1	Association of lithocholic acid with skeletal muscle hypertrophy through TGR5-IGF-1
2	and skeletal muscle mass in chronic liver disease rats and humans.
3	Yasuyuki Tamai ^{1#} , Akiko Eguchi ^{1#} , Ryuta Shigefuku ¹ , Hiroshi Kitamura ² , Mina Tempaku ¹ ,
4	Ryosuke Sugimoto ¹ , Yoshinao Kobayashi ³ , Motoh Iwasa ¹ , Yoshiyuki Takei ¹ and Hayato
5	Nakagawa ¹
6	
7	¹ Department of Gastroenterology and Hepatology, Mie University Graduate School of
8	Medicine, ² Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno
9	Gakuen University, ³ Center for Physical and mental health, Mie University Graduate School
10	of Medicine
11	# Equal contributed first author
12	
13	Address for correspondence: Dr. Akiko Eguchi
14	Department of Gastroenterology and Hepatology, Mie University Graduate School of
15	Medicine
16	2-174 Edobashi, Tsu, Mie, 514-8507, Japan
17	Tel: +81-59-231-9238
18	Email: akieguchi@med.mie-u.ac.jp
19	

20	Running title: LCA effects on skeletal muscle hypertrophy
21	
22	Funding: This research was supported by JSPS KAKENHI Grant Number 22K08011 and
23	21H02892, and AMED under Grant Number JP21fk0210090 and JP22fk0210115.
24	
25	Conflict of Interest: The authors state no conflict of interest.
26	
27	Key words: chronic liver diseases, low muscle mass, skeletal muscle, bile acids, lithocholic
28	acid, liver-muscle axis.
29	
30	Abbreviation: CLD; chronic liver disease, LCA; lithocholic acid, TGR5; G-protein-coupled
31	receptor 5, BA; bile acid, BCAA; branched-amino acid, PMI; psoas muscle area index, IGF;
32	insulin growth factor, mTOR; mammalian target of rapamycin; SMI, skeletal muscle index,
33	CA; cholic acid, CDCA; chenodeoxycholic acid, DCA; deoxycholic acid, MHC; myosin heavy
34	chain.
35	

37 Abstract

38	[Background & aims] Hepatic sarcopenia is one of many complications associated with
39	chronic liver disease (CLD) and has a high mortality rate, however, the liver-muscle axis is
40	not fully understood. Therefore, few effective treatments exist for hepatic sarcopenia, the best
41	of which being branched-amino acid (BCAA) supplementation to help increase muscle mass.
42	Our aim was to investigate the molecular mechanism(s) of hepatic sarcopenia focused on
43	bile acid (BA) composition. [Methods] Gastrocnemius muscle phenotype and serum BA
44	levels were assessed in CLD rats treated with BCAA. Mouse skeletal muscle cells (C2C12)
45	were incubated with lithocholic acid (LCA), G-protein-coupled receptor 5 (TGR5) agonist or
46	TGR5 antagonist to assess skeletal muscle hypertrophy. The correlation between serum BA
47	levels and psoas muscle area index (PMI) was examined in 73 CLD patients. [Results]
48	Gastrocnemius muscle weight significantly increased in CLD rats treated with BCAA via
49	suppression of protein degradation pathways, coupled with a significant increase in serum
50	LCA levels. LCA treated C2C12 hypertrophy occurred in a concentration-dependent manner
51	linked with TGR5-Akt pathways based upon inhibition results via a TGR5 antagonist. In
52	human CLD, serum LCA levels were the sole factor positively correlated with PMI and were
53	significantly decreased in both the low muscle mass group and the deceased group. Serum
54	LCA levels were also shown to predict patient survival. [Conclusion] Our results indicate
55	LCA-mediated skeletal muscle hypertrophy via activation of TGR5-IGF1-Akt signaling

56	pathways. In addition, serum LCA levels were associated with skeletal muscle mass in
57	cirrhotic rats, as well as CLD patients, and predicted overall patient survival. [Funding] This
58	research was supported by JSPS KAKENHI Grant Number 22K08011 and 21H02892, and
59	AMED under Grant Number JP21fk0210090 and JP22fk0210115.
60	
61	Introduction
62	Hepatic sarcopenia differs from aging sarcopenia insofar as it is defined by a rapid decrease
63	in muscle mass and power. Hepatic sarcopenia is but one in the panoply of complications
64	associated with chronic liver diseases (CLD), in particular liver cirrhosis with its high mortality
65	(or low survival rate) and poor post-liver transplantation outcomes (Ebadi et al., 2019, Hara et
66	al., 2016). A variety of factors are altered in hepatic sarcopenia, including decreased serum
67	branched-chain amino acid (BCAA) levels (Tajiri and Shimizu, 2018), increased bile acids
68	(BAs) (Kobayashi et al., 2017), abnormal insulin growth factor-1 (IGF-1) and mammalian
69	target of rapamycin (mTOR) signaling pathways (Allen et al., 2021), increased reactive
70	oxygen species and increased inflammatory cytokines and myostatin expression (Ebadi et al.,
71	2019, Allen et al., 2021). BCAA supplementation has been shown to significantly improve
72	skeletal muscle index measurements (Ismaiel et al., 2022). In contrast, anti-myostatin
73	monoclonal neutralizing antibodies developed by several companies failed in clinical trials
74	targeted to treat Duchenne muscular dystrophy (Wagner, 2020). The molecular mechanisms

75	underpinning the muscle-liver axis involved in hepatic sarcopenia are not fully understood.
76	Therefore, the elucidation of molecular mechanisms and effective treatment designs are
77	required to prevent the progression of hepatic sarcopenia and to improve overall patient
78	prognosis.
79	CLD has a major impact on BA composition (Sauerbruch et al., 2021). BAs are amphipathic
80	steroid molecules synthesized from cholesterol and are categorized as being primary or
81	secondary. Primary BAs are synthesized and conjugated in hepatocytes and secreted into
82	the intestine. Most conjugated BAs undergo deconjugation and dehydration by intestinal
83	bacteria, resulting in the production of secondary BAs. BA pools containing a mix of primary
84	and secondary BAs are essential for solubilizing lipids and fat-soluble vitamins thus
85	promoting their absorption into the small intestine. In addition to their canonical function in
86	digestion, BAs are known to act as signaling molecules that regulate metabolic pathways,
87	such as glucose, lipid and energy homeostasis, through various receptors including
88	G-protein-coupled receptor 5 (TGR5), farnesoid X receptor and vitamin D receptor (Arab et
89	al., 2017). TGR5 activation induced by cholic acid (CA), chenodeoxycholic acid (CDCA),
90	deoxycholic acid (DCA) and lithocholic acid (LCA) as part of the overall BA composition is a
91	key event regulating skeletal muscle cells with the most potent endogenous ligand for TGR5
92	being LCA (Pols et al., 2011). Indeed, LCA, a secondary BA, induced TGR5 activation in
93	skeletal muscle and enhanced muscle mass hypertrophy in mice through an increase in

94	IGF-1, a known muscle	hypertrophy-related	gene (Sasaki et al.,	2018). However, the role of
----	-----------------------	---------------------	----------------------	-----------------------------

- 95 LCA in cirrhotic liver disease-related sarcopenia has not been fully clarified.
- 96 In this study, we investigate the interaction between BAs, including LCA, and skeletal
- 97 muscle mass, in CLD rats, as well as CLD patients, and explore the beneficial effect of LCA
- 98 on skeletal muscle hypertrophy.
- 99

```
100 Results
```

- 101 Increased gastrocnemius muscle weight is associated with suppression of protein
- 102 degradation pathways and elevation of serum LCA levels in CLD rats treated with
- 103 BCAA.
- 104 To investigate whether increased gastrocnemius muscle weight is associated with changes in
- 105 BA composition, we used a CLD rat model administered with carbontetrachloride (CCl₄) for
- 106 10 weeks (4 weeks to establish advanced fibrosis, or cirrhosis, and an additional 6 weeks to
- 107 treat with BCAA for attenuation of liver injury), which we have previously reported (Tamai et
- al., 2021). The ratio of gastrocnemius muscle weight to total body weight was significantly
- 109 increased in CLD rats treated with BCAA (CLD+BCAA) compared to untreated CLD rats (p
- 110 <0.05) (Figure. 1A). The overall pathological condition of gastrocnemius muscle was similar
- 111 between CLD and CLD+BCAA rats (Figure. 1B). Moreover, in concordance with the
- 112 aforementioned gastrocnemius muscle mass results, gastrocnemius muscle gene expression

113	levels of protein degradation pathways including muscle RING finger 1 (MuRF1), muscle
114	atrophy F-box protein (MafBx), ubiquitin and E214KDa were notably increased in CLD rats
115	compared with normal rats (indicated as a broken line in the graphs) and MafBx mRNA levels
116	were significantly decreased in gastrocnemius muscle from CLD+BCAA rats (p <0.05)
117	(Figure. 1C). The mRNA levels of the repair gene, transcription factor forkhead box O1
118	(FOXO1), were notably decreased in CLD rat gastrocnemius muscle samples, but expression
119	recovered in gastrocnemius muscle samples from CLD+BCAA rats (Figure. 1C). To explore
120	whether increased gastrocnemius muscle mass was associated with BA composition, we
121	measured serum BA levels in CLD and CLD+BCAA rats. Total BAs were dramatically
122	increased in CLD rats when compared to normal rats (indicated as a broken line in a graph)
123	and decreased in CLD+BCAA rats (Figure. 1D). In line with the total BA data, the ratio of CA,
124	CDCA and DCA increased in CLD rats and showed a decreasing trend in CLD+BCAA rats
125	(Figure. 1E). Notably, the ratio of LCA to total BAs was dramatically decreased in CLD rats
126	and was significantly increased in the CLD+BCAA rat group (p < 0.05) (Figure. 1E). These
127	results suggest that an increase in gastrocnemius muscle mass may be associated with
128	serum LCA levels.
129	

130 LCA enhances muscle cell hypertrophy through TGR5-IGF-1 pathway.

131	We next examined the effect of LCA on hypertrophy of skeletal muscle cells using C2C12
132	myoblasts that differentiate rapidly forming myotubes. C2C12 myoblasts were culture for 3
133	days and approached confluence, then differentiated to myotubes using varying
134	concentrations of LCA (Figure. 2A). The hypertrophy of C2C12 myotubes was overtly altered
135	in a concentration-dependent manner based on assessment using myosin heavy chain
136	(MHC) staining (Figure. 2B). Corresponding to cell morphological changes, the length and
137	width of the cells were significantly increased in a concentration-dependent manner under
138	quantitative analyses (length, p <0.001: 0 vs. 700 nM and 70 vs. 700 nM, p <0.01: 0 and 70
139	nM) (width, p <0.001: 0 vs. 70 or 700 nM and 70 vs. 700 nM) (Figure. 2C). Previous reports
140	have shown LCA to be one of the most potent endogenous ligands for TGR5 (Pols et al.,
141	2011) capable of inducing IGF-1, which is a known muscle hypertrophy gene (Sasaki et al.,
142	2018). In the present study, we found the levels of <i>Tgr5</i> mRNA to be significantly increased in
143	C2C12 myotubes treated with LCA (p <0.05: 70 and 700 nM) (Figure. 2D). Moreover, C2C12
144	myotubes undergoing LCA-induced hypertrophy showed significantly elevated levels of Igf-1
145	mRNA (Figure. 2D).
146	
147	TGR5 agonist accelerates muscle cell hypertrophy through IGF-1 and Akt activation.

149

TGR5 pathway, C2C12 myotubes were coincubated with LCA and TGR5 antagonist

148

8

To investigate whether LCA-induced TGR5-IGF-1 activation is attenuated by blocking the

150	(SBI-115). The mRNA levels of <i>Tgr5</i> and <i>Igf-1</i> were significantly decreased in C2C12
151	myotubes treated with LCA+SBI-115 compared to LCA alone (p < 0.01 and p < 0.05 ,
152	respectively) (Figure. 3A). LCA is the most potent endogenous ligand for TGR5, but also
153	cytotoxic (Pols et al., 2011), therefore, LCA alone may not be an appropriate therapeutic
154	target molecule. A TGR5 agonist (INT-777) has been generated and shown to be a useful
155	molecule for TGR5 activation (Pellicciari et al., 2009). To explore whether this TGR5 agonist
156	induces muscle cell hypertrophy, differentiated C2C12 myoblasts (myotubes) were incubated
157	with INT-777. INT-777 induced obvious muscle cell hypertrophy when assessed using MHC
158	staining (Figure. 3B). INT-777 also elevated the mRNA levels of <i>Tgr</i> 5 and <i>lgf1</i> (p <0.01 an p <
159	0.001, respectively) (Figure. 3C). IGF-1 is known to activate the PI3K-Akt pathway, thus
160	leading to stimulation of protein synthesis, resulting in accelerated muscle hypertrophy
161	(Sartori et al., 2021). Indeed, the ratio of Akt phosphorylation against to total Akt was
162	significantly increased in C2C12 myotubes treated with INT-777 (Figure. 3D). These results
163	suggest that the TGR5-IGF-1-Akt3 pathway contributes to muscle hypertrophy.
164	
165	Serum LCA levels are positively and significantly correlated with PMI in CLD patients.
166	The clinical features of the 73 (58 men and 15 women) enrolled CLD patients are shown in
167	Table 1. The cohort of patients admitted to our study was based on a variety of causative
168	agents: 13 hepatitis B virus (HBV), 21 hepatitis C virus (HCV), 21 nonalcoholic steatohepatitis

169	(NASH), 16 alcoholism and 2 other factors. Patients infected with HBV or HCV were under
170	infection control, with sustained virological response monitoring, by direct-acting antiviral
171	treatment against HCV, or treatment with nucleos(t)ide analogs against HBV in the clinical
172	course of each patient. The Barcelona Clinic Liver Cancer (BCLC) staging showed 11, 29, 13,
173	19 and 1 patients in Stage 0, A, B, C, and D, respectively.
174	The patient mean of total serum BAs was 18.3 \pm 17.0 $\mu mol/L,$ composed of primary BAs (12.7
175	\pm 14.0 $\mu mol/L)$ and secondary BAs (5.58 \pm 7.91 $\mu mol/L).$ The serum level of 15 individual BA
176	compositions are shown in Table 2. Total serum primary BA level was negatively correlated
177	with albumin (r =-0.456, p <0.0001) and prothrombin time (PT, %) (r =-0.410, p <0.001) and
178	was positively correlated with alkaline phosphatase (ALP) (r = 0.240 , p < 0.05) (Figure. 4A).
179	Furthermore, the total primary BA level was significantly higher in albumin-bilirubin (ALBI)
180	grade 2 and 3 than in ALBI grade 1 (p <0.001) (Figure. 4B). Notably, psoas muscle area
181	index (PMI) values were positively and significantly correlated with serum LCA levels (r
182	=0.304, p <0.01) and serum LCA ratio, which was LCA/total BAs (r =0.230, p <0.05), and the
183	only BA composition correlated with PMI (Figure. 4C). Next, we set out to assess the
184	changes in serum BA composition associated with muscle mass. To do this the cohort was
185	divided into two groups: low muscle mass, defined by PMI below 6.36 cm^2/m^2 for men and
186	3.92 cm ² /m ² for women (Hamaguchi et al., 2016), and normal muscle mass. The level of total
187	primary BAs was decreased and total secondary BAs was increased in the low muscle mass

188	group compared with the normal muscle mass group (Figure. 4D). The level of serum TGR5
189	ligands, CA, CDCA, DCA and LCA were also decreased in the low muscle mass group
190	(Figure. 4D). In particular, the level of serum LCA was significantly decreased in the low
191	muscle mass group (Figure. 4D). These results show that serum LCA levels are indicative of
192	overall muscle mass in CLD patients.
193	
194	Serum LCA levels may be a prognostic factor for survival.
195	Finally, we investigated the association between serum BA composition levels and survival.
196	23 out of 73 patients (31.5 %) died in the average follow-up period of 1005 \pm 471 days
197	following our study period. Serum total primary BA levels were significantly elevated in the
198	deceased group (p <0.05), while serum LCA levels were significantly decreased in the
199	deceased group compared to the survival group (p <0.05) (Figure. 5A). ROC analyses
200	concerning predictors of survival yielded AUC values of 0.670 (95% confidence interval:
201	0.542-0.797) (p <0.05) for total primary BAs and 0.649 (95% confidence interval:
202	0.519-0.779) (p <0.05) for LCA (Figure. 5B). In the present study, we calculated the ROC
203	analysis survival curve cut-off values for total primary BAs at 10.5 $\mu mol/L$ (sensitivity 69.6%
204	and specificity 68.0%) and LCA at 0.32 $\mu mol/L$ (sensitivity 73.9% and specificity 60%).
205	Patients with low total primary BAs (<10.5) showed significantly better OS than patients with
206	high total primary BAs (p <0.01) (Figure. 5C). Furthermore, patients with high LCA (≥0.32)

- showed significantly improved OS than patients with low LCA (p <0.01) (Figure. 5C). These
- 208 results suggest that serum LCA levels can be useful in predicting patient survival.
- 209
- 210 Discussion

211	In the present study, we demonstrated that serum LCA levels and LCA ratio were positively
212	associated with skeletal muscle mass in CLD rats treated with BCAA, as well as human
213	subjects, and that LCA-induced skeletal muscle cell hypertrophy occurs through
214	TGR5-IGF-1-Akt3 activation. BCAA supplementation is approved for use in CLD patients
215	within the clinical setting as a means to provide compensatory albumin thus maintaining liver
216	function (European Association for the Study of the Liver. Electronic address and European
217	Association for the Study of the, 2019), as well as increased muscle mass associated with an
218	acceleration of the TCA cycle (Ismaiel et al., 2022). In our previous study, we reported that
219	hepatocellular damage was attenuated using BCAA supplementation as a result of improved
220	lipid metabolism and mitochondrial damage repair in CLD rats (Tamai et al., 2021). Using the
221	same CLD rat model in the current study, we revealed that gastrocnemius muscle mass was
222	significantly increased using BCAA treatment. BCAA treatment has direct effects on liver and
223	skeletal muscle, however we hypothesized that one or more CLD-related molecules/factors
224	might regulate skeletal muscle mass via a liver-muscle axis. Indeed, we found that the serum
225	LCA ratio (LCA/total BAs) was significantly increased in CLD rats, which also showed an

226	increase in gastrocnemius muscle mass. Furthermore, we showed that serum LCA and LCA
227	ratio were significantly and positively associated with PMI in CLD patients. These results from
228	CLD rats and human subjects suggest that LCA can regulate muscle mass via a liver-muscle
229	axis, although further studies are warranted in the future using a greater number of patients
230	as part of a multicenter study.
231	The role of LCA in the progression of CLD has not been fully developed due to the lack of
232	general sensitivity in the system used to measure BA composition and is therefore not
233	sufficient to detect low levels of LCA in the blood. Our established highly-sensitive system for
234	BA composition (Murakami et al., 2018) allows us to detect all aspects of BA composition
235	resulting in the discovery of a new role for LCA, which is a positive correlation of serum BA
236	composition with skeletal muscle mass in CLD patients. Furthermore, we revealed that a
237	decrease in serum LCA level portends a worse survival outcome in CLD patients with
238	associated low muscle mass. CLD patients with sarcopenia, defined by low muscle mass and
239	power, also display decreased survival when compared to CLD patients without sarcopenia
240	(Hara et al., 2016), thus serum LCA may be a useful measure to monitor sarcopenia in CLD
241	patients. Current reports have also demonstrated that LCA is one of the most potent
242	anti-bacterial agents, selective against gram-positive bacteria, resulting in a longer lifespan of
243	centenarians (Sato et al., 2021) and is one of the most potent endogenous ligands for TGR5,
244	which protects against alcohol-induced liver steatosis and inflammation in mice

245	(Iracheta-Vellve et al., 2018). This evidence clearly shows that LCA plays a critical role in the
246	progression of CLD, and intestinal microbiota, as a function of the liver-gut axis. Our latest
247	results presented here, associating LCA with skeletal muscle mass, will lead to new insights
248	into the role of LCA as a component of the liver-muscle-gut axis.
249	In CLD rats and human subjects, we observed an association between gastrocnemius
250	muscle mass and LCA only, although serum CA, CDCA and DCA levels also showed a
251	decreasing trend in CLD patients with low muscle mass. This result is reasonable since the
252	hierarchy of BA affinity for TGR5 is as follows: LCA > DCA > CDCA > CA (Sato et al., 2007).
253	We also demonstrated that a TGR5 antagonist induced skeletal muscle cell hypertrophy
254	through IGF-1 activation, but we need further studies to develop a new antagonist with similar
255	affinity of LCA to the TGR5 binding pocket minus the cytotoxicity aspect.
256	In conclusion, we revealed new roles for LCA as a positive regulator of skeletal muscle
257	mass in both CLD rats and human patients, and as a mediator of skeletal muscle cell
258	hypertrophy in differentiated C2C12 myoblasts (myotubes). The serum LCA ratio
259	measurement was significantly decreased in CLD patients with low muscle mass. Current
260	results suggest that serum LCA levels may be used as a prognostic factor of survival in CLD
261	patients with sarcopenia, and a TGR5 agonist holds the potential to be a candidate as a
262	therapeutic target in the prevention of sarcopenia in CLD patients.

263

264 Methods

265 Animal samples

- 266 Our animal protocol (HKD43046) was reviewed and approved by the Institutional Animal
- 267 Care and Use Committee at Hokudo Co., Ltd (Sapporo, Japan). The rat model of CLD has
- 268 been previously described in detail (Tamai et al., 2021). Briefly, Wister male rats (SPF, CLEA
- 269 Japan: Tokyo, Japan) aged 7 weeks were fed solid normal diet, CE-2 (CLEA Japan), under
- 270 conventional conditions and were orally administered CCl₄ at 1.0 mL/kg twice a week for 4
- 271 weeks to induce advanced fibrosis, or cirrhosis, at which point the animals were divided into 2

groups by weight stratified random sampling. The CLD rats then received daily oral

administration of BCAA (10 g/kg/day) (n =10), or 0.9% saline solution (control) (n =10) for 6

- 274 weeks. The CLD state was maintained with twice weekly administration of CCl₄ at 0.5 mL/kg
- 275 for 6 weeks (10 weeks total). The rats were individually maintained at a constant temperature
- 276 (23 ± 3 °C), 50 ± 20% relative humidity and 12 h light–dark cycles (lights on at 7 am), and had
- 277 free access to food and water. Analysis of rat number was 9/10 in BCAA group and 8/10 in
- 278 control group due to death by CCl₄ in the experimental term. Wister male rats aged 10 weeks
- 279 were used as a control, wild-type rats (n=3).

280

281 Gastrocnemius muscle histological analysis and serum BA measurement in rats

202	All rats were sacrificed at the conclusion of our treatment protocol under anesthesia
283	(isoflurane, DS-pharma, Osaka, Japan). Whole rat blood was collected and allocated into
284	tubes with anticoagulant (EDTA). A portion of gastrocnemius muscle was fixed in 10%
285	formalin for 24 h and embedded in paraffin and the remaining gastrocnemius muscle was
286	flash frozen in liquid nitrogen and stored at -80°C. The gastrocnemius muscle sections were
287	prepared and stained for H&E (hematoxylin and eosin). All images were taken by Olympus
288	CKX53 (Olympus, Tokyo, Japan) and quantitated using Image J software (NIH Image).
289	Serum BA levels were quantified by LC-MS/MS at CMIC Pharma Science Co., Ltd. (Kobe,
290	Japan).
291	
291 292	Patients and serum BA measurements in human
291 292 293	Patients and serum BA measurements in human The study protocol (H2019-063) was approved by the Clinical Research Ethics Review
291 292 293 294	Patients and serum BA measurements in human The study protocol (H2019-063) was approved by the Clinical Research Ethics Review Committee of Mie University Hospital. This study was performed retrospectively on stored
291 292 293 294 295	Patients and serum BA measurements in human The study protocol (H2019-063) was approved by the Clinical Research Ethics Review Committee of Mie University Hospital. This study was performed retrospectively on stored samples, and subjects were allowed to opt out of their data being used. Written informed
291 292 293 294 295 296	Patients and serum BA measurements in human The study protocol (H2019-063) was approved by the Clinical Research Ethics Review Committee of Mie University Hospital. This study was performed retrospectively on stored samples, and subjects were allowed to opt out of their data being used. Written informed consent was obtained from all subjects at the time of blood sampling. A total of 113
291 292 293 294 295 296 297	Patients and serum BA measurements in human The study protocol (H2019-063) was approved by the Clinical Research Ethics Review Committee of Mie University Hospital. This study was performed retrospectively on stored samples, and subjects were allowed to opt out of their data being used. Written informed consent was obtained from all subjects at the time of blood sampling. A total of 113 treatment-naïve patients with hepatocellular carcinoma (HCC) hospitalized in the Department

of Gastroenterology and Hepatology, Mie University Hospital for treatment of HCC between

- 299 January 2015 and January 2017 were included as a retrospective study. HCC diagnosis was
- 300 based on clinical history, serologic testing and radiologic imaging. 36 patients were excluded

301	due to oral administration of ursodeoxycholic acid. Three patients who had other
302	malignancies within the past 3 years were excluded. One patient was excluded due to kidney
303	transplant. As a result, a total of 73 patients with CLD were analyzed for the current study.
304	Patients positive for hepatitis B surface antigen were diagnosed with HBV infection, whereas
305	those positive for anti-HCV were diagnosed with HCV infection. Alcohol associated liver
306	disease was defined as alcohol consumption >60g/day. NASH was diagnosed based on
307	pathological findings and/or fatty liver without any other evident causes of chronic liver
308	diseases (viral, autoimmune, genetic, etc.). Hepatic functional reserve was categorized by
309	ALBI score (Johnson et al., 2015). The PMI [psoas muscle area at the middle of the third
310	lumbar vertebra (L3) (cm ²)/height (m) ²] was manually calculated from CT images. All
311	treatments were performed following the Japanese practical guidelines for HCC as possible
312	(Kokudo et al., 2019). Post-HCC treatment follow-up consisted of laboratory tests, including
313	tumor markers, every 3 months and dynamic CT or magnetic resonance imaging every 6
314	months.
315	BA concentrations were determined in a blind as described by Ando et al. with minor
316	modifications (Murakami et al., 2018, Ando et al., 2006). After the addition of internal
317	standards and 0.5 M potassium phosphate buffer (pH 7.4), BAs were extracted with Bond
318	Elut C18 cartridges and quantified by LC-MS/MS. Chromatographic separation was
319	performed using a Hypersil GOLD column (150 × 2.1 mm, 3.0 μm; Thermo Fisher Scientific)

320	at 40°C. The mobile phase consisted of (A) 20 mM ammonium acetate buffer (pH
321	7.5)-acetonitrile-methanol (70:15:15, v/v/v) and (B) 20 mM ammonium acetate buffer (pH $$
322	7.5)-acetonitrile-methanol (30:35:35, v/v/v). The following gradient program was used at a
323	flow rate of 200 μ l/min: 0–100% B for 20 min, hold 100% B for 10 min, and re-equilibrate to
324	100% A for 8 min.
325	
326	Cell culture, treatment and immunofluorescence
327	C2C12 myoblasts (kindly gift from Dr. Fujita at Tokyo institute of Technology) were
328	maintained in DMEM containing 20% FBS at 37 $^\circ$ C and 5% CO $_2$. The confluent cells were
329	differentiated into myotubes by culturing with DMEM containing 2% horse serum for 5 days
330	with LCA (Millipore-Sigma, Japan), TGR5 agonist (1 μM INT-777, Millipore-Sigma) or TGR5
331	agonist plus TGR5 antagonist (100 μ M SBI-115, Millipore-Sigma). All experiments were
332	repeated twice with three biological replicates in each experiment. For immunofluorescence,
333	cells were fixed with 4% paraformaldehyde for 10 min, permeabilized with 0.5% Triton X-100
334	for 5min and then incubated with anti-MHC antibody (#376157, Santa Cruz, Dallas, TX) at 4
335	°C overnight. MHC and nucleus were visualized with Alexa 488-conjugated anti-mouse
336	antibody and DAPI, respectively. All pictures were taken by KEENC BZ-X710 (KEYENCE,
337	Japan). Changes in cell strength and width were quantified using NIH ImageJ software.
338	

339 Gene expression

340	Total RNA	was isolated	from gastr	ocnemius	muscle or	C2C12	cells usina	TRI Reade	ent
								J	

- 341 (Molecular Research Center, Cincinnati, OH) according to the manufacturer's instructions.
- 342 The cDNA was synthesized from total RNA using a cDNA Synthesis kit (Takara, Shiga,
- 343 Japan). Real-time PCR quantification was performed using the KAPA SYBR FAST qPCR
- 344 master mix (KAPA Biosystems, Wilmington, MA) or a TaqMan gene expression assay
- 345 (Thermo Fisher Scientific Inc.) for Sod1, and the 7300 Real-Time PCR Detection System
- 346 (Thermo Fisher Scientific Inc.). The PCR primers were used to amplify each gene as listed in
- 347 Supplemental Table 1. Mean values of mRNA were normalized to beta 2 microglobulin
- 348 (B2m).
- 349

350 Western Blotting Analysis

- 351 C2C12 cells were homogenized in RIPA buffer (150 mM NaCl, 1.0% NP-40, 1% sodium
- deoxycholate, 0.1% sodium dodecyl sulphate, 50 mM Tris-HCl pH8.0) containing a protease
- 353 inhibitor cocktail (Millipore-Sigma) and phosphatase inhibitors (Millipore-Sigma). 20 µg of cell
- 354 Iysate was resolved using a TGX gel (Bio-Rad, Hercules, CA), transferred to
- a polyvinylidenedifluoride membrane, and blotted with the appropriate primary antibody.
- 356 Membranes were incubated with peroxidase-conjugated secondary antibody (GE Healthcare
- 357 Bioscience, Marlborough, MA). Protein bands were visualized using an

358	enhanced chemiluminescence reagent (Bio-Rad), digitized using a Lumino-image analyzer
359	(LAS-4000 iniEPUV, Fuji Film, Tokyo, Japan), and quantitated using the program Multi
360	Gauge (Fuji Film). Anti-GAPDH (#60004, Proteintech, Rosemont, IL), anti-phospho-Akt (Ser
361	473) (#4060, Cell Signaling Technology, Danvers, MA) and anti-pan-Akt (#4691, Cell
362	Signaling Technology) were used as primary antibodies.
363	
364	Statistical analyses
365	Continuous variables are presented as mean \pm standard deviation or median
366	(minimum-maximum), and categorical variables are shown as numbers of patients. The
367	continuous data were compared using the Mann-Whitney U or unpaired t test in two groups or
368	Kruskal-Wallis in multiple groups. The relationship between the serum BA levels and clinical
369	data were examined using Spearman's rank correlation coefficient. The categorical data were
370	compared using the Chi-squared test. Receiver operator characteristic (ROC) curves and the
371	corresponding area under the curve (AUC) were used to obtain cut-offs for the outcomes.
372	The Youden index was applied to calculate the optimal cut-off point. Overall survival (OS)
373	was measured using the Kaplan-Meier method and compared using the log-rank test. All
374	statistical analyses were performed using SPSS23.0 software (IBM, Armonk, NY) or Prism 9
375	(GraphPad Software, Inc., CA, USA). Differences were considered to be significant at p

376 <0.05.

377

378 Acknowledgement

- 379 We would like to thank Dr. Teruo Miyazaki, Dr. Akira Honda and Dr. Tadashi Ikegami in
- 380 Department of Gastroenterology, Tokyo Medical University Ibaraki medical center for
- 381 measurement of human BAs.
- 382

383 References

- ALLEN, S. L., QUINLAN, J. I., DHALIWAL, A., ARMSTRONG, M. J., ELSHARKAWY, A. M.,
 GREIG, C. A., LORD, J. M., LAVERY, G. G. & BREEN, L. 2021. Sarcopenia in chronic
 liver disease: mechanisms and countermeasures. *Am J Physiol Gastrointest Liver Physiol*, 320, G241-G257.
- ANDO, M., KANEKO, T., WATANABE, R., KIKUCHI, S., GOTO, T., IIDA, T., HISHINUMA, T.,
 MANO, N. & GOTO, J. 2006. High sensitive analysis of rat serum bile acids by liquid
 chromatography/electrospray ionization tandem mass spectrometry. *J Pharm Biomed Anal*, 40, 1179-86.
- ARAB, J. P., KARPEN, S. J., DAWSON, P. A., ARRESE, M. & TRAUNER, M. 2017. Bile acids
 and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives.
 Hepatology, 65, 350-362.
- EBADI, M., BHANJI, R. A., MAZURAK, V. C. & MONTANO-LOZA, A. J. 2019. Sarcopenia in
 cirrhosis: from pathogenesis to interventions. *J Gastroenterol*, 54, 845-859.
- 397 EUROPEAN ASSOCIATION FOR THE STUDY OF THE LIVER. ELECTRONIC ADDRESS,
 398 E. E. E. & EUROPEAN ASSOCIATION FOR THE STUDY OF THE, L. 2019. EASL
 399 Clinical Practice Guidelines on nutrition in chronic liver disease. *J Hepatol,* 70,
 400 172-193.
- 401 HAMAGUCHI, Y., KAIDO, T., OKUMURA, S., KOBAYASHI, A., HAMMAD, A., TAMAI, Y.,
 402 INAGAKI, N. & UEMOTO, S. 2016. Proposal for new diagnostic criteria for low
 403 skeletal muscle mass based on computed tomography imaging in Asian adults.
 404 *Nutrition*, 32, 1200-5.
- 405 HARA, N., IWASA, M., SUGIMOTO, R., MIFUJI-MOROKA, R., YOSHIKAWA, K.,
 406 TERASAKA, E., HATTORI, A., ISHIDOME, M., KOBAYASHI, Y., HASEGAWA, H.,
 407 IWATA, K. & TAKEI, Y. 2016. Sarcopenia and Sarcopenic Obesity Are Prognostic
 408 Factors for Overall Survival in Patients with Cirrhosis. *Intern Med*, 55, 863-70.
- 409 IRACHETA-VELLVE, A., CALENDA, C. D., PETRASEK, J., AMBADE, A., KODYS, K.,
 410 ADORINI, L. & SZABO, G. 2018. FXR and TGR5 Agonists Ameliorate Liver Injury,
 411 Steatosis, and Inflammation After Binge or Prolonged Alcohol Feeding in Mice.

412 Hepatol Commun, 2, 1379-1391. 413 ISMAIEL, A., BUCSA, C., FARCAS, A., LEUCUTA, D. C., POPA, S. L. & DUMITRASCU, D. L. 414 2022. Effects of Branched-Chain Amino Acids on Parameters Evaluating Sarcopenia 415 in Liver Cirrhosis: Systematic Review and Meta-Analysis. Front Nutr, 9, 749969. 416 JOHNSON, P. J., BERHANE, S., KAGEBAYASHI, C., SATOMURA, S., TENG, M., REEVES, 417 H. L., O'BEIRNE, J., FOX, R., SKOWRONSKA, A., PALMER, D., YEO, W., MO, F., 418 LAI, P., INARRAIRAEGUI, M., CHAN, S. L., SANGRO, B., MIKSAD, R., TADA, T., 419 KUMADA, T. & TOYODA, H. 2015. Assessment of liver function in patients with 420 hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin 421 Oncol, 33, 550-8. 422 KOBAYASHI, Y., HARA, N., SUGIMOTO, R., MIFUJI-MOROKA, R., TANAKA, H., EGUCHI, 423 A., IWASA, M., HASEGAWA, H., IWATA, K., TAKEI, Y. & TAGUCHI, O. 2017. The 424 Associations between Circulating Bile Acids and the Muscle Volume in Patients with 425 Non-alcoholic Fatty Liver Disease (NAFLD). Intern Med, 56, 755-762. 426 KOKUDO, N., TAKEMURA, N., HASEGAWA, K., TAKAYAMA, T., KUBO, S., SHIMADA, M., 427 NAGANO, H., HATANO, E., IZUMI, N., KANEKO, S., KUDO, M., IIJIMA, H., GENDA, 428 T., TATEISHI, R., TORIMURA, T., IGAKI, H., KOBAYASHI, S., SAKURAI, H., 429 MURAKAMI, T., WATADANI, T. & MATSUYAMA, Y. 2019. Clinical practice guidelines 430 for hepatocellular carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC 431 guidelines) 2019 update. Hepatol Res, 49, 1109-1113. 432 MURAKAMI, M., IWAMOTO, J., HONDA, A., TSUJI, T., TAMAMUSHI, M., UEDA, H., 433 MONMA, T., KONISHI, N., YARA, S., HIRAYAMA, T., MIYAZAKI, T., SAITO, Y., 434 IKEGAMI, T. & MATSUZAKI, Y. 2018. Detection of Gut Dysbiosis due to Reduced 435 Clostridium Subcluster XIVa Using the Fecal or Serum Bile Acid Profile. Inflamm 436 Bowel Dis. 24, 1035-1044. 437 PELLICCIARI, R., GIOIELLO, A., MACCHIARULO, A., THOMAS, C., ROSATELLI, E., 438 NATALINI, B., SARDELLA, R., PRUZANSKI, M., RODA, A., PASTORINI, E., 439 K. & SCHOONJANS, AUWERX, J. 2009. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective 440 441 agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem, 52, 7958-61. 442 POLS, T. W., NORIEGA, L. G., NOMURA, M., AUWERX, J. & SCHOONJANS, K. 2011. The 443 bile acid membrane receptor TGR5: a valuable metabolic target. *Dig Dis*, 29, 37-44. 444 SARTORI, R., ROMANELLO, V. & SANDRI, M. 2021. Mechanisms of muscle atrophy and 445 hypertrophy: implications in health and disease. Nat Commun, 12, 330. 446 SASAKI, T., KUBOYAMA, A., MITA, M., MURATA, S., SHIMIZU, M., INOUE, J., MORI, K. & 447 SATO, R. 2018. The exercise-inducible bile acid receptor Tgr5 improves skeletal 448 muscle function in mice. J Biol Chem, 293, 10322-10332. 449 SATO, H., GENET, C., STREHLE, A., THOMAS, C., LOBSTEIN, A., WAGNER, A.,

450 MIOSKOWSKI, C., AUWERX, J. & SALADIN, R. 2007. Anti-hyperglycemic activity of
451 a TGR5 agonist isolated from Olea europaea. *Biochem Biophys Res Commun*, 362,
452 793-8.

- 453 SATO, Y., ATARASHI, K., PLICHTA, D. R., ARAI, Y., SASAJIMA, S., KEARNEY, S. M., SUDA, 454 W., TAKESHITA, K., SASAKI, T., OKAMOTO, S., SKELLY, A. N., OKAMURA, Y., 455 VLAMAKIS, H., LI, Y., TANOUE, T., TAKEI, H., NITTONO, H., NARUSHIMA, S., IRIE, 456 J., ITOH, H., MORIYA, K., SUGIURA, Y., SUEMATSU, M., MORITOKI, N., SHIBATA, 457 S., LITTMAN, D. R., FISCHBACH, M. A., UWAMINO, Y., INOUE, T., HONDA, A., 458 HATTORI, M., MURAI, T., XAVIER, R. J., HIROSE, N. & HONDA, K. 2021. Novel bile 459 acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 460 599, 458-464.
- 461 SAUERBRUCH, T., HENNENBERG, M., TREBICKA, J. & BEUERS, U. 2021. Bile Acids,
 462 Liver Cirrhosis, and Extrahepatic Vascular Dysfunction. *Front Physiol*, 12, 718783.
- 463 TAJIRI, K. & SHIMIZU, Y. 2018. Branched-chain amino acids in liver diseases. *Transl*464 *Gastroenterol Hepatol*, 3, 47.
- TAMAI, Y., CHEN, Z., WU, Y., OKABE, J., KOBAYASHI, Y., CHIBA, H., HUI, S. P., EGUCHI,
 A., IWASA, M., ITO, M. & TAKEI, Y. 2021. Branched-chain amino acids and l-carnitine
 attenuate lipotoxic hepatocellular damage in rat cirrhotic liver. *Biomed Pharmacother,*135, 111181.
- 469 WAGNER, K. R. 2020. The elusive promise of myostatin inhibition for muscular dystrophy.
 470 *Curr Opin Neurol*, 33, 621-628.

471

472 Figure legends

- 473 Figure 1. Gastrocnemius muscle mass and serum LCA ratio are significantly increased
- 474 in CLD rats treated with BCAA. (A) Changes in gastrocnemius muscle/body weight in CLD
- 475 rats (n=9) and CLD rats treated with BCAA (CLD+BCAA)(n=8). (B) Hematoxylin & Eosin
- 476 (H&E) staining in gastrocnemius muscle sections from CLD and CLD+BCAA rats. Scale bar,
- 477 50 μm. (C) Gene expression of *MuRF1*, *MafBx*, *ubiquitin*, *E214KDa* and *FOXO1* in
- 478 gastrocnemius muscle from CLD and CLD+BCAA rats as measured by qPCR. All gene
- 479 expression levels were normalized to housekeeping control, $\beta 2$ microglobulin, and shown

480	relative to the expression levels of control (normal rats). Broken line indicates the expression
481	levels of gastrocnemius muscle from normal rats. (D, E) Changes in (C) serum total BAs, (D)
482	CA/total BAs, CDCA/total BAs, DCA/total BAs and LCA/total BAs in CLD and CLD+BCAA
483	rats. Broken line indicates the serum BA levels from normal rats.*p<0.05. Values are mean \pm
484	SEM. CLD; chronic liver disease, MuRF1; muscle RING finger 1, MafBx; muscle atrophy
485	F-box protein, FOXO1; forkhead box O1, BAs; bile acids, CA; cholic acid, CDCA;
486	chenodeoxycholic acid, DCA; deoxycholic acid, LCA; lithocholic acid.
487	
488	Figure 2. LCA induces hypertrophy of skeletal muscle cells. (A) Scheme of experimental
489	design in C2C12 myoblast to myotubes treated with LCA. (B) Myosin heavy chain (MHC)
490	staining in C2C12 myotubes treated with 0, 70 and 700 nM of LCA. Scale bar, 50 $\mu m.$ (C)
491	Changes in length and width of MHC positive cells quantified from Figure 2B. (D) Gene
492	expression of <i>Tgr5</i> and <i>Igf-1</i> in C2C12 myotubes treated with 0, 70 and 700 nM of LCA.
493	****p<0.0001, **p<0.01, *p<0.05. Values are mean ± SEM from three biological replicates.
494	LCA; lithocholic acid, TGR5; G-protein-coupled receptor 5, IGF; insulin growth factor.
495	
496	Figure 3. Hypertrophy of skeletal muscle cells is induced by TGR5-IGF-1-Akt3
497	activation. (A) Gene expression of <i>Tgr5</i> and <i>Igf-1</i> in C2C12 myotubes treated with 70 nM
498	LCA and 70 nM LCA plus 100 μ M of TGR5 antagonist, SBI-115. (B) Myosin heavy chain

499 ((MHC) stain	ina in C2C12	mvotubes treated	l with 1 μM of TGF	R5 adonist. INT-777	. Scale bar.
	- /	J	5		· J ,	,

- 500 50 μm. (C) Gene expression of *Tgr5* and *Igf-1* in C2C12 myotubes treated with 1 μM of
- 501 INT-777. (D) Protein expression of phosphorylated Akt3 (p-Akt3), Akt3 and GAPDH
- 502 measured by western blotting in C2C12 myotubes treated with 1 μ M of INT-777.
- 503 Quantification of pAkt3/Akt3 from western blotting membrane. ***p<0.001, **p<0.01, *p<0.05.
- 504 Values are mean ± SEM from three biological replicates. LCA; lithocholic acid, TGR5;
- 505 G-protein-coupled receptor 5, IGF; insulin growth factor; Akt3; AKT serine/threonine kinase 3,
- 506 GAPDH; glyceraldehyde-3-phosphate dehydrogenase.
- 507

```
508 Figure 4. Serum LCA level is significantly and positively correlated with PMI in CLD
```

509 patients and is significantly decreased in CLD patients with low muscle mass. (A)

- 510 Correlation between total primary BAs and Albumin (ALB), alkaline phosphatase (ALP) or
- 511 prothrombin time (PT) (%) in CLD patients. (B) Changes in total primary BAs in CLD patients
- 512 with ALBI grade 1 or grade 2-3. (C) Correlation of Psoas muscle mass index (PMI) with
- 513 serum LCA and LCA ratio in CLD patients. (D) Changes in total serum primary BAs, total
- 514 secondary BAs, CA, CDCA, DCA and LCA in CLD patients with normal muscle mass and low
- 515 muscle mass. ***p<0.001, *p<0.05. Values are mean ± SEM. CLD; chronic liver disease,
- 516 BAs; bile acids, ALBI; albumin-bilirubin, CA; cholic acid, CDCA; chenodeoxycholic acid, DCA;
- 517 deoxycholic acid, LCA; lithocholic acid.

519	Figure 5. Improved survival in CLD patients with high levels of serum LCA. (A) Serum
520	total of primary BAs and LCA ratio in survival and deceased CLD patients. (B) ROC curve of
521	serum total or primary BAs and LCA. (C) CLD patient survival curve with total primary BAs
522	and LCA. Correlation of Psoas muscle mass index (PMI) with serum LCA and LCA ratio in
523	CLD patients. *p<0.05. Values are mean ± SEM. BAs; bile acids, LCA; lithocholic acid, AUC;
524	area under the curve.
525	
526	Figure 1-source data. Ratio of gastrocnemius weight/body weight in CLD rats and CLD rats
527	treated with BCAA (CLD+BCAA). Serum total BAs, CA/total BAs, CDCA/total BAs, DCA/total
528	BAs and LCA/total BAs in CLD and CLD+BCAA rats.
529	Figure 2-source data. Ratio of length and width of MHC positive cells quantified from myosin
530	heavy chain (MHC) staining in C2C12 myotubes treated with 0, 70 and 700 nM of LCA.
531	Figure 3-source data. Original membrane of immunoblotting.
532	Figure 4-source data. Serum total primary BAs, albumin (ALB), alkaline phosphatase (ALP),
533	prothrombin time (PT) (%), psoas muscle mass index (PMI), LCA and LCA ratio in CLD
534	patients. Serum total serum primary BAs, total secondary BAs, CA, CDCA, DCA and LCA in
535	CLD patients with normal muscle mass and low muscle mass.

- 536 **Figure 5-source data.** Serum total of primary BAs and LCA ratio in survival and deceased
- 537 CLD patients. CLD patient survival curve with total primary BAs and LCA.
- 538 Table 1-source data. Serum albumin, total bilirubin, ALBI, prothrombin time and PMI in CLD
- 539 patients.
- 540 **Table 2-source data.** Serum total BAs, total primary BAs, total secondary BAs and bile acids
- 541 composition in CLD patients.

543

544 Table 1. CLD patient baseline clinical and biochemical profiles of CLD patients.

	n=73
Age, years	71.0±11.0
Gender, male/female	58/15
Etiology, HBV/HCV/NASH/alcohol/others	13/21/21/16/2
BCLC (0/A/B/C/D)	11/29/13/19/1
Albumin, g/dl	4.04±0.49
Total bilirubin, mg/dl	1.00±0.53
ALBI	-2.65±0.48
Prothrombin time, %	87.6±18.7
PMI, cm ² /m ²	5.13±1.99

545 Data are presented as number of patients, mean ± standard deviation.

546 CLD; chronic liver disease, HBV; hepatitis B virus, HCV; hepatitis C virus, NASH;

547 nonalcoholic steato hepatitis, ALBI: The albumin-bilirubin, PMI: psoas mass index.

549 Table 2. Baseline bile acids composition.

	n=73 (mmol/L)
Total bile acids	18.3±17.0
Total of primary bile acids	12.7±14.0
CA	1.30±3.28
GCA	1.71±2.86
ТСА	0.35±0.78
CDCA	2.68±4.78
GCDCA	4.69±5.64
TCDCA	1.95±4.03
Total of secondary bile acids	5.58±7.91
DCA	0.89±1.19
GDCA	0.99±1.88
TDCA	0.19±0.46
LCA	0.067±0.112
GLCA	0.020±0.048
TLCA	0.003±0.013
UDCA	1.13±2.38
GUDCA	2.21±5.56
TUDCA	0.07±0.24

550 Data are presented as number of patients, mean ± standard deviation.

551 CA: cholic acid, GCA: glycocholic acid, TCA: taurocholic acid, CDCA: chenodeoxycholic acid,

552 GCDCA: glycochenodeoxycholic acid, TCDCA: taurochenodeoxycholic acid, DCA:

553 deoxycholic acid, GDCA: glycodeoxycholic acid, TDCA: taurodeoxycholic acid, LCA:

554 lithocholic acid, GLCA: glycolithocholic acid, TLCA: taurolithocholic acid, UDCA:

ursodeoxycholic acid, GUDCA: glycoursodeoxycholic acid, TUDCA: tauroursodeoxycholicacid.

557

558

Figure 1 Tamai et al

0.000 CLD CLD

Figure 2 Tamai et al

High

Figure 3 Tamai et al

В

Figure 4 Tamai et al

5 ·

medRxiv preprint doi: https://doi.org/10.1101/2022.06.14.22276395; this version posted June 16, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

3

2.0

0.15 J

*

Figure 5 Tamai et al

B

