
Springer Nature 2021 LATEX template

Multiple cohort study of hospitalized

SARS-CoV-2 in-host infection dynamics:

parameter estimates, sensitivity and the

eclipse phase profile

Chapin S. Korosec1,2*, Matthew I. Betti3, David W.
Dick1,2, Hsu Kiang Ooi4, Iain R. Moyles1,2, Lindi M. Wahl5

and Jane M. Heffernan*1,2*

1Modelling Infection and Immunity Lab, Mathematics and
Statistics, York University, 4700 Keele St, Toronto, M3J 1P3,

ON, Canada.
2Centre for Disease Modelling, Mathematics and Statistics, York

University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
3Department of Mathematics and Computer Science, Mount

Allison University, 62 York St, Sackville, E4L 1E2, NB, Canada.
4Digital Technologies Research Centre, National Research Council

Canada, 222 College Street, Toronto, C1A 4P3, ON, Canada.
5Mathematics, Western University, 1151 Richmond St, London,

N6A 5B7, ON, Canada.

*Corresponding author(s). E-mail(s): chapinSkorosec@gmail.com;
jmheffer@yorku.ca;

Contributing authors: matthew.betti@gmail.com;
dwdick@yorku.ca; hsukiang@gmail.com; imoyles@yorku.ca;

lwahl@uwo.ca;

Abstract

Within-host SARS-CoV-2 modelling studies have been published
throughout the COVID-19 pandemic. These studies contain highly vari-
able numbers of individuals and capture varying timescales of pathogen
dynamics; some studies capture the time of disease onset, the peak viral
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load and subsequent heterogeneity in clearance dynamics across individ-
uals, while others capture late-time post-peak dynamics. In this study,
we curate multiple previously published SARS-CoV-2 viral load data
sets, fit these data with a consistent modelling approach, and estimate
the variability of in-host parameters including the basic reproduction
number, R0. We find that fitted dynamics can be highly variable across
data sets, and highly variable within data sets, particularly when key
components of the dynamic trajectories (e.g. peak viral load) are not
represented in the data. Further, we investigated the role of the eclipse
phase time distribution in fitting SARS-CoV-2 viral load data. By vary-
ing the shape parameter of an Erlang distribution, we demonstrate
that models with either no eclipse phase, or with an exponentially-
distributed eclipse phase, offer significantly worse fits to these data,
whereas models with less dispersion around the mean eclipse time (shape
parameter two or more) offered the best fits to the available data.

Keywords: SARS-CoV-2, viral load, eclipse phase, in-host model,
reproduction number

1 Introduction

Since late 2019, the SARS-CoV-2 virus has significantly disrupted life glob-
ally [1–3]. Two years later, many countries are moving to consider SARS-CoV-2
and the resulting COVID-19 infection to be endemic [4], which will require
new strategies for forecasting, management and control. An endemic state will
necessitate a sustained reliance on data fitting [4], and on analytical tools, as
public health authorities manage risk and allocate resources in future years.

Mathematical models have been employed in the estimation of key param-
eters of the evolution of SARS-CoV-2 outbreaks at the population level.
Mathematical models are able to predict key parameters like the time depen-
dent epidemiological reproduction number [5], the effects of quarantine and
risk of importation [6], the effects of aggregate non-pharmaceutical inter-
vention [5], the risks associated with relaxing interventions competing with
increasing vaccination [7], and the effects of vaccination waning and boosting
on case loads [8]. All of these estimates can then be used with mathematical
models that estimate the impact of COVID-19 on healthcare systems [9].

Mathematical modelling has also been used to model SARS-CoV-2 in-host
infection dynamics. Mathematical models at the in-host level can estimate
parameters and outcomes that may be difficult to measure at the population
level. For example, SARS-CoV-2 in-host models have been used to model the
immune response generated by vaccines, to predict which populations vaccines
are likely to impact most [10], to estimate the efficacy of vaccines in individ-
uals [11], as well as to model T cell dynamics and cytokine secretion in mild,
moderate and severe cases of COVID-19 [12]. A major focus of SARS-CoV-
2 in-host modelling has been understanding viral load dynamics: examples
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include correlating viral load with mortality [13]; linking viral load dynamics
with host transmission [14, 15]; understanding the effects of antiviral ther-
apy on the shedding dynamics [16]; assessing individual-level heterogeneity in
mild cases [17]; and relating viral load with viral replication and the immune
response [18].

Recent studies have found that viral load levels in the upper respiratory
track are similar in symptomatic and asymptomatic individuals [19], and fur-
ther, that viral load can vary by five orders of magnitude and yet still display
no correlation with disease severity [18]. In contrast, others have reported that
high viral load titres are correlated with an increase in mortality as well as
disease severity [20–24], suggesting that case severity (hospitalized versus non-
hospitalized) may be an important factor in viral load. Furthermore, the time
to peak, as well as magnitude of peak viral load, are informative in understand-
ing the probability of transmission and when transmission is likely to occur
throughout the course of the disease [20, 25, 26]. Correctly characterizing viral
load dynamics with an accurate mathematical model is critical in accurately
predicting disease outcomes and transmission dynamics.

It is important to note that SARS-CoV-2 in-host viral load studies can
include cohorts of various sizes, in which individual shedding dynamics are col-
lected at various points in time throughout the disease time-course and across
the pandemic, both temporally and geographically. In addition, due to difficul-
ties inherent in early data collection, many studies capture limited dynamics of
the trajectory of viral load within a single individual. Using mathematical mod-
elling and statistical fitting methods, in-host models and parameter estimation,
relationships between different viral load data sets can be uncovered.

In the current study, we curated three previously published viral load data
sets for which temporal viral load trajectories were available [13, 16, 27], and
fit each data set to a series of target-cell limited in-host models. The data sets
used consist of primarily hospitalized individuals, and vary in size from 25
to 4344 individuals. Fitting these data sets to the same set of in-host models
allows us to quantify the reliability and reproducibility of fitted parameter
values, both within and among studies. We are also able to address how real-
world constraints such as data sets containing fewer individuals, or data sets in
which the peak response was not captured, affect the uncertainty of the fitted
parameters and estimated reproduction number, R0.

Previous SARS-CoV-2 in-host studies have employed an exponentially-
distributed eclipse phase to describe viral load dynamics [13, 15, 16, 28–30].
The eclipse phase is included to model the delay between successful target
cell infection and the production of virus; biologically, the input virion is
“eclipsed” by the cell, initiating a multitude of processes that ends when the
cell is able to productively bud new virions. The mean duration of this pro-
cess, referred to as the mean eclipse time, varies between diseases, cell types,
and most likely across various strains of the same virus. For example, the
length of the eclipse phase for influenza virus has been found to vary between
6 to 12hr depending on the strain [31–34]. The probability distribution for
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duration of the eclipse phase takes into account the multiple timescales for
the succession of biological mechanisms that end in viral budding, and also
accounts for the stochastic variability inherent to these processes [35]. Incor-
porating a single eclipse compartment, as done in previous SARS-CoV-2 viral
load studies [13, 15, 16, 28–30], implicitly assumes an exponentially-distributed
eclipse duration. Biologically, this corresponds to the unrealistic situation in
which some cells will instantaneously enter a budding state at the moment
of infection, neglecting eclipse dynamics entirely. The probability distribution
for the eclipse phase duration for SHIV, for example, has been found to best
be described by a fat-tailed distribution [36], and for influenza by a normal
or log-normal distribution [32]. Therefore, another focus of this work was to
fit multiple published SARS-CoV-2 data sets to models with varying eclipse
time distributions to assess via log-likelihood estimators (including penalties
for additional parameters) if a particular model is preferred.
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Reference Néant et al. [13] Jones et al. [27] Goyal et al. [16]
Timeframe Feb. 5-April 1, 2020 Feb. 24, 2020 - April 2, 2021 Jan. 23 - Feb 23, 2020

Location France Germany (Berlin)
Singapore, Germany,
South Korea, France

Cohort size 655 4344 25
Number

Hospitalized
655 3475 25

Median Age
(range)

60 (48-72) 52 (29-74) 47

Acquisition
Method

Nasal Sputum Nasal & Sputum

Table 1 Summary of individual SARS-CoV-2 viral load cohorts used in this work.

2 Methods

2.1 Clinical data acquisition and summary

All viral load data sets used in this work were previously published, the details
of which are summarized in Table 1. If unavailable directly from the published
source, we digitized the data using the software WebPlotDigitizer (version
4.5) [37]. All data sets are in units of log10 copies per mL. For all data sets we
fit to cohorts of individuals, that is, viral load measures were grouped and fit
separately for each study, but not for each individual within a study.

The Goyal data set [16], consisting of 25 individuals whose viral load time
courses were collected from a mix of throat and nasopharyngeal swabs, was
obtained from various sources: 11 hospitalized individuals from Singapore,
median age 47 (31-73), symptom onset ranging from January 14-30, 2020 [38]; 9
hospitalized individuals from Munich, Germany, described as young to middle
aged, symptom onset occurring in January, 2020 [39]; 1 hospitalized individual
from South Korea, aged 35 years old, symptom onset 18th of January, 2020 [40];
4 hospitalized individuals from Paris, France, median age 46, symptom onset
mid-January, 2020 [41]. Measurement times in this data set correspond to days
after first positive test. For the fits to this data set completed in this work, all
values below the limit of 2 log10 copies/mL were considered below the detection
threshold and censored.

The Néant data set [13] includes data obtained from 655 hospitalized indi-
viduals with a median age of 60. Viral load measurements were collected via
nasal swabs from February 5 to April 1 2020 in France, where measurement
times correspond to days since symptom onset.

The Jones data set [27] consists of viral load measurements from 4344
individuals, 3475 of which were hospitalized, with a median age of 52. Viral
load measurements were acquired by sputum swabs from February 24, 2020,
to April 2, 2021 in Berlin, Germany. Measurement times correspond to days
since peak viral load. We note that Jones et al [27] report on a much larger
data set consisting of 25,381 individuals, but for this work we only considered
the subset of those (n = 4344) for which viral load time courses were available.
Jones et al. [27] report that 80% of the 4344 were hospitalized.
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2.2 Target-cell limited model

To model the within-host dynamics of SARS-CoV-2 viral shedding we use a
target-cell limited model similar to that previously used to model influenza
A [42] and SARS-CoV-2 [13, 28]. The model includes target cells (yt), pro-
ductively infected cells (yB) capable of budding infectious virus (v) and
non-infectious virus (w), and non-productively infected cells in the eclipse
state, which is extended to include k eclipse stages (yk). Target cells are
assumed to be infected by infectious virus at rate α (mL·d−1·copies−1).
Newly infected cells enter the eclipse phase. We consider a range of eclipse
time distributions, each of which has a mean duration that is fixed to 1

E
days. In particular, we extend the typical one-compartment model, which
yields exponentially-distributed eclipse durations, to a linear chain of k eclipse
stages [43], yielding Erlang-distributed eclipse durations with shape parameter
k. At the end of the eclipse phase, infected target cells enter the productively
infected cell class, yB . These cells have a constant loss rate D (d−1) and pro-
duce virions at rate B ( copies

d·cell ). Following the SARS-CoV-2 modelling work of
Néant et al. [13], we assume that a fraction, ε, of virions are infectious, and the
remaining (1-ε) are non-infectious. Both infectious and non-infectious virions
are cleared at a constant rate of C (d−1). A schematic of this target-cell lim-
ited model is shown in Fig. 1a, and is given by the following system of ordinary
differential equations:

Target cells :
dyT
dt

= −αyT v (1a)

Eclipse stage 1 :
dy1
dt

= αyT v − (D + kE)y1 (1b)

Eclipse stage 2...k :
dyj
dt

= kEyj−1 − (D + kE)yj , j = 2...k (1c)

Budding :
dyB
dt

= kEyk −DyB (1d)

Infectious Virions :
dv

dt
= εByB − αyT v − Cv (1e)

Non-infectious Virions :
dw

dt
= (1− ε)ByB − Cw. (1f)

We also consider a reduced model with no eclipse phase; in this case newly
infected cells instantaneously become productively infected (budding) cells.
The no-eclipse model is:

Target cells :
dyT
dt

= −αyT v (2a)

Budding :
dyB
dt

= αyT v −DyB (2b)

Infectious Virions :
dv

dt
= εByB − αyT v − Cv (2c)
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Fig. 1 Schematic of target-cell limited model described in section 2.2.

Non-infectious Virions :
dw

dt
= (1− ε)ByB − Cw. (2d)

2.3 Assumptions on initial conditions and parameter
values

For each cohort fit, we assume an initial time of infection tinf (days), where
tinf ≤ 0, and where tinf is determined through fitting with bounds on the fit
of 0-14 days. Thus tinf represents an expected initial time of infection for the
cohort and the standard error in the estimate of this parameter may reflect
heterogeneity in initial times across individuals. We assume an initial target cell
concentration of 1.33x105 cells·mL−1 as used in previous studies [13, 28, 44].
This value is obtained by assuming the upper respiratory tract contains 4x108

cells distributed evenly in a volume of 30 mL, and where only 1% of the cells
express the ACE2 receptor associated with viral entry [45]. We assume an
initial condition of one productively infected cell in the upper respiratory tract
(yB = 1 cell/30 mL). The initial condition for all yj eclipse states is 0. The
initial number of infectious and non-infectious virus particles is assumed to be
0.

We assume the proportion of produced infectious virions to be fixed at ε =
10−4, which was determined to be the upper bound in SARS-CoV-2 infection in
non-human primates [29]; non-infectious virions are therefore produced at rate
(1− ε). SARS-CoV-2 viral titres have been measured as soon as 2 hours post
infection [46]; as not all parameters in the model can be fit, we fix the mean
eclipse duration to 1/E = 0.2 days, which corresponds to viral production
beginning, on average, 4.8 hours after cell infection. For each cohort we fit
the parameters α, B, C, and D. A summary of all parameter assumptions and
initial conditions can be found in Table S1.
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2.4 Parameter estimation and fitting assessment

All fits to Eq. 1 were performed in Monolix [47] (Version 2020R1) using
non-linear mixed-effects models. Individual parameters for each data set are
determined by the maximum likelihood estimator Stochastic Approximation
Expectation–Maximization (SAEM), and all fits met the standard convergence
criteria (complete likelihood estimator). For all data sets we fit the parame-
ters α, B, C, D and tinf, and all parameters were assumed to be lognormally
distributed. Further details of the fits, including priors, population values, and
random effects, are given in Table S1.

2.5 Sensitivity and error analysis

We report residual errors assuming a ‘combined’ error model, whereby the
error term in the observation model is composed of a constant fitted term and
a term proportional to the structural model [47].

We perform sensitivity analysis to characterize the response of model out-
puts to variation in the fitted parameters as well as the fixed parameter, E.
Latin hypercube sampling (LHC) and Partial Rank Correlation Coefficient
(PRCC) [48] are employed to study the effects of model outcomes on the peak
value of each state variable.

An independent error analysis is also completed to complement the fit
errors found by Monolix. Here we compute the mean standard error between
the curve produced by the target-cell limited models and the Jones data set
[27]. For each set of fitted parameters, for each value of k, the mean standard
error is computed by

σSE = 〈|(Vt − J(t))|〉 , (3)

where Vt = log [v(t) + w(t)] and J(t) is the average value from the Jones data
set at time t. To compute σSE , we bin the Jones data in 0.5 day intervals,
where the data in each interval is averaged.

3 Results

3.1 Cohort-dependent variation in viral load dynamics

A schematic illustrating our model for k > 0 is shown in Figure 1. Figure. 2a
depicts the timeline of the studies used in this work, which range from January
2020, to April 2021, and also vary both geographically and in cohort size
(details provided in Table 1).

Examples of fits to all data sets are shown in Fig. 2b-d. In Fig. 2e we report,
as a function of k, three different log-likelihood fit criteria: AIC (Akaike infor-
mation criterion), BIC (Bayesian information criterion), and BICC (corrected
Bayesian information criterion). Noting that a lower log-likelihood criterion
suggests a more preferred model, we find non-monotonic behaviour in all cri-
teria as a function of increasing k. The BIC, BICC, and AIC all increase from
k = 0 to k = 1, and then decrease to a minimal plateau from k = 2 to k = 8.
We find that from k = 8 to 10 the BIC and BICC values are approximately
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Fig. 2 (A) Timeline of viral load studies used in this work. Further details about each study
can be found in Table 1. (B)-(D) log10 viral load and examples of cohort fits for each data
set used in this work. (E) Log-likelihood criteria for best fit as a function of number of eclipse
stages, k. The value of each criterion at k = 0 has been subtracted for visual comparison.

constant, while the AIC displays a slight increase at k = 9. Irrespective of the
log-likelihood criterion used, the best fit occurs when k = 3. However values
of all the log-likelihood parameters are within ≈2 units of the minimum log-
likelihood for k = 2 through k = 8, suggesting that models with two through
eight eclipse stages cannot be rejected as being the most appropriate model to
fit these data (see Discussion for further details).
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In Fig. 3 we plot the best fit parameter values as a function of k for the
Goyal, Jones and Néant cohorts, while Fig. S1 displays the estimated time
of infection, tinf. The error bars in Fig. 3 show the residual error for each
parameter determined by the fit [47], and open symbols give the mean and
standard deviation of best fit parameters across all accepted models (k = 2...8).
The best fit values of each parameter for each data set, as well as the mean
and standard deviation across all k values, are provided in Table S2.

A general conclusion from Fig. 3, consistent with the results from the log-
likelihood criteria, is that best-fit parameter values for k = 0 and k = 1
can vary substantially from best-fit values obtained for k ≥ 2. Focusing on
the results from accepted models (open symbols) we see that the estimated
budding rate, εB, is fairly similar across cohorts, and is relatively insensitive to
k for k ≥ 2. The best-fit values of α and D are also relatively robust to changes
in k for k ≥ 2, but vary substantially across the different cohorts. Finally,
the parameter C shows substantial variability among cohorts, and within each
cohort shows a high sensitivity to k.

A Partial Rank Correlation Coefficient sensitivity analysis is performed
to assess how model fit parameters affect the peak response from each state
variable, the result of which is shown in Figure S5. We find the sensitivity
analysis to reveal intuitive trends based on the model structure for all fitted
parameters. LHS parameters close to +1/-1 indicate strong influence on the
outcome measure, where negative values suggest the parameter is inversely
proportional to the outcome measure, and PRCC values whose magnitude is
greater than 0.5 are considered important [49]. We find peak v and w have
positive PRCC values of ∼1 for the budding rate, B, and less than −0.5 PRCC
values for the clearance and cell removal rates C and D, respectively. We also
find the yB peak to have a PRCC value of less than −0.5 for the cell removal
rate, D.

3.2 R0 analysis

The basic reproduction number, R0, is defined by the average number of sec-
ondary infected cells resulting from a single infected cell in a population of
susceptible cells at the beginning of infection [50–52]. Following the method
of Diekmann and Heesterbeek [50, 51], we derive R0 for our target-cell limited
model (Eq. 1) for k eclipse phases (k ≥ 1) assuming initial disease-free equilib-
rium conditions (see supplementary material for calculations of the disease-free
equilibrium). For R0 corresponding to Eqs. 1 we use the notation Rk>0

0 . We
find Rk>0

0 to be

Rk>0
0 =

εαByT0

D(αyT0
+ C)

(kE)k

(D + kE)k
=

εαByT0

D(αyT0
+ C)

S(k) (4)

where S(k) denotes the probability that an infected cell survives all k eclipse
stages, since the probability of maturing through a single eclipse stage rather
than dying is given by kE/(kE + D). In the limit of k = 0, corresponding to
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Fig. 3 Best-fit parameter values for the Goyal, Néant and Jones data sets as a function of
the number of eclipse stages, k. Error bars are the residual error determined through the
fit. Open symbols (on the right) of each plot are the mean and standard deviation for each
parameter value across all accepted fits (k = 2...8). (A) The per-target cell attachment rate,
α. (B) The infectious virion budding rate, εB. (C) The virion clearance rate, C, and (D)
The cell removal rate, D.

Eqs. 2, Rk=0
0 is found to be

Rk=0
0 =

εαByT0

D(αyT0
+ C)

. (5)

Thus, Rk>0
0 = Rk=0

0 S(k). Therefore, the effect of the eclipse phase on the basic
reproduction number is simply to reduce R0 by S(k).

Fig. 4a displays Rk=0
0 and Rk>0

0 as a function of the number of eclipse
stages, k, for all three data sets. We find the Néant and Jones data sets to
have estimated R0 values of ∼10 and ∼17.5 across all accepted model fits
(k = 2...8). As reflected in the best-fit parameter estimates, the use of k = 0
or k = 1 can result in markedly different predictions for R0; this is particularly
striking in the Néant data set. The R0 estimate obtained for the Goyal data
set shows substantial sensitivity to the choice of k, which may be a result of
the small cohort size, and limited number of data for this study.
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Fig. 4 (A) R0 as a function of k for the best-fit parameter values for each data set. Open
symbols (on the right) show the mean and standard deviation of R0 across all accepted fits
(k = 2...8). (B) The probability of surviving the eclipse phase, S(k) versus the number of

stages in the eclipse phase, k. S(k) approaches the limit e−
D
E as k → ∞.

To gain further insight into the influence of the fitted parameters α, B,
C, and D on R0 with increasing k, we compute R∞0 = limk→∞Rk>0

0 . Using a
straightforward application of L’Hôpital’s rule, we obtain

R∞0 = lim
k→∞

Rk>0
0 = Rk=0

0 lim
k→∞

S(k) = Rk=0
0 lim

k→∞

(kE)k

(D + kE)k
= Rk=0

0 e−
D
E .

(6)

Fig. 4b shows the approach of S(k) to the limiting value of e−
D
E given param-

eter values D and E of 0.32 and 5 d−1, respectively. This figure shows that as
the number of eclipse stages increases, S(k) monotonically decreases towards

the e−
D
E limit.

We point to the narrow y-axis scale in Fig. 4b, showing that, for the param-
eter values illustrated here, varying the number of eclipse stages over a large
range has a negligible effect on R0. In particular, fixing E = 5 d−1, and taking
D = 0.29, 0.32, or 0.48 as estimated for the Néant, Jones and Goyal studies
respectively (Table S2), changing k from 0 to the limit as k → ∞, we find a
maximum percent reduction in R0 of 5.3, 5.8 and 8.3% in these three studies,
respectively.

Although R0 is relatively insensitive to k at fixed parameter values, we
also note that as k changes, the best-fit parameter values may also change.
Nonetheless as seen in Fig. 4a, estimates for R0 are relatively insensitive to k
for the Jones and Néant data sets across the accepted models (k = 2...8).

In Fig. 5 we plot R∞0 as a function of α, εB, C, and D. Coloured regions
highlight the standard deviation of parameter estimates across all models for
best-fit parameters for each of the three data sets, while the solid coloured
vertical lines are the mean parameter estimates. The steepness of the curve in
each region thus reflects the sensitivity of R0 to changes in each parameter.
For example we find that the best-fit α values from the Goyal cohort lie in a
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region of parameter space where changes in α have little effect on R0, whereas
slight changes in the α value estimated for the Néant cohort may appreciably
affect R0 (Fig. 5a). Clearly R∞0 (Eq. 6) has a linear dependence on B with
constant slope. Thus, variations in B for any study would lead to a similar
shift in R0 (Fig. 4b). R∞0 monotonically decreases as a function of both C and
D; the Goyal fits are found to have the highest values for both parameters,
whereas the Néant and Jones fits have quite similar values for all k. Thus, this
analysis suggests that the larger values of R0 estimated for the Goyal cohort
may be largely attributed to the larger α values estimated for that data set,
as compared to the Néant and Jones data sets (Fig. 3a).

Fig. 5 (A-D) R∞0 (Eq.6) as a function of α, εB, C, and D, respectively. Coloured regions
corresponding to the standard deviation of parameter estimates across all models, while the
solid vertical lines are the mean parameter values across all models. For best fits to the
Goyal, Néant, and Jones data sets for all k > 0 are shown for illustrative comparison.



Springer Nature 2021 LATEX template

14 Multiple cohort...

4 Discussion

We employed a series of target-cell limited models accounting for infected cell
budding, a loss rate of infected cells, differing eclipse stage dynamics, and infec-
tious and non-infectious virion production and clearance. We fit these models
to three previously published SARS-CoV-2 viral load cohorts comprised of
mostly hospitalized individuals: Néant [13] (n = 655), Jones [27] (n = 4344) and
Goyal [16] (n = 25). We varied the number of eclipse stages, k, from 0 (Eqs. 2)
to 1-10 (Eqs. 1), where all fits consist of the same number of fitted parame-
ters, and begin with similar priors (See Table S1 for this information). All fits
were completed in Monolix [47] which employs the SAEM algorithm, and all
fits met the log-likelihood convergence criteria (see Methods for details).

Eclipse dynamics capture the inherent delay between the moment that a
virion infects a target cell and the time at which the cell begins to bud new viri-
ons. A single eclipse compartment (k = 1) yields an exponentially-distributed
eclipse duration, and is often implemented in in-host models as the simplest
way to incorporate an eclipse stage (see [53]). This “simplest approach” to
model development is an important guiding principle, particularly when faced
with noisy, real-world clinical data. Increasing the number of freely fit parame-
ters can lead to overfitting and may potentially introduce identifiability issues;
interpreting the biological consequences in the resulting parameter fits becomes
more difficult or impossible. Although extending the model from k = 0 to
k = 1 involves introducing a new parameter – the eclipse rate E – we fixed this
parameter based on previous SARS-CoV-2 literature [46] for all k > 0 to allow
for a more fair comparison between models for k = 0 and k > 0. Thus, we fit
the same number of parameters, each with consistent priors, for all models.

While the lowest AIC obtained among a group of candidate models
(AICmin) indicates the most preferred model, the amount by which the AIC
of a particular model exceeds this minimum (∆AIC = AIC - AICmin) is a key
parameter in accepting or rejecting candidate models. A value of ∆AIC of less
than 2 reflects ‘equal support’ for the two models. ∆AIC of 2-10 is considered
‘substantial support’ for the less preferred model, while ∆AIC of 10 or more
reflects ‘essentially no support’ [54]. For our models, all three log-likelihood
criteria increase substantially from k = 0 to k = 1, followed by a decrease to a
near-equivalent preference for k ≥ 2. We find that k = 3 is the most preferred
model with the lowest AIC (Fig. 2e). Values of ∆AIC for k = 2...10 (excluding
3) vary between 0.4 (k = 4) and 3.4 (k = 9). Thus, although k = 3 results in
the lowest AIC, all k > 1 models considered in this study are either considered
‘equivalently preferred’ or have ‘substantial support’ as an acceptable model.
For k = 0, ∆AIC = 4.8, suggesting that the inclusion of an eclipse phase is
justified in fitting these data. However for k = 1, ∆AIC =24.4; thus the use of
a single eclipse compartment (exponentially-distributed eclipse duration) can
be strongly rejected.

The finding that models containing k > 1 eclipse stages are preferred over
k = 1 suggests that the eclipse duration is not best-described by an expo-
nential distribution; rather, for k > 1 in Eqs. 1 the eclipse stage duration is
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described by an Erlang distribution identified by its shape and scale, with a
shape parameter greater than one. For illustrative purposes, in Fig. 6 we plot
the distribution of the eclipse duration for k = 1 through to k = 10. One can see
that the eclipse duration distribution for k = 2 resolves the major issue raised
previously in modelling SHIV [35], namely, that with an exponential distribu-
tion, many cells instantly begin budding at the moment of virion attachment
to the target cell. For k > 1, this issue is resolved as the probability of an
eclipse duration of zero is negligible. We conclude that the simplest model that
provides a statistically acceptable fit to the data has a shape parameter of at
least k = 2, and find the strongest support for k = 3.

Our finding that a target-cell limited model with k > 1 has more support
compared to that with k = 1 mirrors findings for model fitting of other in-host
infections [35, 55–57]. For example, recent rigorous modelling of the within-host
kinetics of Orthohantavirus also concluded that k > 1 yielded more preferred
models, where k = 3 was also found to have the strongest support [58]. Further,
two-parameter distributions, such as Weibul, are considered more appropri-
ate when stochastically modelling eclipse waiting times, where eclipse waiting
times have been shown to have a significant affect on viral co-infection [59].

Despite these strong arguments for using k > 1 eclipse stages, we also
analytically explored how varying k alters R0. We found that, as the number of
eclipse stages k increased, R0 converged to Rk=0

0 e−
D
E . We also found that, for

our model parameter values for D and E corresponding to the Jones, Néant,
and Goyal data sets, the maximum decrease in R0 as k →∞ is ∼5-8%. Thus
previous studies of SARS-CoV-2 that assume a single eclipse compartment
(k = 1) may see little impact on estimated R0 values if they were to instead
use k > 1 eclipse stages (assuming the values of other fitted parameters remain
constant). Indeed, where we consider fitting models consisting of one to ten
eclipse stages, for our Jones fits (where n = 4344), we find very little variability
in R0 across all k eclipse stages (Fig. 4a), and with the exception to k = 1, we
find little variability with k in R0 estimated for the Néant data (n = 655) as
well. We discuss the highly variable R0 estimated for the Goyal (n = 25) data
set in more detail below.
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Fig. 6 Eclipse duration distributions are shown for k = 1 (exponential, red line) and
k = 2...10 (Erlang, grey lines). For k = 1, a substantial fraction of cells have near-zero eclipse
times; this issue is resolved for k > 1.

We can compare our parameter results with those previously estimated
for SARS-CoV-2. Previous in-host modelling work on SARS-CoV-2 viral load
dynamics have utilized models with k = 1 eclipse stages [13, 15, 16, 28–30].
In this work, for our k = 1 model fits (Eqs. 1) we find good agreement in
our fitted parameters with those previously reported for SARS-CoV-2. Our
k = 1 parameter estimates for the Néant data set [13] agree well with those
published by Néant et al. [13]. Furthermore, where Néant et al. [13] fix the
clearance rate to C = 10, we fit this parameter and find C = 17.8± 7 d−1. We
find a lower budding rate, B; where Néant et al. [13] find B = 6.08 × 105 we
find B = 4.88×104. This discrepancy in B is most likely due to the differences
in the time of infection, tinf, which we estimate to be -11.3 days versus the
-4.8 days determined by Néant. For their target-cell limited model. Néant et
al. [13] also find a mean of R0 = 36, where we find R0 = 41 for k = 1; however,
across accepted models we find a much lower mean R0 of 9.4 (Fig. 4a).

The Néant data set consists of 655 SARS-CoV-2 positive hospitalized indi-
viduals with samples acquired between February and April of 2020 in France.
The Jones data set consists of 4344 individuals from Berlin, 80% hospitalized,
with samples acquired over a much longer time frame from February 2020 to
April 2021. Thus, the Jones data set, consisting of more individuals, will not
only have captured greater heterogeneity in SARS-CoV-2 in-host viral load
dynamics (such as clearance and peak dynamics) but will also reflect a myriad
of variants that swept through Germany over the course of 2020-2021. While
the mean R0 we estimate using the Néant data set was 9.4, we find the mean
R0 for the Jones data set to be 17.1. Referring to the best-ft parameter esti-
mates in Fig. 3, we see that the higher R0 computed for the Jones fits is driven
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in part by a higher estimate of α for this data set. This higher attachment rate
might be related to the increased infectivity of variants that emerged later in
2021 [60, 61].

Fig. 7 For illustrative purposes, parameters for model Eqs. 1 were varied around the mean
values obtained for [27] to show their relative influence over the viral load model dynamics.
We can see, for example, that the time-to-peak is largely influenced by α and E, the dynamics
of the rise to the peak are influenced by α, E, B and C, while the slope of the viral load
from peak to complete clearance is determined by D.

We were also interested in exploring the reliability of model parameter
estimation from low resolution data, where initial and peak dynamics may not
have been captured. Consider the Goyal data set, which includes 25 individuals;
times in these data correspond to days after a first positive test. It is known
that symptom onset is correlated with peak infectious load where for SARS-
CoV-2 symptoms have been shown to begin within 1 day of peak viral load [62].
Typically individuals will not seek testing until after symptoms have begun,
thus, the Goyal data set likely captures late-stage dynamics, past the peak
of infection; this conjecture is supported by the fact that the maximum viral
load in this data set is considerably lower than that observed in the other
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data set. This limited data resolution poses an issue when trying to estimate
parameters, such as the budding, clearance and per-target cell attachment rate,
which are particularly important during the early-stage dynamics, as well as
the initial time of infection. To illustrate the importance of sampling timescales
on parameter estimation, we varied parameters for model Eqs. 1 around the
mean values estimated for [27] to show their relative influence over the viral
load dynamics (see Fig. 7). We observe that parameters B and C have a very
similar influence over the slope of the initial rise in viral load. Similarly, E and
α both influence the time to peak. Finally, we note that the post-peak slope
remains at the same slope when any of these four parameters are changed;
only D changes the slope of viral load decay. These conclusions are mirrored
in the PRCC analysis (Fig.S5), which demonstrates that B, C and E strongly
affect the peak viral load, while parameter D influences the peak density of
budding cells.

If initial infection dynamics are not present, it is therefore more difficult to
estimate parameters without also considering parameter bounds and literature-
informed priors. For data sets that do not capture the peak viral load, valid
estimates of the parameter D should be possible, but the other parameters
may not be uniquely identifiable. Taken together, Fig. 7 and Fig. 3 suggest
that the parameter C is particularly hard to identify in these data, and cannot
be quantified with precision; this is presumably because viral clearance is very
fast when compared with the timescale of infected cell death. These parameter
variations underlie the considerable variation in R0 values estimated for the
Goyal data set, ranging from 18 to 36.5 as k changes (see Fig. 4). In a similar
in-host study comprised of 13 SARS-CoV-2 positive individuals, Goncalves
et al. determine an R0 of 8.6, but also report a large range of values of 1.9-
17.6 [28]. We propose that the large range of R0 values may be due to the
absence of peak viral load data.

Are the parameters of our model uniquely identifiable in principle, given
enough data? To address this question, we non-dimensionalize Eqs. 1 (Eqs.
S16). We find that only three of the four values εB, C, D, and E are indepen-
dently identifiable. However, in order to fit the reduced system of equations to
data, both the time scaling (which involves C) and the viral load scaling (which
involves α) are necessary. Thus, all the parameters are, in principle, meaning-
ful to the data fitting performed here. To improve precision given limited data,
one approach is to place bounds, or simply fix, particular parameters based on
the relevant literature. Here, we limited tinf to a maximum of 14 days, similar
to Néant et al. [13], and also fixed the mean eclipse duration. Placing bounds
on tinf implicitly places bounds on the parameters that govern the rise to the
peak, such as B and C.

While in-host modelling studies typically report residual errors (sensitivity
of parameter estimates to measurement error), here we also carefully investi-
gated the sensitivity of parameter estimates to model structure (Fig. 3). We
also examined the sensitivity of predicted time courses (Fig. 7), the compound
parameter R0 (Fig. 5), the standard error between model results and data (Fig.
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S2), and peak densities (Fig. S3) to variations in parameter estimates. These
sensitivity analyses form a critical context for the interpretation of SARS-CoV-
2 within-host parameter estimates, and should help to inform future modelling
as more data become available.
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[29] Gonçalves, A., Maisonnasse, P., Donati, F., Albert, M., Behillil, S., Con-
treras, V., Naninck, T., Marlin, R., Solas, C., Pizzorno, A., Lemaitre, J.,
Kahlaoui, N., Terrier, O., Fang, R.H.T., Enouf, V., Dereuddre-Bosquet,
N., Brisebarre, A., Touret, F., Chapon, C., Hoen, B., Lina, B., Cala-
trava, M.R., de Lamballerie, X., Mentré, F., Le Grand, R., van der
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