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Abstract 1 

Parkinson's disease (PD) is associated with changes in neural activity in the sensorimotor alpha and 2 

beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous neuronal 3 

activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients (N = 78) 4 

and age- and sex matched healthy controls (N = 60) using source reconstructed resting-state MEG. We 5 

quantified features of the time series data in terms of oscillatory alpha power, beta power, and 1/f 6 

broadband characteristics using power spectral density, and also characterised transient beta burst 7 

events in the time-domain signals. We examined the relationship between these signal features and the 8 

patients’ disease state, symptom severity, age, sex, and cortical thickness. 9 

PD patients and healthy controls differed on PSD broadband characteristics, with PD patients showing 10 

a steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related 11 

decrease in the burst rate. Out of all the signal features of the sensorimotor activity, only burst rate was 12 

associated with increased severity of bradykinesia. Our study shows that general non-oscillatory 13 

features (broadband PSD slope and offset) of the sensorimotor signals are related to disease state and 14 

oscillatory burst rate scales with symptom severity in PD.  15 
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1 Introduction 16 

Parkinson's disease (PD) is a common neurodegenerative disease characterised by a gradual 17 

accumulation of Lewy bodies and death of dopaminergic neurons.1,2 The Lewy body pathology of PD 18 

begins long before the manifestation of motor symptoms. Accumulation of Lewy bodies is initially 19 

found in the olfactory bulb and brain stem and then spreads to the substantia nigra pars compacta, 20 

followed by several brain regions, including the basal ganglia and the neocortex.3 The progressive 21 

structural and neurochemical changes in PD are accompanied by widespread functional changes in 22 

neuronal activity, which in turn lead to worsening clinical signs and symptoms such as tremor, rigidity, 23 

and bradykinesia and co-occurring non-motor symptoms like sleep disorders, depression, fatigue, and 24 

cognitive deficits.1 25 

The changes in brain function in PD are particularly prominent in the oscillatory activity of neurons.4 26 

In PD, spontaneous oscillatory beta band (13–30 Hz) activity in the sub-thalamic nucleus (STN) 27 

exhibits a systematic disease-related increase in synchronicity that is related to the dopamine level5–8, 28 

and correlates with the severity of bradykinesia and rigidity symptoms.9,10 Changes in the beta band 29 

extend beyond the STN through the basal ganglia-thalamic cortical sensorimotor network. The cortical 30 

manifestation of the disease-related changes in the sensorimotor network can be measured non-31 

invasively from the cortex, using electro- or magnetoencephalography (EEG/MEG). Such non-invasive 32 

neural recordings can potentially provide easily available prospective biomarkers of disease or 33 

symptom-related neural changes in PD. Increased oscillatory beta-band activity in the sensorimotor 34 

cortex has been linked to increased symptom severity, such as rigidity and bradykinesia.11,12 The role of 35 

dopamine on the cortical beta band is, however, still unclear. There is no consensus on how 36 

dopaminergic medication affects cortical beta-band power, with some studies reporting no effects11,13–37 
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15 and others an increase in beta-band power.16–18 Deep brain stimulation of the STN in PD patients has 38 

been shown to lead to a decrease in the power of spontaneous activity in the cortical sensorimotor beta 39 

and alpha (8-12Hz) bands19,20 (but see also16,21).  40 

Importantly, there is evidence that the beta-band changes are not in the same direction across the 41 

different stages of PD. For example, there are reports of increased cortical beta-band power in the early 42 

stages of PD22, whereas the later stages are associated with decreased beta-band power.23 Further, the 43 

beta-band power is not the only feature of the sensorimotor rhythms that is altered in PD. Several 44 

studies have found a shift in the beta-band centre frequency (the frequency at which the power 45 

spectrum density peaks in the beta-band) towards a lower frequency in PD patients compared to 46 

healthy controls.24–26 The shift towards lower beta-band centre frequency is more pronounced in PD 47 

patients with dementia27–30 and correlates with reduced cognitive ability.26,31 Notably, the centre 48 

frequency shift is detectable already in the early stages of PD25 and does not seem to be affected by 49 

dopaminergic medication.32 The changes in beta-band power and centre frequency in PD could indicate 50 

that different features of the oscillatory beta-band activity reflect different underlying neural functions 51 

expressed in the measured sensorimotor signals. Changes in beta-band power could be functionally 52 

related to sensorimotor disturbances, and changes in centre frequency could be related to cognitive 53 

function. 54 

The characteristics of neuronal oscillatory activity may hold additional information of disease-related 55 

changes in PD.33 Both beta-band power and centre frequency reflect a quantification of power spectral 56 

density (PSD). While these features can provide valuable information about disease-related changes in 57 

PD, the PSD quantification of a neural time series provides a static summary of the oscillatory activity 58 

across the entire time series. PSD does not account for inherent dynamics in this activity or changes in 59 
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the time series on shorter time scales—as is prevalent in neural time series. The beta-band exhibits a 60 

great degree of variation over time and contains characteristic high-amplitude "bursts" that last about 61 

50-200 ms, both in the cortical and sub-cortical beta-bands.34–37 Functionally, the transient bursts 62 

appear to play a pivotal role in sensorimotor processing through the basal ganglia-thalamic-cortical 63 

network. For instance, the presence of a beta burst in the sensorimotor cortex close to a tactile 64 

stimulation decreased the likelihood of tactile detection38, and the rate of beta bursts is shown to 65 

decrease in the time leading up to a movement both in STN39–41 and in the sensorimotor cortex.42,43 66 

In PD, quantification of beta-band burst activity from recordings in the STN has shown that beta-burst 67 

rate and duration are reduced by dopaminergic medication44,45 and deep brain stimulation.37 68 

Furthermore, PD patients exhibit a decrease in the rate of beta burst at the cortical level compared to 69 

healthy controls.14 This decrease in beta burst rate is inversely related with increased severity of motor 70 

symptoms;46 particulary bradykinesia and postural-kinetic tremor symptoms, but there is not evidence 71 

pointing to an effect of dopaminergic medication on cortical bursting properties.14 Notably, the burst 72 

rate showed a higher sensitivity than PSD beta power for discriminating PD patients from healthy 73 

controls, demonstrating that the choice of method for analysing beta-band features influences the 74 

sensitivity of subsequent analyses. This is further complicated by the fact that in addition to disease-75 

related changes, these features likely differ with age,43,47 and the fact that most studies on oscillatory 76 

changes in PD come from studies with small sizes.48 The central challenge is quantifying the measured 77 

neural signals to extract the disease's relevant features from the signals, be it the spectral power, centre 78 

frequencies, or burst-like features. 79 

In the current study, we aimed to compare how different oscillatory features of cortical sensorimotor 80 

activity change in PD to elucidate what oscillatory features in the neural time-series differ between PD 81 
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patients and healthy controls and how these features are associated with different motor symptoms in 82 

PD. We extracted the sensorimotor neural resting-state activity from source reconstructed resting-state 83 

MEG signals in the sensorimotor cortex (Figure 1) and quantified the time-series in terms of the PSD in 84 

the canonical mu-band (8-30 Hz).49,50 In addition to the band-specific analysis, we compared the 1/f 85 

broadband characteristics of the PSD.51,52 Finally, we compared features of the sensorimotor rhythm in 86 

terms of time-domain analysis of spontaneous transient bursts.14,38 We tested the hypotheses of altered 87 

functional changes in PD by analysing how these features differed between PD patients and healthy 88 

controls and further investigated the interactions with age and sex. As ageing is associated with 89 

structural and functional changes in the sensorimotor cortex53,54, we investigated if the potential 90 

changes in sensorimotor activity in PD differed across age. Since both healthy ageing and PD disease 91 

progression are linked to thinning of the cortex55,56, we further included thickness of the sensorimotor 92 

cortex in the analysis as a potential mediating factor on the sensorimotor activity that potentially also 93 

interacts with disease state. 94 

The central hypothesis was that there would be differences between healthy controls and PD in features 95 

of the sensorimotor signals, but also that different features may be related to different functional 96 

changes. We hypothesised that individual oscillatory features would reflect different underlying neural 97 

functions in the sensorimotor system and thereby show different relationships to the clinical 98 

manifestations of specific motor symptoms in PD. We tested this hypothesis in two steps: first, 99 

examining the inter-relationship between all different measures, and subsequently, examining what 100 

feature—or combination of features—best explained the variation in severity within each motor 101 

symptom. 102 
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 103 

Figure 1: Overview of the data processing pipeline. Three minutes raw resting-state MEG data was 104 

obtained from each participant. The signals were projected through a minimum-norm source 105 

reconstruction to extract the activity in the sensorimotor cortex. We did a frequency decomposition of 106 

the source reconstructed signal to calculate the PSD to which a 1/f and Gaussian curve were fitted to 107 

extract the PSD features (Table 2). In addition, we quantified sensorimotor bursts in the signal time 108 
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series in the sensorimotor ROI by thresholding the envelope of the band-pass filtered (8-30 Hz) signal 109 

to the mu-beta frequency range. 110 

2 Results 111 

To enable a sensitive assessment of disease-related oscillatory changes in PD, we aimed for a relatively 112 

large cohort compared to other functional neuroimaging studies of PD patients (N=78) and healthy 113 

controls (N=60), balanced across gender and age, and with gender- and age-matched groups (Table 1).  114 

Table 1: Group-level summary of the participants included in the analysis. Mean (standard deviation). 115 

Measure Parkinson’s patients Healthy controls Statistics 

N 78 60  

Sex (female/male) 29/49 27/33 χ
2 = 0.57, p = 0.45 

Age 65.6 (9.5) 63.93 (8.4) Welsh t(138.0) = 1.08, p = 0.28 

Disease duration 4.4 (3.7) years - - 

LEDD 548 (273) mg - - 

MDS-UPDRS-III 18.9 (10.8) - - 

MoCA  26.1 (2.8) 26.2 (2.1) Welsh t(136) = 0.10, p = 0.92 

 116 

Table 2: Summary explanations of the main outcome variables in the analysis 117 

Variable 
category 

Variable Explanation 

PSD Beta power The maximum peak in the 13-30 Hz band. Estimated as the height of 
the Gaussian function fitted to the PSD after regressing out the 1/f 
spectrum.  
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 Beta centre frequency 
(Hz) 

The dominant frequency bin in the 13-30 Hz band. Estimated as the 
centre of the Gaussian function fitted to the 13-30 Hz range of the PSD 
after regressing out the 1/f spectrum. 

 Alpha power The maximum peak in the 8-12 Hz band. Estimated as the height of the 
Gaussian function fitted to the PSD after regressing out the 1/f 
spectrum.  

 Alpha centre 
frequency (Hz) 

The dominant frequency bin in the 8-12 Hz band. Estimated as the 
centre of the Gaussian function fitted to the 8-12 Hz range of the PSD 
after regressing out the 1/f spectrum. 

 1/f offset  The intercept of the log-linear regression line estimated from the full 
PSD in the 0.5-40 Hz range. 

 1/f exponent  The decay exponent (1/fx) of the PSD, corresponding to the slope of the 
log-linear regression line, estimated from the full PSD in the 0.5-40 Hz 
range. 

Burst Rate The number of burst events in the time series divided by the length of 
the time series 

 Duration (ms) The time point from where the signal envelope rise above the threshold 
until the next time point it drops below the threshold. 

 Interval (ms) The time point from where the signal envelope drops below the 
threshold until the next time point it rises above the threshold. 

 Amplitude  The maximum envelope amplitude within a burst event. 

 118 

For the first analysis, we investigated how features in the resting-state activity from the sensorimotor 119 

area quantified by features of the PSD and burst characteristics (see Table 2) differed as a function of 120 

the predictors group (PD patients/healthy controls; Table 1), age, sex, and cortical thickness as well as 121 

the interaction between the predictors. 122 

2.1 PSD features 123 

The PSD suggests an apparent group difference between PD patients and healthy controls in the alpha 124 

and beta bands (Figure 2). However, analysing the oscillatory components of PSD by first adjusting for 125 
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the broadband characteristic of the PSD51 removed the apparent group difference in the mu- and beta 126 

band. Bayesian model comparison was used to test which predictors explained the variation in the PSD 127 

(Bayes Factors (BF) > 3 taken as cutoff for substantial evidence for an effect of a given predictor57). 128 

The model comparison showed evidence for group differences on the 1/f offset (BF = 37.77) and 1/f 129 

exponent (BF = 5.92). There were no substantial evidence of an effect beyond the threshold for 130 

substantial evidence on any other PSD features. However, it might be worth noting that there was 131 

anecdotal evidence of an effect of cortical thickness on 1/f exponent (BF = 1.73), an interaction effect 132 

between age and group on alpha centre frequency (BF = 1.43), and only minute evidence for a group 133 

difference on beta power (BF = 1.28). The coefficients of regression models analysing the effect of the 134 

predictors on PSD for all outcome measures are presented in Figure 3. 135 

 136 

Figure 2: Group-level PSD. Grand average PSD (mean+standard error) for the PD group (blue) and 137 

healthy control group (red). 138 

Analysing the PSD by regressing out the 1/f contribution to the spectrum, the difference between PD 139 

patients and healthy controls is not so much in the canonical beta- and alpha bands but manifests in the 140 
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broadband characteristics of the signal. The 1/f intercept was 23.5% [CI: 11.8:33.7%] higher for PD 141 

patients than healthy controls, and PD patients had on average 11.9% [CI: -30.4:3.8%] steeper 1/f 142 

exponential slope compared to healthy controls. 143 

144 

Figure 3: Regression analysis of PSD features. Standardized regression coefficients for the analyse145 

of sensorimotor PSD features as a function of group, age, sex, cortical thickness and the interaction 146 

between these factors. * indicate factors with Bayes Factor > 3 in the model comparison. 147 

2.2 Burst features 148 

The view of sensorimotor oscillatory activity has recently changed from a steady oscillating signal to149 

viewing the activity in the sensorimotor bands occurring in short bursts. We compared features of the150 

sensorimotor rhythm in terms of time-domain analysis of spontaneous transient bursts in the time 151 

series. Model comparison to test which predictors explained the variation in the burst features gave 152 

evidence for an interaction effect between group and age on the burst rate (BF = 33.57) and a main 153 

effect of sex on the burst rate (BF = 4.34). Model coefficients are displayed in Figure 4. 154 

The age-related effects from the model amount to a change in burst rate of -0.7% [CI: -1.6:0.2] per ye155 

for female PD patients and -1.7% [CI: -3.1:-0.3] change in burst rate per year for male PD patients, 156 
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whereas female controls had a relative increase in burst rate of 0.8% [CI: 0.1:1.7] per year and male 157 

controls had a stable trend of -0.2% [CI: -1.0:0.6] change per year. 158 

159 

Figure 4: Regression analysis of burst features. Standardized regression coefficients for the analys160 

of burst features as a function of group, age, sex, cortical thickness and the interaction between these161 

factors. * indicate factors with Bayes Factor > 3 in the model comparison. 162 

No other predictors showed evidence of an effect beyond the threshold for substantial evidence on 163 

neither burst length, the interval between bursts, nor burst amplitude. There was anecdotal evidence 164 

(i.e. 1/3 < BF < 3) for a group difference in burst amplitude (BF = 2.08) as well as an interaction effe165 

of age and cortical thickness on the burst rate (BF = 1.43), and an interaction between sex and cortica166 

thickness on the burst rate (BF = 1.86). 167 

le 

 

lyses 

se 

e 

ffect 

tical 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2022. ; https://doi.org/10.1101/2021.06.27.21259592doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.27.21259592
http://creativecommons.org/licenses/by/4.0/


 

12 

 168 

Figure 5: Age-related differences in sensorimotor signal features.  Scatterplots of the individual 169 

measures and model predictions over age for (A) burst rate, (B) PSD broadband 1/f intercept, and (C) 170 

PSD broadband 1/f exponent, split between PD patients (blue) and healthy controls (red), and female 171 

(solid) and male (dashed). 172 

2.3 Clinical symptoms and oscillatory features 173 

In the second analysis, we tested for associations between motor symptoms and the features of the 174 

sensorimotor signal in the PD group. All sensorimotor signal features listed in Table 2 were used as 175 

predictors in a multiple regression analysis that further included age, sex, and cortical thickness to 176 

regress out the contribution hereof. The standardised regression coefficients of each predictor variable 177 

on the motor symptoms measured with MDS-UPDRS-III58 are presented in Figure 6.  178 

Model comparison of multiple regression models showed evidence that burst rate was negatively 179 

associated with upper limbs bradykinesia (BF = 12.70). The negative direction of the effect of burst 180 

rate means that reduced burst rate was associated with increased severity of bradykinesia. The analysis 181 

yielded no substantial evidence for effects of other sensorimotor signal features on symptom ratings for 182 

axial symptoms, rest tremor, rigidity, rest tremor, postural/kinetic tremor, nor lower limb bradykinesia. 183 
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The analysis yielded substantial evidence for an effect of age on axial symptoms (BF = 5.79) and 184 

evidence for a difference between male and female patients on axial symptoms (BF = 7.56) and rest 185 

tremor (BF = 6.06). There were anecdotal evidence for an effect of alpha centre frequency on upper 186 

limbs bradykinesia (BF = 2.63), an effect of burst length on axial symptoms (BF = 1.49), as well as 187 

anecdotal evidence for an effect of cortical thickness on upper limbs bradykinesia (BF = 2.63). 188 

189 

Figure 6: Regression analysis of motor symptoms. Standardized regression coefficients for the 190 

regression analyses of sensorimotor signal features on clinical motor symptom ratings in PD. * indica191 

factors with Bayes Factor > 3 in the model comparison. 192 

3 Discussion 193 

This study aimed to explore how different features of cortical somatosensory oscillatory activity at re194 

differed between PD patients and healthy controls across age and gender and how these features relat195 

to motor symptoms in PD. The analysis of spontaneous sensorimotor bursts showed an increased age196 

related reduction in PD patients compared to healthy controls. Notably, our current results show that 197 
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the reduced burst rate in PD is not a static group-level difference but interacts with age with a steeper 198 

age-related reduction in burst rate in PD compared to healthy controls. 199 

We hypothesised that different oscillatory features reflect distinct underlying functional neural 200 

properties and manifest as different motor symptoms in PD. The results showed that a reduction in mu-201 

beta burst rate in PD was accompanied with an increase in bradykinesia severity, confirming previous 202 

findings from our group.14 This relationship was exclusive for the bursts rate, as we observed no 203 

statistically evident relationships between other burst features or PSD features and clinical motor 204 

symptoms. 205 

3.1 Characterizing neural time series data  206 

The cortical sensorimotor activity of the PD patients differed from healthy controls, but did not differ 207 

on the PSD in the canonical sensorimotor mu and beta bands. The PD patients showed a steeper 208 

broadband 1/f slope and exponent of the broadband PSD than healthy controls. The observation of a 209 

group difference in the spectral broadband 1/f characteristics of the signal adds to the growing evidence 210 

that a focus on neural activity as narrow-band steady oscillations—e.g. narrowly focusing only on the 211 

beta-band power—could potentially miss essential aspects of the neural signals for understanding 212 

mechanistic changes in disease.59,60 Widening the quantitative analysis of PSD rather than focusing 213 

exclusively on narrow band activity is of potential clinical value: quantifying only the peaks in the PSD 214 

to differentiate patients from controls can misrepresent the actual oscillatory response at those 215 

frequencies as the peaks are influenced by the broadband offset and 1/f exponent. Any unaccounted-for 216 

systematic differences in either PSD offset or decay exponent can lead to a false conclusion that there 217 

is a difference in the oscillatory response.51,52 Non-invasive measurements of changes in sensorimotor 218 

activity is—despite the often conflicting findings48—a potential useful method to assess disease-related 219 
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changes. At the current stage of the field there is, however, a need to further bridge how features in the 220 

signals are linked to disease mechanisms. 221 

Analysis of neural time series by frequency decomposition is a powerful tool to extract and summarise 222 

features of the signal, but the method comes with limitations in what one can infer. In the time domain, 223 

increased oscillatory power can reflect both increased burst duration and change in burst amplitude and 224 

as an expression of true sustained oscillations in the signal.36,61 The presence of more sustained 225 

oscillations in the sensorimotor rhythm might reflect a higher level of inhibition of sensorimotor 226 

information; as is seen in recordings from STN5 and, to some extent, also at the cortical level.38,62 227 

However, sustained oscillations are not in contrast to the bursting properties of the sensorimotor 228 

rhythm. The neural time-series can express both a degree of sustained oscillations while also exhibiting 229 

variation in the degree of transient bursts—e.g., a signal of steady oscillation with transient high-230 

amplitude bursts. 231 

3.2 Beta bursts and beta activity 232 

Bursting properties of the cortical sensorimotor neural activity are proposed to occur due to long-range 233 

input through the ascending thalamic-cortical connection to the cortex, leading to an increase in the 234 

local neural excitation and resulting in a burst of synchronous activity.36 The observed disease-related 235 

changes in spontaneous cortical bursts, in the form of a more rapid decrease in rate over age for PD 236 

patients, could reflect inhibition of these projections along the thalamic-cortical pathways caused by 237 

disturbances in the dopamine-dependent structures projecting to the cortex. Interestingly, we did not 238 

find significant group differences in burst duration in the current study—in line with previously 239 

reported findings on cortical burst in PD14—supporting the view that the central mechanisms of the 240 

cortical bursts are not primarily affected in PD—instead, it is the rate of bursts that is reduced at the 241 
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cortical level. The sub-cortical beta-band activity is influenced by the activity of dopamine-responding 242 

neurons5,6,45. The effect of dopamine and dopaminergic medication on the cortical beta-band is likely 243 

mediated by the dopaminergig neurons projecting to the cortex that terminates in the pre-fontal cortex 244 

but also to less extend in the primary sensorimotor cortex.63
. The differences in the cortical 245 

sensorimotor burst rate in PD might be an indirect effect of the loss of dopamine and changes in the 246 

beta band in the sub-cortical structures projecting to the sensorimotor cortex. The notion that the 247 

cortical sensorimotor activity is indirectly related to dopamine depletion in PD is further supported by 248 

findings from animals studies showing that 6-hydroxydopamine injections lead to exaggerated beta-249 

band oscillations only after several days had passed, suggesting that oscillatory changes occurred as an 250 

indirect compensatory effect after dopamine depletion rather than a direct consequence of the depletion 251 

itself.7 The indirect influence of dopamine on the cortical beta-band might also explain the often weak 252 

or even absent effect of dopaminergic medication on cortical beta-band activity.11,13–15 The current 253 

study cannot directly address the role of dopamine on cortical oscillations since all patients in the study 254 

were tested on medication. However, a recent study found that cortical burst characteristics measured 255 

with MEG were influenced by DBS therapy in PD and normalised the bursting chracteristics during 256 

DBS to resemble the burst characteristics of healthy controls.46 This further suppots that cortical 257 

bursting activity is mediated by subthalamic projections. 258 

3.3 Age-related differences 259 

We explored how age-related differences in cortical sensorimotor neural activity might interact with 260 

disease-related changes in PD. Age-related effects on spontaneous sensorimotor activity are commonly 261 

dealt with by matching the age distributions of the patient group and the healthy control group—262 

usually within a narrow age span. The analysis showed age-related differences in burst rate, with PD 263 
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patients showing a more considerable reduction of burst as a function of age than healthy controls. The 264 

steeper reduction in burst rate with age in PD seems in accordance with the fact that higher age at PD 265 

onset is associated with a faster disease progression and more rapid decline in motor function64, though 266 

a longitudinal design is needed to confirm the relation between disease progression, reduction in burst 267 

rate, and age. We did not see a significant "slowing" of the beta PSD centre frequency between groups, 268 

as reported in several previous studies.48 An explanation might be that such slowing is more 269 

pronounced in PD patients with dementia27–30 and correlates with cognitive ability.26 The PD patients in 270 

the current study did not differ in their cognitive ability from the healthy controls. Furthermore, we 271 

focused on the activity in the sensorimotor cortex, whereas the slowing of alpha and beta PSD is 272 

usually found in frontal areas and globally throughout the brain.25,28,31 We included cortical thickness 273 

measures within the same ROI from which we extracted the functional time-series, as we hypothesised 274 

that age-related effects upon the functional measures might be mediated through the age-related 275 

structural changes in the cortex. However, despite the negative correlation between age and cortical 276 

thickness (see supplementary material), we did not find pervasive evidence that cortical thickness 277 

affected any of the functional measures. 278 

3.4 Sex differences 279 

We also included sex to explore if disease-related changes in sensorimotor oscillatory activity differed 280 

between males and females, as there are well-documented sex differences in the manifestation of 281 

PD.1,65 Male sex is a risk factor for developing PD, with an average incidence ratio of approximately 282 

2:1 male-female ratio across all stages of the disease.66 The disease onset is on average two years 283 

earlier in males than females and differs in the initial manifestation of symptoms, with women more 284 

likely to develop tremor specific symptoms and men more likely to develop rigidity.67 We are not 285 
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aware of any previous studies that explicitly included sex as a factor in analysing neural oscillations in 286 

PD. The regression analysis of motor symptoms showed evidence for a difference in midline function 287 

and rest tremor between male and female patients. We did not, however, find widespread sex 288 

differences in the various features of the sensorimotor activity. The analysis of the sensorimotor singal 289 

features only showed evidence for differences between males and females in the burst rate. A possible 290 

factor behind the sex differences in PD is the contribution of sex hormones on the nigrostriatal pathway 291 

and linked to the deterioration of the dopaminergic system, where testosterone levels appear to enhance 292 

dopamine loss, while estrogen has been identified as a neuroprotective agent for PD. Estrogen has been 293 

demonstrated to influence incidence levels of PD while menopause-related variations in estrogen levels 294 

are linked to variations in PD symptom severity.68 At the current stage, it is unclear if estrogen sex 295 

hormones influences oscillatory bursts in the sensorimotor cortex. These findings illustrate the need for 296 

further studies into sex-specific changes in neural function and how they manifest and relate to PD. 297 

3.5 Limitations and conclusions 298 

The present study quantified the neural time series from the sensorimotor cortex based on pre-defined 299 

summary measures of its PSD and burst properties. We included more PD patients and healthy controls 300 

than similar previously conducted functional studies—typically in the range of 5-30 participants.48 A 301 

limitation of our study for understanding the extent of changes in oscillatory sensorimotor activity is 302 

the focus on different features within a narrow ROI, which ignores other types of measurements that 303 

are potentiallyrelevant to understanding the development of PD and motor symptoms: for example, the 304 

long-range connectivity between the sensorimotor cortex and other cortical areas and the connections 305 

between the sensorimotor cortex and the basal ganglia and thalamus (though the subcortical structures 306 

are practically invisible in MEG). 307 
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Treating the activity in the sensorimotor cortex as single time series also means that we remove the 308 

sensitivity to spatial features of the signals, e.g., focal versus spatially blurred activity in one group or 309 

the other. If the oscillatory activity extends over a larger cortical surface area, that signal will also 310 

manifest as power differences in the measured signal.61 There are potentially other features to be 311 

uncovered, and future studies may explore how the PSD- and burst features further interact with other 312 

aspects of brain activity in the global function of the brain to fully understand the interaction between 313 

functional and structural changes in PD. 314 

We investigated a relatively large cohort of PD patients and healthy controls (for a neuroimaging 315 

study) to make meaningful inferences about how age and sex interact with the group level difference 316 

between PD patients and healthy controls; however, a limitation is that our study is cross-sectional. We 317 

aim to follow this cohort longitudinally to estimate the development trajectories of the sensorimotor 318 

oscillatory activity in PD compared to healthy ageing. 319 

Sensorimotor activity measured non-invasively with MEG/EEG contains rich information about the 320 

functional state of the sensorimotor system and how it changes in PD. The central challenge is 321 

quantifying the measured neural signals to extract the disease's relevant features from the signals, be it 322 

the spectral power, centre frequencies, or burst-like features. Finding features of neural signals that can 323 

explain disease mechanism or symptoms, even if extracted along with a reduced number of dimensions, 324 

will be helpful if they provide adequate information about the disease- or symptom-state. Further 325 

characterisation of the association between features in the non-invasive brain signals and motor 326 

symptoms can potentially be a valuable tool to aid in diagnosis and treatment evaluation. 327 

Understanding how features in the neural time series are related to motor symptoms in PD will also 328 

help develop non-invasive neural stimulation that can potentially relieve motor symptoms.37,69 329 
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4 Methods 330 

4.1 Participants 331 

Eighty PD patients (age 44-85; 32 female) and 71 healthy controls (age 46–78; 46 female) participated 332 

in the study. The study was approved by the regional ethics committee (Etikprövningsnämden 333 

Stockholm, DNR 2019-00542) and followed the Declaration of Helsinki. All participants gave written 334 

informed consent before participation. 335 

The PD patients were recruited from the Parkinson's Outpatient Clinic, Department of Neurology, 336 

Karolinska University Hospital, Stockholm, Sweden. The healthy controls were recruited by 337 

advertising or amongst spouses of PD patients. 22 participants (18 patients, 4 healthy controls) were 338 

included from a previous study14 who were qualified based on the recruitment criteria of the present 339 

study and had done the same MEG and MRI procedures as in the present study. All data were 340 

reanalysed following the procedure described below. 341 

The inclusion criteria for the PD group were a diagnosis of PD according to the United Kingdom 342 

Parkinson's Disease Society Brain Bank Diagnostic Criteria with Hoehn and Yahr stage 1-3.70 343 

Inclusion criteria for the control group were not having a diagnosis of PD, no form of movement 344 

disorder, and no history of neurological disorders, epilepsy, or psychiatric disorders. 345 

Exclusion criteria for both groups were a diagnosis of major depression, dementia, history or presence 346 

of schizophrenia, bipolar disorder, epilepsy, or history of alcoholism or drug addiction according to the 347 

Diagnostic and Statistical Manual of Mental Disorders.71 348 

One participant declined to do the MRI scanning, one participant had a scanner malfunction during 349 

MRI acquisition, and 11 participants had their MRI scans cancelled due to the Covid-19 pandemic and 350 
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were not included in the analysis. In total, two PD patients and 11 healthy controls were excluded from 351 

the analysis. Table 1 is a summary of the participants included in the analysis. 352 

The PD patients participated in the study while on their regular prescribed dose of medication. The 353 

levodopa equivalent daily dose (LEDD) was calculated according to Tomlinson et al.72 Motor 354 

symptoms in the PD group were assessed using the motor section of the Movement-Disorder Society 355 

Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III).59 Global cognition was assessed with the 356 

Montreal Cognitive Assessment battery (MoCA).74 357 

4.2 MEG recordings 358 

MEG data were recorded with a Neuromag TRIUX 306-channel MEG system, with 102 359 

magnetometers and 102 pairs of planar gradiometers. Data were sampled at 1000 Hz with an online 0.1 360 

Hz high-pass filter and 330 Hz low-pass filter. The MEG scanner was located inside a two-layer 361 

magnetically shielded room (Vacuumschmelze GmbH) with internal active shielding active to suppress 362 

electromagnetic artefacts. The subjects' head position and head movements inside the MEG scanner 363 

were measured during recordings with head-position indicator coils (HPI) attached to subjects' heads. 364 

The HPI location and additional points sampled uniformly across the subjects' head shape were 365 

digitalised with a Polhemus Fastrak motion tracker before the measurements. Horizontal and vertical 366 

electrooculogram (EOG) and electrocardiogram (ECG) were recorded simultaneously with the MEG. 367 

We recorded three minutes of resting-state MEG while the participants sat with their eyes closed. The 368 

participants were instructed to close their eyes and relax. The recordings began after assuring the 369 

participant sat still with their eyes closed. 370 
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4.3 MRI acquisition 371 

3D T1-weighted magnetisation-prepared rapid gradient-echo (MPRAGE) sequence structural images 372 

(voxel size: 1x1x1 mm) were obtained on a GE Discovery 3.0 T MR scanner for morphological 373 

analysis and creating source spaces for MEG source reconstruction. Multi-echo "FLASH"75 images 374 

were obtained to create volumetric headmodels for MEG source reconstruction (see below). 375 

4.4 MRI processing 376 

The MRI images were processed with Freesurfer76 (v. 5.3) to get surface reconstructions of the cortical 377 

mantle. The surfaces were obtained with the automatic routine for extracting cortical surfaces in 378 

Freesurfer from the individual T1-weighted MRI. 379 

We defined the cortical sensorimotor area by segmenting the cortical surface using the anatomical 380 

labels provided by Freesurfer automatic labelling.77 The analysis focused on a region of interest (ROI) 381 

consisting of the left pre- and post-central gyri and central sulcus. The pre/postcentral gyri were 382 

combined because a biomagnetic source on either sulci wall will leave a trance on the other side due to 383 

the close distance and the field spread of MEG signals. The ROI was defined for each subject based on 384 

the individual cortical reconstructions. The average cortical thickness in the ROI was estimated with 385 

Freesurfer.78 386 

4.5 MEG pre-processing 387 

The MEG data was processed by applying temporal signal space separation (tSSS) to suppress artefacts 388 

from outside the scanner helmet and correct head movement during the recording.79 The tSSS had a 389 

buffer length of 10 s and a cut-off correlation coefficient of 0.95. Movement correction was done by 390 
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shifting the head position to a position based on the median of the continuous head position during the 391 

three-minute recording. 392 

The MEG data processing and source reconstruction was done with MNE-Python80 in Python 3.8. First, 393 

we marked data segments containing muscle artefacts and SQUID jumps with the automatic artefact 394 

detection in MNE-Python. The data was filtered with a 48 Hz low-pass filter and 50 Hz notch filter to 395 

remove line noise. The continuous data were cut into 1.0 s epochs, and epochs with muscle artefacts or 396 

extreme values (5000 fT for magnetometers and 4000 fT/cm for gradiometers) were rejected. Between 397 

0-65 % (median: 6.0 %) of data was rejected resulting in 63.0-180 s (median: 174.0 s) of useful MEG 398 

data per participant. The remaining data length was not significantly different between groups 399 

(Wilcoxon rank sum test, p = 0.98). We then performed an independent component analysis (ICA) 400 

using the fastica algorithm81 to identify artefacts from blinks and heartbeats. Components showing 401 

correlation with the EOG and ECG were removed from the raw data. Between 0-5 (median 3) 402 

components were removed per participant. The number of removed ICA components was not 403 

significantly different between groups (Wilcoxon rank sum test, p = 0.71). 404 

We then applied source reconstruction using noise weighted minimum-norm estimates.82 The noise 405 

covariance matrix was estimated from two minutes of empty room MEG data recorded before each 406 

session. The source space consisted of 5124 evenly spaced points sampled across the white matter 407 

surfaces. The inner skull boundary was estimated from the multi-echo MRI to create a single shell 408 

volume conductor model. The time series from the sensorimotor ROI (see Figure. 1) was extracted 409 

from the estimated source time series by singular value decomposition of all source points within the 410 

ROI. 411 
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4.6 Power spectral analysis 412 

We analysed the spectral properties of the sensorimotor activity by calculating the PSD from 0.5 to 40 413 

Hz across the entire cleaned ROI time series using Welch's method by segmenting the continuous data 414 

into 3.072 s epochs with 50% overlap and averaging the PSD across the segments. 415 

Since the narrow-band beta power in the PSD is dependent on the broader features of the broadband 416 

spectrum, we further analysed the 1/f broadband characteristic of the sensorimotor activity as this could 417 

play a role in the functional properties of the beta-band and has been shown to differ between healthy 418 

control and PD patients.14 We used the fitting oscillations & one over f (FOOOF) toolbox51 to analyse 419 

the 1/f broadband characteristic of the PSD (intercept and exponent) and the oscillatory peaks in the 420 

canonically defined beta band (13-30 Hz) and alpha band (8-12 Hz). A log-linear regression is fitted to 421 

the PSD and subtracted before fitting Gaussian functions to the peaks in the PSD. The midpoint of the 422 

Gaussian function fittied to a given frequency band corresponds to the peak frequency in that frequency 423 

band and the height represents the signal power. A new log-linear function is fitted to the PSD after 424 

subtracting the Gaussian function to estimate the 1/f characteristic. 425 

All participants showed a discernible beta peak in the PSD. Nine PD patients and nine healthy controls 426 

did not show a peak in the PSD alpha band (no difference between groups, χ2(1) = 0.12; p = 0.73). 427 

4.7 Burst analysis 428 

To calculate the burst properties of the sensorimotor activity in the time domain, we band-pass filtered 429 

the time-series with an 8-30 Hz band-pass filter using FieldTrip83 in MATLAB (R2016b; MathWorks 430 

Inc.) and calculated the Hilbert envelope of the signal. The burst threshold was defined as two times the 431 

median of the signal. The burst onset was defined as the time-point where the signal first reached half 432 

the max amplitude of the burst and ended at the time-point where the signal again dropped below half 433 
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the max amplitude of the burst. The burst amplitude was defined as the maximum value of the burst. 434 

The burst duration was defined as the time from burst onset to burst end. The burst interval was 435 

defined as the time from the end of a burst to the time-point where the next burst began.  436 

4.8 Statistics 437 

4.8.1 Analysis of sensorimotor rhythm features 438 

The main analyses tested the effect of group (PD patients/healthy controls), age, sex, and ROI cortical 439 

thickness on the features listed in Table 2. For the PSD features, we modelled the outcomes as a linear 440 

function of group (PD patients/healthy controls), age, age squared, sex, and cortical thickness with 441 

linear regression in R (v. 4.0.2).84 The regression models were fitted to the data for each participant 442 

with all factors and up to their three-way interactions between the four predictors. Gaussian regression 443 

models were estimated for each feature, except for the burst rate (burst per minute), which was 444 

modelled with Poisson regression using the same predictor variables. Before fitting the regression 445 

models, burst duration, burst interval, and burst amplitude were log-transformed. 446 

Significance testing was done by removing one predictor from the model and comparing the variance 447 

explained between the full model and the model with a predictor removed. Hypothesis testing was done 448 

by computing the Bayes factor (BF) for the model with a given predictor (H1) versus the model 449 

without the predictor (H0) using the BIC approximation.85 The BF tells how much more likely the 450 

observed data is under the alternative model (H1) versus the null model (H0). The Bayesian model 451 

comparison, therefore, avoids the multiple comparison problem of frequentist hypothesis testing 452 

(theoretical likelihood of the hypothesis given the observed data). The model comparison approach 453 

furthermore circumvents issues with the interpretation of p-values of individual regression coefficients 454 

due to internal correlation between predictor variables. Following the conventional interpretation of 455 
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BFs, we used BF > 3 as a cut-off between anecdotal evidence and substantial effects.57 The BFs for all 456 

comparisons are presented in Supplementary Table S3. 457 

4.8.2 Clinical scores and sensorimotor oscillatory features 458 

The MDS-UPDRS-III scores were divided into subscales based on symptoms: midline function, rest 459 

tremor, rigidity, upper-body bradykinesia, postural and kinetic tremor, and lower limb bradykinesia; 460 

according to Goetz et al.86, with the exception that left- and right-side upper-body bradykinesia were 461 

combined into a single factor. 462 

Each symptom score was analysed by multiple regression and modelled as a function of the burst rate, 463 

median burst duration, median bursts interval, median burst amplitude, PSD 1/f intercept, PSD 1/f 464 

exponent, PSD beta power, PSD beta centre frequency, PSD alpha power, and PSD alpha centre 465 

frequency for each PD patient. The models further included the age, sex, and cortical thickness to 466 

regress out the contribution hereof and estimate the relative effect size of each signal feature. All 467 

symptom ratings and continuous predictor variables, except age, were z-transformed to get the 468 

standardised effect size. Significance testing was done by removing one predictor from the model and 469 

calculating the BF between the full model (H1) and the model without the predictor (H0) using the BIC 470 

approximation for BFs. The BFs for all comparisons are presented in Supplementary Table S4. 471 

4.9 Data Availability 472 

The full dataset cannot be made publicly available, as the ethical permits for the study does not allow 473 

for open data sharing. Parts of the data used in this analysis will be made available as part of an online 474 

data repository (Vinding, et al. in prep). The scripts used to process the data and run the analysis 475 

presented in the paper are available at: https://github.com/natmegsweden/PD_beta_bursts2.  476 
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Figure legends 1 

Figure 1: Overview of the data processing pipeline. 2 

Three minutes raw resting-state MEG data was obtained from each participant. The signals were 3 

projected through a minimum-norm source reconstruction to extract the activity in the sensorimotor 4 

cortex. We did a frequency decomposition of the source reconstructed signal to calculate the PSD to 5 

which a 1/f and Gaussian curve were fitted to extract the PSD features (Table 2). In addition, we 6 

quantified sensorimotor bursts in the signal time series in the sensorimotor ROI by thresholding the 7 

envelope of the band-pass filtered (8-30 Hz) signal to the mu-beta frequency range. 8 

Figure 2: Group-level PSD. 9 

Grand average PSD (mean+standard error) for the PD group (blue) and healthy control group (red). 10 

Figure 3: Regression analysis of PSD features. 11 

Standardized regression coefficients for the analyses of sensorimotor PSD features as a function of 12 

group, age, sex, cortical thickness and the interaction between these factors. * indicate factors with 13 

Bayes Factor > 3 in the model comparison. 14 

Figure 4: Regression analysis of burst features. 15 

Standardized regression coefficients for the analyses of burst features as a function of group, age, sex, 16 

cortical thickness and the interaction between these factors. * indicate factors with Bayes Factor > 3 in 17 

the model comparison. 18 
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Figure 5: Age-related changes in sensorimotor signal features.   19 

Scatterplots of the individual measures and model predictions over age for (A) burst rate, (B) PSD 20 

broadband 1/f intercept, and (C) PSD broadband 1/f exponent, split between PD patients (blue) and 21 

healthy controls (red), and female (solid) and male (dashed). 22 

Figure 6: Regression analysis of motor symptoms. 23 

Standardized regression coefficients for the regression analyses of sensorimotor signal features on 24 

clinical motor symptom ratings in PD. * indicate factors with Bayes Factor > 3 in the model 25 

comparison. 26 

Tables 27 

Table 1 28 

Group-level summary of the participants included in the analysis. Mean (standard deviation). 29 

Measure Parkinson’s patients Healthy controls Statistics 

N 78 60  

Sex (female/male) 29/49 27/33 χ
2 = 0.57, p = 0.45 

Age 65.6 (9.5) 63.93 (8.4) Welsh t(138.0) = 1.08, p = 0.28 

Disease duration 4.4 (3.7) years - - 

LEDD 548 (273) mg - - 

MDS-UPDRS-III 18.9 (10.8) - - 

MoCA  26.1 (2.8) 26.2 (2.1) Welsh t(136) = 0.10, p = 0.92 
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Table 2 31 

Summary explanations of the main outcome variables in the analysis 32 

Variable 
category 

Variable Explanation 

PSD Beta power The maximum peak in the 13-30 Hz band. Estimated as the height of 
the Gaussian function fitted to the PSD after regressing out the 1/f 
spectrum.  

 Beta centre frequency 
(Hz) 

The dominant frequency bin in the 13-30 Hz band. Estimated as the 
centre of the Gaussian function fitted to the 13-30 Hz range of the PSD 
after regressing out the 1/f spectrum. 

 Alpha power The maximum peak in the 8-12 Hz band. Estimated as the height of the 
Gaussian function fitted to the PSD after regressing out the 1/f 
spectrum.  

 Alpha centre 
frequency (Hz) 

The dominant frequency bin in the 8-12 Hz band. Estimated as the 
centre of the Gaussian function fitted to the 8-12 Hz range of the PSD 
after regressing out the 1/f spectrum. 

 1/f offset  The intercept of the log-linear regression line estimated from the full 
PSD in the 0.5-40 Hz range. 

 1/f exponent  The decay exponent (1/fx) of the PSD, corresponding to the slope of the 
log-linear regression line, estimated from the full PSD in the 0.5-40 Hz 
range. 

Burst Rate The number of burst events in the time series divided by the length of 
the time series 

 Duration (ms) The time point from where the signal envelope rise above the threshold 
until the next time point it drops below the threshold. 

 Interval (ms) The time point from where the signal envelope drops below the 
threshold until the next time point it rises above the threshold. 

 Amplitude  The maximum envelope amplitude within a burst event. 
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