192 (42) 3485 (41) 28369 (42) 2252 (42) 

Medication 

A02BC_Proton_pump_inhibitors, n (%) 4176 (8) 1107 (13) < 1e-10 5561 (8) 735 (14) < 1e-10 

C01AA_Digitalis_glycosides, n (%) 134 (0) 15 (0) 0.30530126 164 (0) 6 (0) 0.07576164 

C10_LIPID_MODIFYING_AGENTS, n (%) 11083 (20) 1583 (19) 0.00578375 13527 (20) 1080 (20) 0.9589938 

A10BA02_metformin, n (%) 1456 (3) 268 (3) 0.00482339 1840 (3) 207 (4) 2.01E-06 

A10.excl.A10BA02_Anti_diabetes_excl.Metformin, n (%) 469 (1) 62 (1) 0.31366624 614 (1) 47 (1) 0.84782497 

B01AC06_acetylsalicylic_acid, n (%) 7719 (14) 970 (11) 8.00E-10 9503 (14) 643 (12) 1.64E-05 

C07_BETA_BLOCKING_AGENTS, n (%) 3617 (7) 561 (7) 0.73857387 4516 (7) 365 (7) 0.80899618 

C08_CALCIUM_CHANNEL_BLOCKERS, n (%) 4137 (7) 583 (7) 0.06264847 5058 (7) 385 (7) 0.38234663 

C03_DIURETICS, n (%) 4220 (8) 608 (7) 0.17061941 5133 (8) 392 (7) 0.41400884 

C02_ANTIHYPERTENSIVES, n (%) 833 (2) 103 (1) 0.04660797 1010 (1) 69 (1) 0.2345284 

C09_AGENTS_ACTING_ON_THE_RENIN_ANGIOTENSIN_SYSTEM, n (%) 7883 (14) 1100 (13) 0.00268185 9550 (14) 712 (13) 0.06769179 

N02A_OPIOIDS, n (%) 1651 (3) 627 (7) < 1e-10 2475 (4) 416 (8) < 1e-10 

N02B_OTHER_ANALGESICS_AND_ANTIPYRETICS, n (%) 14312 (26) 2770 (33) < 1e-10 18370 (27) 1839 (34) < 1e-10 

N02C_ANTIMIGRAINE_PREPARATIONS, n (%) 429 (1) 147 (2) < 1e-10 579 (1) 101 (2) < 1e-10 

N03A_ANTIEPILEPTICS, n (%) 545 (1) 253 (3) < 1e-10 816 (1) 134 (2) < 1e-10 

N04A_ANTICHOLINERGIC_AGENTS, n (%) 9 (0) 11 (0) 1.15E-05 14 (0) 10 (0) 3.55E-06 

N04B_DOPAMINERGIC_AGENTS, n (%) 110 (0) 26 (0) 0.05804231 147 (0) 12 (0) 1 
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N05A_ANTIPSYCHOTICS, n (%) 101 (0) 212 (3) < 1e-10 127 (0) 111 (2) < 1e-10 

N05B_ANXIOLYTICS, n (%) 54 (0) 88 (1) < 1e-10 81 (0) 64 (1) < 1e-10 

N05C_HYPNOTICS_AND_SEDATIVES, n (%) 90 (0) 155 (2) < 1e-10 155 (0) 90 (2) < 1e-10 

N06A_ANTIDEPRESSANTS, n (%) 46 (0) 1958 (23) < 1e-10 880 (1) 1297 (24) < 1e-10 

N06B_PSYCHOSTIMULANTS_AGENTS, n (%) 4 (0) 3 (0) 0.05378305 5 (0) 1 (0) 0.36873461 

N06C_PSYCHOLEPTICS_AND_PSYCHOANALEPTICS, n (%) 0 (0) 4 (0) 0.00030769 5 (0) 1 (0) 0.36873461 

N06D_ANTI_DEMENTIA_DRUGS, n (%) 290 (1) 27 (0) 0.01609039 353 (1) 16 (0) 0.03214806 

N07A_PARASYMPATHOMIMETICS, n (%) 14 (0) 5 (0) 0.09632632 25 (0) 3 (0) 0.45870756 

N07B_DRUGS_USED_IN_ADDICTIVE_DISORDERS, n (%) 30 (0) 17 (0) 9.76E-06 43 (0) 9 (0) 0.01309514 

N07C_ANTIVERTIGO_PREPARATIONS, n (%) 125 (0) 39 (0) 0.00010914 161 (0) 24 (0) 0.00556512 

N01A_ANESTHETICS_GENERAL, n (%) 4 (0) 3 (0) 0.05378305 14 (0) 2 (0) 0.33285557 
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Figure 1: Results of metabolome-wide association analysis 

Left Y-axis shows effect estimates and right Y-axis shows the strength of association. Red dashed line is FDR=0.05. Points denote the -log10(FDR). 
Lines denote the effect estimates from the four models. 
Model 1: MDD ~ age + sex + ethnicity + fasting time + technical covariates
Model 2: MDD ~ age + sex + BMI + ethnicity + fasting time + technical covariates
Model 3: MDD ~ age + sex + BMI + antidepressants + ethnicity + fasting time + technical covariates
Model 4: MDD ~ age + sex + BMI + antidepressants + education + smoking + alcohol intake + physical activity + PPI + antidiabetics + 
antihypertensives + lipid modifying agents + sleep medication + ethnicity + fasting time + technical covariates 
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Figure 2: Results of bi-directional Mendelian Randomization  

The first column from the left shows the direction of association of 124 significantly 
associated metabolites with MDD (Z-scores). Blue is negative association and red is positive 
association. The second column shows the results of the Mendelian randomization (MR) 
analysis when MDD is the exposure and microbiome is the outcome. The third column 
depicts the results of MR when metabolites were used as exposure and MDD outcome. 
Black stars represent significant ones after correcting for multiple testing using FDR.
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Figure 3: Association of metabolic profiles (z-scores) of ‘healthy’ gut microbiota and MDD 

A scatter plot showing the correlation between the metabolic profiles of microbial taxa that 
are negatively associated the metabolic profile of MDD. Each dot represents a metabolite.  
X-axis shows the association of the metabolite to microbial taxa and Y-axis shows the 
association of the metabolite to MDD. Different colours of the dots represent the class of 
the metabolite and the dots highlighted with black circles are the significantly associated 
metabolites with MDD in model 4. 
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Figure 4: Association of metabolic profiles (z-scores) of unhealthy microbiota and MDD 

A scatter plot showing the correlation between the metabolic profiles of microbial taxa that 
are positively associated the metabolic profile of MDD. Each dot represents a metabolite.  X-
axis shows the association of the metabolite to microbial taxa and Y-axis shows the 
association of the metabolite to MDD. Different colours of the dots represent the class of 
the metabolite and the dots highlighted with black circles are the significantly associated 
metabolites with MDD in model 4. 
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Figure 5: Scatter plot of direct and proxy association of microbiome with major depression. 
Taxa that have a p-value < 0.05 in both proxy and direct association are annotated. 

Each dot represents a microbial taxon. X-axis depicts the proxy association (T-scores) 
between microbial taxa and MDD inferred through their metabolic signatures and Y-axis 
depicts the direct association of microbial taxa with MDD (Z-scores) from the Rotterdam 
study performed in Radjabzadeh et al20. Taxa that are nominally significant in both proxy 
and direct associations are annotated. 
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Figure 6:  Hierarchical illustration of all healthy and pathogenic bacteria that showed 
significant correlation (r > 0.3 & FDR < 0.05) with MDD metabolic profile 

Red dots represent significant negative proxy association between microbial taxa and MDD 
and green dots represent significant positive proxy association between microbial taxa and 
MDD. The outermost layer depicts the phylum followed by, class, order, family and genus. 
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