1 Viral cultures, Polymerase Chain Reaction Cycle Threshold Values and

- 2 Viral Load Estimation for SARS-CoV-2 Infectious Potential Assessment
- 3 in Hematopoietic Stem Cell and Solid Organ Transplant Patients: A
- 4 Systematic Review.
- 5 Tom Jefferson¹, Elizabeth A. Spencer², John M. Conly⁷, Elena C. Rosca³, Susanna Maltoni⁴, Jon
- 6 Brassey⁵, Igho J. Onakpoya¹, David H. Evans⁶, Carl J. Heneghan², Annette Plüddemann^{2*}.
- 7 ¹Department for Continuing Education, University of Oxford, UK
- 8 ²Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences,
- 9 University of Oxford, UK
- 10 ³Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- ⁴Division of Research and Innovation, IRCCS Azienda Ospedaliero-Universitaria di Bologna,
- 12 Bologna, Italy
- 13 ⁵Trip Database Ltd, Newport, UK
- ¹⁴⁶Li Ka Shing Institute of Virology and Dept. of Medical Microbiology & Immunology, University
- 15 of Alberta, Canada
- ¹⁶ ⁷Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology &
- 17 Laboratory Medicine, Synder Institute for Chronic Diseases and O'Brien Institute for Public

- 18 Health, Cumming School of Medicine, University of Calgary and Alberta Health Services,
- 19 Calgary, Canada.
- 20 *Corresponding author
- 21

23 Abstract

24	Background: Organ transplant recipients are at increased vulnerability to SARS-CoV-2 due to
25	immunosuppression and may pose a continued transmission risk especially within hospital
26	settings. Detailed case reports including symptoms, viral load and infectiousness, defined by the
27	presence of replication-competent viruses in culture, provide an opportunity to examine the
28	relationship between clinical course, burden and contagiousness, and provide guidance on
29	release from isolation.
30	Objectives: We performed a systematic review to investigate the relationship in transplant
31	recipients between serial SARS-CoV-2 RT-PCR cycle threshold (Ct) value or cycle of
32	quantification value (Cq), or other measures of viral burden and the likelihood and duration of
33	the presence of infectious virus based on viral culture including the influence of age, sex,
34	underlying pathologies, degree of immunosuppression, and/or vaccination on this relationship.
35	Methods: We searched LitCovid, medRxiv, Google Scholar and WHO Covid-19 databases, from 1
36	November 2019 until 31 December 2021. We included studies reporting relevant data for
37	transplantees with SARS-CoV-2 infection: results from serial RT-PCR testing and viral culture
38	data from the same respiratory samples. We assessed methodological quality using five criteria,
39	and synthesised the data narratively and graphically.
40	Results: We included 10 case reports and case series reporting on 38 transplantees. We
41	observed a relationship between proxies of viral burden and likelihood of shedding replication-
42	competent SARS-CoV-2. Two individuals shed replication-competent viruses over 100 days after
43	infection onset. Lack of standardisation of testing and reporting platforms precludes

- 44 establishing a definitive viral burden cut-off. However, most transplantees stopped shedding
- 45 competent viruses when the RT-PCR cycle threshold was above 30 despite differences across
- 46 platforms.
- 47 Conclusions
- 48 Viral burden is a reasonable proxy for infectivity when considered within the context of the
- 49 clinical status of each patient. Standardised study design and reporting are essential to
- 50 standardise guidance based on an increasing evidence base.
- 51
- 52
- 53
- 54
- 55

56 Keywords

- 57 COVID-19; SARS-CoV-2; transmission; organ transplants; viral culture; polymerase chain
- 58 reaction; viral load; cycle threshold calibration; infectivity

60 Introduction

61	Hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients have				
62	significant immunosuppression, affecting both cellular and humoral immunity, and less				
63	favourable outcomes with Severe Acute Respiratory Virus Syndrome 2 (SARS-CoV-2) infection,				
64	due to the immunosuppression and/or to pre-existing comorbidities ¹ . Immunosuppression				
65	associated with transplantation places patients at risk for prolonged carriage and shedding of				
66	several respiratory viruses ² . However, identification of respiratory viral shedding, recently by				
67	reverse transcriptase polymerase chain reaction (RT-PCR), depending on the testing platform				
68	does not correlate with the presence of replication-competent virus ³ . Accordingly, we sought t	to			
69	perform a systematic review of RT-PCR testing and viral culture of SARS-CoV-2, focussing on				
70	people receiving solid organ or hematopoietic stem cell transplants, following our published				
71	protocol ⁴ .				
72	Our research questions were:				
73	1. What is the correlation between serial SARS-CoV-2 RT-PCR cycle threshold (Ct) value or	٢			
74	cycle of quantification value (Cq), or other measures of viral burden and the likelihood				
75	of producing replication-competent virus?				
76	2. What is the likelihood and duration of the presence of infectious virus based on viral				
77	culture, among transplant recipients with SARS-CoV-2 infection?				
78	3. What is the influence of age, sex, underlying pathologies and degree of				
79	immunosuppression on infectiousness of SARS-CoV-2?				

- 80 4. What is the relationship of vaccination status on infectiousness with SARS-CoV-2?
- 81 We included studies reporting serial Cts from sequential RT-PCR testing or other measures of
- 82 viral burden such as RNA gene copies of respiratory samples (from nasopharyngeal or throat
- 83 specimens) along with viral culture data on the same samples, from patients about to receive a
- 84 transplant or who were post-transplant, with SARS-CoV-2 infection.
- 85 Methods

86 Search Strategy

- 87 We searched the following electronic databases: LitCovid, medRxiv, Google Scholar and the
- 88 WHO Covid-19 database from November 2019 until December 31, 2021. No language
- 89 restrictions were applied.
- 90 The literature search terms were: (coronavirus OR covid-19 OR SARS-CoV-2) AND
- 91 (immunosuppressed OR immunocompromised OR transplant OR immunosuppression OR
- 92 "immune deficient" OR HIV) AND (CPE OR "cytopathic effect" OR "Viral culture" OR "virus
- 93 culture" OR vero OR "virus replication" OR "viral replication" OR "cell culture" or "viral load" OR
- 94 "viral threshold" OR "log copies" OR "cycle threshold").

95 Screening

- 96 Four reviewers independently screened titles and abstracts to identify studies for consideration
- 97 of full text. Full text screening was performed in duplicate and disagreements arbitrated by a
- 98 fifth reviewer.

99 Inclusion criteria

100	We included studies reporting serial Cts from sequential RT-PCR testing, or RNA gene copies of
101	respiratory samples (nasopharyngeal, throat, sputum, bronchoalveolar lavage, endotracheal
102	tube secretions) AND viral culture data from the same samples from patients about to receive a
103	transplant or post-transplant with SARS-CoV-2 infection. We included primary studies provided
104	they reported sufficient information to extract quantitative data on the PCR testing and the
105	viral culture for each included individual. Studies that included transplant and non-transplant
106	patients were included if we could ascertain the results separately. Studies reported only in
107	poster or abstract form were excluded. Reviews were excluded but the reference lists screened
108	for potential relevant primary studies.
109	Exclusion criteria
110	We excluded studies using post-mortem samples only and non-respiratory samples only. We
111	did not include studies of non-transplant patients or those not attempting viral cultures.
112	Data extraction
113	One reviewer extracted data, which was independently checked by a second reviewer.
114	Disagreements were arbitrated by a third reviewer. Data were extracted on study type and
115	study characteristics, including population, setting, sampling and laboratory methods, clinical
116	information, prescribed treatments, vaccination status, laboratory findings, and clinical
117	outcomes. For three studies we sought clarification from the corresponding authors.

118 Quality assessment

119 We assessed the quality of included studies according to five criteria:

120	1.	Were the criteria for diagnosing a case clearly reported and appropriate?
121	2.	Was the reporting of patient/population characteristics including clinical symptoms,
122		treatments with degree of immunosuppression and outcomes adequate?
123	3.	Was the study period, including follow-up, sufficient to adequately assess any potential
124		relationship between viral burden measures and likelihood of producing replication-
125		competent virus and the rise in neutralising antibodies? We defined sufficient as more
126		than one observation.
127	4.	Were the methods used to obtain RT-PCR results replicable, generalisable and
128		appropriate? We considered that each study should establish the relationship between
129		their Ct values and the target gene copy number, using internal standards.
130	5.	Were the methods used to obtain viral culture results replicable and appropriate? We
131		considered the methods used should, at a minimum, include a description of specimen
132		sampling and management, preparation, media and cell line used, exclusion of
133		contamination or co-infection (use of good controls and appropriate antibacterials and
134		antimycotics and possible use of gene sequencing if available), and results of inspection
135		of culture.

136 Data reporting and pooling

137 We reported study flow according to PRISMA reporting standards⁵. We reported study

138 characteristics including age, sex, clinical symptoms, treatments and events in the participants

139	in tabular form. We presented data on disease burden measures and on viral culture in tabular
140	form. For studies reporting more than one patient participant, data were extracted related to
141	each participant if available. We plotted median, interquartile ranges (IQRs) and outliers for
142	viral culture results in relation to the duration of symptoms, and individual study plots to day
143	120 of viral culture results and cycle thresholds.
144	We were unable to meta-analyse the data on PCR cycle counts/RNA log copies and viral culture,
145	due to a lack of detailed information on laboratory practices, assays and because of the
146	absence of internal controls in some studies, and heterogeneous sampling. We therefore
147	reviewed the studies narratively, and where possible presented the results graphically within
148	the limitations noted.
149	We analysed the relationship between cycle threshold, days of onset of symptoms and
150	likelihood of shedding replication-competent virus by presenting the data on a scatter plot
151	Results
152	The literature search identified 12,988 titles for screening. Of these 63 underwent full-text
153	review. A total of 53 studies were excluded after full-text analysis: reasons are reported in the
154	list of excluded studies (see Supplementary File: List of excluded studies)
155	The 10 included studies (Figure 1 reported data for 30 transplant patients (7 females and 23
156	males): renal (21), cardiac (5), bone marrow transplant (9), liver (2), bilateral lung (1). For one
157	study the number of males and females was not available for the relevant patient group . 6 The
158	38 patients were in seven countries: Saudi Arabia ⁷ , France ^{8 9} , Germany ^{10 11 12} , Austria ¹³ ,

159 Denmark ¹⁴, Canada ¹⁵ and the USA⁶, and were aged between 26 and 77 years old.

160	A total of 36 were infected with SARS-CoV-2 post-transplant: 21 patients in 3 studies had had
161	kidney transplant ^{7 8 12} , 5 patients in 4 studies had had a cardiac transplant ^{7 10 15 9} , 1 previous
162	bone marrow transplant for multiple myeloma ¹⁴ , 1 liver transplant ¹⁴ and eight hematopoietic
163	cell transplants ⁶ . Two patients were infected with SARS-CoV-2 and subsequently underwent
164	transplant: 1 liver transplant ¹¹ , 1 patient had bilateral lung transplantation after a SARS-CoV-2
165	infection that severely affected the lungs ¹³ .
166	Typically, patients received ⁶ a mixture of antivirals, antibiotics, convalescent plasma and
167	immune suppressants, as reported in Table 1. The clinical course of COVID-19 varied widely
168	amongst the included patients, from mild COVID-19 related symptoms to severe pneumonia
169	and lung failure; no deaths were specifically reported for this group, although deaths were
170	reported for 4 aggregate patients in one study within 30 days of diagnosis ⁶ . Prescribed
171	treatments reflected the variation in severity.
172	Quality Assessment
172	Quality Assessment
173	Table 2 reports study quality based on five criteria. Three studies ^{15 9 12} met all five criteria.
174	Follow-up was judged adequate in all studies; in nine studies the reporting of patient

175 characteristics was sufficiently comprehensive^{6 8 10 13 11 14 15 9 12} and clinical information was

176 missing for one study ⁷. Case definition was missing or unclear in four studies^{6, 7 10 14}, and

177 methods for RT- PCR testing were unclear for three studies⁶ ¹⁰ ¹³. The methods used for viral

178 culture were unclear in four studies ^{7 10 13 11} and one study reported using a cell line that has

179 not typically been used to demonstrate SARS-CoV-2 growth - Buffalo green monkey kidney

180 (BGMK) cell line⁸.

181 **Results of the studies**

- 182 The results are reported in Table 1 and Table 3. The clinical course of infection was highly
- 183 variable (Tables and 1 and 3, and Figures 2 and 3). The time from transplant to infection varied
- 184 from days to years (see for example Aydillo et al⁶ and Rajakumar et al¹⁵). Sampling schedules
- 185 varied between studies, with no regular timetable of testing taking place, so results for PCR and
- 186 viral culture are available for different time points in a patient's clinical course and with
- 187 different gaps in time between samples being taken.
- 188 In response to our first study question on the correlation between proxy indicators of viral
- 189 burden and infectiousness, the data from Figures 2 and 3 and Table 3 indicate a correlation
- 190 between viral burden (measured as log copies or Cq/Ct) and probable infectiousness. The data
- 191 suggests that earlier symptom onset is related to the likelihood of shedding replication-
- 192 competent virus (Figure 2). The median time for a positive culture from onset of symptoms was
- 193 16 days (IQR 8 to 27; range 1-105, mean 19.7 days n = 59 cultures performed). The median for a
- negative culture was 40 days, mean 40.2 days (IQR 22 to 60; range 1-119, n = 107 cultures

195 performed).

- Five patients reported by Alshukairi et al were all culture-negative; this was in samples taken on
 days 9,12, 17,18 and day 26 since symptom onset, respectively ⁷.
- 198 Seven stem cell transplant recipients from the Aydillo et al letter who had repeated culture
- 199 assessments fluctuated in and out of shedding replication-competent virus. One who had a

200	single culture attempt was positive with an estimated Ct of 17.5 ⁶ . Patient MSK-6 shed
201	replication competent virus until day 62 from symptom onset with an estimated Ct of 19. MSK-
202	6 showed the longest duration infectious transplant recipient from the Aydillo et al letter ⁶ .
203	Eight kidney transplant patients described by Benotmane and colleagues had positive viral
204	cultures ⁸ .
205	For six patients we could identify the duration of probable infectiousness, which ranged from 8
206	days (patient 5: day 1 to 8) to 32 days (patient 7: day 7 to 38). Four patients were infectious
207	with reported Cts> 30 based on the individual platforms that were used to perform the Cts.
208	Rajakumar et al ¹⁵ described two cardiac transplant patients: viral culture found replication-
209	competent virus in samples from one patient on day 16 and in samples from the other patient
210	on day 4 and repeatedly up to day 27, after which all viral cultures were negative ¹⁵ .For each
211	patient, viral culture was negative (i.e. no replication-competent virus observed) in samples
212	with PCR cycle counts of over 25. Within the samples giving positive viral cultures, the PCR
213	results showed that the cycle threshold for the N gene was lower than for the E gene by an
214	average of 5.4 Ct values.
215	In the study by Niyonkuru et al, the duration of infectiousness in the two patients, as indicated

by replication-competent virus, was 8 and 9 days (Figure 3) ¹⁴. A cardiac transplant patient
 described by Tarhini⁹ and colleagues tested culture-positive with a Ct of 23 on day 103; all other
 viral cultures were negative from samples with PCR Cts of 18 to over 40 ⁹.

219 Weigang et al¹² described a kidney transplant patient who experienced three hospital

220	admissions. During the first one (day zero to day 72), 19 RT-qPCR tests were performed, and
221	alongside that viral culture was performed, showing 8/19 positive cultures (Ct values ranging
222	from 15 to 25) and 11/19 negative (Ct values from 25 to 30). The patient was culture positive
223	again on day 105 (Ct of 23). After re-admission at day 140 the patient was still RT-qPCR positive,
224	but with viral culture negative; he was treated for 10 days (days 141-149) with remdesivir.
225	Subsequently, negative RT-qPCR tests until day 189 and negative cultures suggested that the
226	infection had resolved ¹² .
227	A heart transplant patient described by Decker ¹⁰ and co-workers had a positive viral culture on
228	day 18 and day 21 with 6.2 and 6.5 log10 copies/ml. 10
220	
229	Although the dataset was limited, we observed an inverse relationship (Ct/Cq) or direct
230	relationship (log copies): the viral burden indicated by these methods correlated with
231	infectiousness, as shown by the ability to produce replication-competent virus in culture. The
232	presence of replication-competent virus reflects one of the highest grades of evidence
233	supporting the capability for forward transmission of SARS-CoV-2 ^{16, 17} .
234	The robustness of the correlation is difficult to assess because laboratory methods differ; it was
235	not possible to pool the data to produce a summary cut-off value for infectiousness, due to
236	these variations and due to varying time windows for sampling from patients (see Figure 2 and
237	Table 3).
238	In response to our second research question (on the likelihood and duration of infectiousness
239	among transplant recipients with SARS-CoV-2 infection) the data indicate that regardless of
240	differences in laboratory practices, observed prolonged shedding of replication-competent

- virus is associated with alternating increases and decreases of viral burden over time, which in
 some cases may be up to around 100 days ⁹ ¹².
- 243 Figure 4 shows the relationship between cycle threshold, symptom onset (in days) and
- 244 likelihood of shedding replication competent virus. In Benotmane, five results were reported
- with a CT of 30 or above for a positive culture. [8] However, the cell line used in this study is not
- demonstrated to support SARS-CoV-2 growth. In the other studies, despite a minimum of 10 different
- 247 PCR platforms being used and different culture techniques, the culture results are insensitive to
- 248 cycle thresholds above 30. The viral load estimates are affected by administration of courses of
- anti-viral treatment including remdesivir. See Figures 3a (Cts/Cqs) and 3b (log copies).
- 250 Responding to our third research question (the influence of age, sex, underlying pathologies
- and degree of immunosuppression on infectiousness): at present the heterogeneity and limited
- amount of the available data preclude answering this question.
- 253 We are unable to answer our fourth and final research question on the relationship of
- vaccination status on infectiousness because no study reported on vaccination status for these
- transplant patients.
- 256

257 Discussion

258 This review included 10 reports of studies using viral culture and RT-qPCR testing among 38 259 transplant patients with immunosuppressive treatment who experienced COVID-19 infection. 260 The evidence indicates a relationship between indicators of viral burden (Ct, Cq or RNA log 261 copies) and probable infectiousness as indicated by the presence of replication-competent 262 virus. Gaps in the data remain due to variable methods and reporting and establishing summary 263 estimates of the relationship has not been possible. The data show a long-term rise and fall of 264 viral burden associated with the likelihood of infectiousness that in some transplant patients 265 appears to be a sequential pattern of going in and out of infectiousness. Replication-competent 266 virus was most commonly observed in samples with PCR Ct values under 25; one study was an 267 exception to this by reporting viable virus at Ct>30, but the use of a cell line not typically used 268 for SARS-CoV-2 isolation makes interpretation unclear⁸. The duration of viral RNA shedding was 269 variable, with the longest duration reported at 105 days¹². Our findings suggest a Ct of 30 or 270 greater, regardless of the platform, may be used as a reasonable proxy to rule out infectious 271 SARS-CoV-2 as there is a consistent correlation between a rising Ct value and likelihood of 272 isolating replication-competent virus. Such a value would be useful to guide clinicians managing 273 these difficult patients, particularly if there were repeated values in this range. Below a Ct of 30, 274 clinicians may choose to repeat NP or throat swabs to assess the direction of the Ct values to 275 allow a more dynamic assessment which taken in conjunction with the clinical status may 276 faciltate decision making for isolation or antiviral treatment considerations. 277

278 Regarding our third review question on the influence of patient variables on the likelihood of 279 the presence of infectious SARS-CoV-2, the included studies showed substantial heterogeneity; 280 some had missing data or few cultures available, and meta-analysis or pooling was not possible. 281 Variability in the clinical course of SARS-CoV-2 infection among transplant recipients has been 282 reported, including observed prolonged viral shedding¹⁸. Antiviral drugs may impact on these 283 observations, especially symptoms and viral burden.¹⁹ 284 Two well-designed studies on immunosuppressed patients, which we were unable to include 285 because disaggregated data solely for transplant patients were not fully available, support our 286 conclusions^{6, 20}. While this review is limited to transplant patients, evidence suggests similar 287 prolonged viral cultures are found in immunosuppressed cancer patients. We plan to perform a 288 further review in this group analysing the type of cancer and the impact of immunotherapies on 289 viral culture findings. 290 The transplant patient population is of particular importance: clinicians need guidance as to 291 when to release the patient from guarantine or isolation, given the heavy burden of 292 immunosuppression. We have tried to narrow the uncertainty and offer some general guidance 293 as to when patients are unlikely to be shedding replication-competent virus, but clinical 294 assessment of each patient must inform that decision because each patient and setting is

295 different.

The strengths of this review are that we followed our published protocol, entailing rigorous literature searches, double checked data extraction and quality assessment, and a high level of clinical and epidemiological expertise input to deliberate the findings. We were also able to

299	include data from an additional 8 transplant recipients after extensive correspondence with the
300	study authors ⁶ . Limitations include the small number of studies with viral culture and serial viral
301	load estimates among transplant patients, high variability in study design and reporting and
302	impossibility to pool results due to the well-known variability in sensitivity across assays ²¹ .
303	Case series are conventionally considered low in the evidence hierarchy, as they may entail
304	inherent bias in the selection of study participants and therefore have limited generalisability;
305	however, here they are essential in providing the detailed reports needed for this unusual
306	patient group. The case reports included here comprise some of the most detailed longitudinal
307	reports of this patient group for whom data are needed. The evidence base is limited, however,
308	by heterogeneous design and reporting within the studies with, for example, different
309	observation windows for reporting of viral burden and culturability or clinical characteristics of
507	
310	patients.
310	patients.
310 311	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of
310311312	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by
310311312313	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by experiencing prolonged carriage of the virus that could lead to forward transmission. Based on
 310 311 312 313 314 	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by experiencing prolonged carriage of the virus that could lead to forward transmission. Based on our findings we would offer the following general guidance to clinicians:
 310 311 312 313 314 315 	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by experiencing prolonged carriage of the virus that could lead to forward transmission. Based on our findings we would offer the following general guidance to clinicians: Physicians who are experienced with these immunosuppressed patient populations should
 310 311 312 313 314 315 316 	patients. In addition to providing appropriate care for the individual patient, ongoing transmission of SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by experiencing prolonged carriage of the virus that could lead to forward transmission. Based on our findings we would offer the following general guidance to clinicians: Physicians who are experienced with these immunosuppressed patient populations should work with public health to direct their isolation and quarantine requirements. Infectious

320 they should be closely followed up for SARS-CoV-2 infection for several weeks to months,

321 depending on the individual clinical scenario.

322 For obtaining data, standardisation of methods is needed: each laboratory should use

- 323 consistently applied platforms with suitable internal standards to calibrate the relationship
- 324 between Ct and genome copy in these patient populations.

325 Publication of results of case series or other longitudinal study should be reported in a

326 standardised format to avoid loss of data. We suggest observation windows should be within a

327 short range of 3 to 7 days during the acute periods post-transplantation and during periods of

328 rejection when higher doses of immunosuppressants are employed, depending on clinical

329 circumstances. Each observation window should include a summary of symptoms and

interventions, the reporting of PCR cycle threshold and, for samples with Ct below 30, attempts

331 at viral culture if available. Description of patients should include past medical histories and

details of treatments received. Observed drug interactions should be highlighted. Reasons for

admission, discharge and changes in isolation should be clearly reported. To investigate the

duration of viral shedding, studies should report the time between the first positive and the

335 first negative viral cultures.

With additional data gathering and standardisation of methods, it will be possible for transplant physicians to develop evidence-based approaches to dealing with these patients for the benefit of the patients and their families and the community at large.

339

340 Acknowledgements

341	We gratefully	v acknowledge th	e contributions	of Drs Mini Kambo	j and Jeroen van Kampen

342 who provided additional data from their studies and helped us to progress this work.

343

344 Funding

- 345 This work is supported by the National Institute for Health Research School for Primary
- 346 Care Research [Project 569] and by the University of Calgary.

347

348 Author contributions

- 349 TJ, CH and JC designed the study. JB performed the literature searches. JB, TJ, SM, ER and
- 350 ES, screened the studies for eligibility and performed data extraction. Additional expertise
- 351 on clinical and laboratory issues was given by DE, JC, SM and ER. CH generated the data
- 352 figures. All authors contributed to interpreting and writing up the results and conclusions.

353

354 Ethics declarations

- 355 Ethics approval and consent to participate:
- 356 This is a systematic review and meta-analysis. Therefore, ethical approval is not applicable.

357 Consent for publication:

- 358 Not applicable.
- 359
- 360 Availability of data and materials
- 361 All data generated or analysed during this study are included in this published article [and its
- 362 supplementary information files].
- 363

364 **Competing Interests**

365 TJ's competing interests are accessible at: <u>https://restoringtrials.org/competing-interests-tom-</u>
 366 jefferson

367 CJH holds grant funding from the NIHR, the NIHR School of Primary Care Research, the NIHR 368 BRC Oxford and the World Health Organization for a series of Living rapid review on the modes 369 of transmission of SARs-CoV-2 reference WHO registration No2020/1077093. He has received 370 financial remuneration from an asbestos case and given legal advice on mesh and hormone 371 pregnancy tests cases. He has received expenses and fees for his media work including 372 occasional payments from BBC Radio 4 Inside Health and The Spectator. He receives expenses 373 for teaching EBM and is also paid for his GP work in NHS out of hours (contract Oxford Health 374 NHS Foundation Trust). He has also received income from the publication of a series of toolkit 375 books and for appraising treatment recommendations in non-NHS settings. He is Director of 376 CEBM and is an NIHR Senior Investigator.

377	DE holds grant funding from the Canadian Institutes for Health Research and Li Ka Shing
378	Institute of Virology relating to the development of Covid-19 vaccines as well as the Canadian
379	Natural Science and Engineering Research Council concerning Covid-19 aerosol transmission.
380	He is a recipient of World Health Organization and Province of Alberta funding which supports
381	the provision of BSL3-based SARS-CoV-2 culture services to regional investigators. He also holds
382	public and private sector contract funding relating to the development of poxvirus-based Covid-
383	19 vaccines, SARS-CoV-2-inactivation technologies, and serum neutralization testing.
384	JMC holds grants from the Canadian Institutes for Health Research on acute and primary care
385	preparedness for COVID-19 in Alberta, Canada and was the primary local Investigator for a
386	Staphylococcus aureus vaccine study funded by Pfizer for which all funding was provided only to
387	the University of Calgary. He is co-investigator on a WHO funded study using integrated human
388	factors and ethnography approaches to identify and scale innovative IPC guidance
389	implementation supports in primary care with a focus on low-resource settings and using drone
390	aerial systems to deliver medical supplies and PPE to remote First Nations communities during
391	the COVID-19 pandemic. He also received support from the Centers for Disease Control and
392	Prevention (CDC) to attend an Infection Control Think Tank Meeting. He is a member and Chair
393	of the WHO Infection Prevention and Control Research and Development Expert Group for
394	COVID-19 and a member of the WHO Health Emergencies Programme (WHE) Ad-hoc COVID-19
395	IPC Guidance Development Group, both of which provide multidisciplinary advice to the WHO
396	and for which no funding is received and from which no funding recommendations are made
397	for any WHO contracts or grants. He is also a member of the Cochrane Acute Respiratory
398	Infections Working Group.

399	JB is a major shareholder in the Trip Database search engine (<u>www.tripdatabase.com</u>) as well as
400	being an employee. In relation to this work Trip has worked with a large number of
401	organisations over the years, none have any links with this work. The main current projects are
402	with AXA and SARS-CoV-2 (WHO Registration 2020/1077093-0) and is part of the review group
403	carrying out rapid reviews for Collateral Global. He worked on Living rapid literature review on
404	the modes of transmission of SARS-CoV-2 and a scoping review of systematic reviews and meta-
405	analyses of interventions designed to improve vaccination uptake (WHO Registration
406	2021/1138353-0).
407	ECR was a member of the European Federation of Neurological Societies (EFNS) / European
408	Academy of Neurology (EAN) Scientist Panel, Subcommittee of Infectious Diseases (2013 to
409	2017). Since 2021, she is a member of the International Parkinson and Movement Disorder
410	Society (MDS) Multiple System Atrophy Study Group, the Mild Cognitive Impairment in
411	Parkinson Disease Study Group, and the Infection Related Movement Disorders Study Group.
412	She was an External Expert and sometimes Rapporteur for COST proposals (2013, 2016, 2017,
413	2018, 2019) for Neurology projects. She is a Scientific Officer for the Romanian National Council
414	for Scientific Research.

415 $\,$ AP holds grants from the NIHR School for Primary Care Research.

416 IJO and EAS have no interests to disclose.

SM is a pharmacist working for the Italian National Health System since 2002 and a member of
one of the three Institutional Review Boards of Emilia-Romagna Region (Comitato Etico Area
Vasta Emilia Centro) since 2018.

420

422 **References**

423

424 1. Jering, K.S., et al., Excess mortality in solid organ transplant recipients hospitalized with COVID-425 19: A large-scale comparison of SOT recipients hospitalized with or without COVID-19. Clin 426 Transplant, 2022. 36(1): p. e14492. 10.1111/ctr.14492. 427 2. Andersen, K.M., et al., Long-term use of immunosuppressive medicines and in-hospital COVID-19 428 outcomes: a retrospective cohort study using data from the National COVID Cohort 429 Collaborative. (2665-9913 (Electronic)). 430 3. Fernández-Ruiz, M. and J.M. Aguado, Severe acute respiratory syndrome coronavirus 2 infection 431 in the stem cell transplant recipient - clinical spectrum and outcome. Curr Opin Infect Dis, 2021. 432 **34**(6): p. 654-662. 10.1097/qco.000000000000790. 433 4. Jefferson, T., et al., Viral cultures, PCR Cycle threshold values and viral load estimation for 434 COVID-19 infectious potential assessment in transplant patients: systematic review - Protocol 435 Version 30 December 2021. medRxiv, 2022: p. 2021.12.30.21268509. 436 10.1101/2021.12.30.21268509. 437 5. Page, M.J., et al., The PRISMA 2020 statement: an updated guideline for reporting systematic 438 reviews. BMJ, 2021. 372: p. n71. 10.1136/bmj.n71. 439 6. Aydillo, T., et al., Shedding of Viable SARS-CoV-2 after Immunosuppressive Therapy for Cancer. 440 New England Journal of Medicine, 2020. 383(26): p. 2586-2588. 10.1056/NEJMc2031670. 441 7. Alshukairi, A.N., et al., Test-based de-isolation in COVID-19 immunocompromised patients: Cycle 442 threshold value versus SARS-CoV-2 viral culture. International Journal of Infectious Diseases, 443 2021. **108**: p. 112-115. 10.1016/j.ijid.2021.05.027. 444 8. Benotmane, I., et al., Long-term shedding of viable SARS-CoV-2 in kidney transplant recipients 445 with COVID-19. American Journal of Transplantation, 2021. 21(8): p. 2871-2875. 446 https://doi.org/10.1111/ajt.16636. 447 9. Tarhini, H., et al., Long-Term Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 448 Infectiousness Among Three Immunocompromised Patients: From Prolonged Viral Shedding to 449 SARS-CoV-2 Superinfection. The Journal of Infectious Diseases, 2021. 223(9): p. 1522-1527. 450 10.1093/infdis/jiab075. 451 10. Decker, A., et al., Prolonged SARS-CoV-2 shedding and mild course of COVID-19 in a patient after 452 recent heart transplantation. Am J Transplant, 2020. 20(11): p. 3239-3245. 10.1111/ajt.16133. 453 Niess, H., et al., Liver transplantation in a patient after COVID-19 - Rapid loss of antibodies and 11. 454 prolonged viral RNA shedding. Am J Transplant, 2021. **21**(4): p. 1629-1632. 10.1111/ajt.16349. 455 12. Weigang, S., et al., Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19 456 patient: a source of immune escape variants. medRxiv, 2021: p. 2021.04.30.21256244. 457 10.1101/2021.04.30.21256244. 458 13. Lang, C., et al., Lung transplantation for COVID-19-associated acute respiratory distress 459 syndrome in a PCR-positive patient. The Lancet Respiratory Medicine, 2020. 8(10): p. 1057-1060. 460 10.1016/S2213-2600(20)30361-1. 461 14. Niyonkuru, M., et al., Prolonged viral shedding of SARS-CoV-2 in two immunocompromised 462 patients, a case report. BMC Infectious Diseases, 2021. 21(1): p. 743. 10.1186/s12879-021-463 06429-5. 464 15. Rajakumar, I.A.-O., et al., Extensive environmental contamination and prolonged severe acute 465 respiratory coronavirus-2 (SARS CoV-2) viability in immunosuppressed recent heart transplant 466 recipients with clinical and virologic benefit with remdesivir. (1559-6834 (Electronic)).

- 467 16. Jefferson, T., et al., *Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-*468 *CoV-2) from pre and asymptomatic infected individuals. A systematic review.* Clinical
 469 Microbiology and Infection, 2021. https://doi.org/10.1016/j.cmi.2021.10.015.
- 470 17. Jefferson, T.H., C.; Spencer, E.; Brassey, J.; Pluddeman, A.; Onakpoya, I.; Evans, D.; Conly, J. A
 471 *Hierarchical Framework for Assessing Transmission Causality of Respiratory Viruses.* PrePrints,
 472 2021. 10.20944/preprints202104.0633.v1.
- 47318.Marinelli, T., et al., Prospective Clinical, Virologic, and Immunologic Assessment of COVID-19 in474Transplant Recipients. Transplantation, 2021. 105(10): p. 2175-2183.
- 475 10.1097/tp.00000000003860.
- 47619.Thornton, C.S., et al., Prolonged SARS-CoV-2 infection following rituximab treatment: clinical477course and response to therapeutic interventions correlated with quantitative viral cultures and478cycle threshold values. Antimicrob Resist Infect Control, 2022. **11**(1): p. 28. 10.1186/s13756-022-47901067-1.
- 48020.van Kampen, J.J.A., et al., Shedding of infectious virus in hospitalized patients with coronavirus481disease-2019 (COVID-19): duration and key determinants. medRxiv, 2020: p.482483
- 4822020.06.08.20125310. 10.1101/2020.06.08.20125310.
- 483 21. Bruce, E.A., et al., *Predicting infectivity: comparing four PCR-based assays to detect culturable*
- 484 SARS-CoV-2 in clinical samples. EMBO Mol Med, 2021: p. e15290. 10.15252/emmm.202115290.
- 485

487 488	List of tables and figures.
489 490	Table 1. Characteristics of transplant patients in included studies.
491 492	Table 2. Quality of included studies.
493 494	Table 3. PCR cycle counts/log copies and viral culture results of included studies.
495 496	Figure 1. PRISMA flow chart of study screening for inclusion.
497 498	Figure 2. SARs-CoV-2 culture results in transplant patients from days of symptom onset.
499 500 501	Figure 3. Duration of infectivity as indicated by viral culture and corresponding PCR cycle counts/log copies among transplant recipients.
502 503	Figure 4. Relationship between cycle threshold and symptom onset (in days)
504 505	List of supplementary files.
506 507	Supplementary file. Literature search strategy.
508 509	Supplementary file. List of excluded studies, with reasons.

510 **Table 1.** Characteristics of transplant patients in included studies.

Study ID	Participants	Transplant,	Clinical course	COVID-19
	(data extracted	immunosuppressive	of COVID-19	treatments
	for transplant	treatment &	infection	
	patients)	comorbidities		
Alshukairi 2021	Pt1: 34 yr F	Pt1: cardiac, in 2014,	Pt1: Severe	Pt1: high-flow
	1 ti. 54 yi i	1 ti. caralac, in 2014,		i ti. nigh now
	Pt2: 71 yr M	tacrolimus, MMF,	pneumonia;	nasal cannula
	Pt3: 75 yr M	prednisolone	Pt2:	Pt2: low-flow
	Pt4: 26 yr M	Pt2: renal, in 2014,	pneumonia	cannula

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	Pt5: 38 yr F	tacrolimus, MMF, prednisolone, DM, HTN, CAD Pt3: renal, in 2014, tacrolimus, MMF and prednisolone, HTN Pt4: renal, in 2018, tacrolimus, MMF, prednisolone, DM Pt5: renal in 2014, tacrolimus, AZA, prednisolone, APS & hypothyroidism.	Pt3: pneumonia Pt4: pneumonia Pt5: upper RTI	Pt3: low-flow cannula Pt4: oxygen not required Pt5: no cannula
Aydillo 2020	8 ppts (no. of M and F and age N/A for this	Various antibiotics and immunosuppressants	Variable from mild to severe	Hydroxychloroq uine, remdesivir,

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	subset)			azythromicin, convalescent plasma
Benotmane I 2021	14 M, 2 F, median age 63.3 yrs. Pts with at least two positive for SARS-CoV-2 NP swabs (of which one collected at least 7 days after symptom onset) during	16 kidney transplant recipients; median time from transplant 3.8 yrs. Antithymocite globulin: 8/16; anti- CD25: 8/16; tacrolimus: 10/16; ciclosporin: 3/16; MMF/MPA: 14/16;	All 16 hospitalized for symptomatic COVID-19 between 4 March and 15 April 2020	lopinavir/ ritonavir: 1/16; hydroxychloroq uine: 8/16; tocilizumab: 2/16
	the follow-up period were	mTOR inhibitors: 2/16; steroids: 10/16;		

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	eligible for inclusion	belatacept: 2/16		
Decker A 2020	62 yr M	Heart transplant Nov	1 March 2020	hydroxychloroq
		2019; subsequently	onset of	uine (400mg
		pneumonia and acute	symptoms and	b.i.d. + 200mg
		respiratory distress	+ve PCR; mild	b.i.d.) from day
		syndrome;	symptoms, no	7 to 14
		intermittent renal	cardiorespirato	
		replacement therapy.	ry decline,	
		Cyclosporine A (target	several weeks	
		range 135 ± 30	+ve.	
		ng/mL),		
		mycophenolate		
		mofetil 500 mg b.i.d.,		
		prednisone 10 mg		
		q.d.		

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
		+ cotrimoxazole and due to cytomegalovirus high- risk constellation (D + R–), ganciclovir for 4 months post- transplantation, then valganciclovir prophylaxis.		
Lang C 2020	44 yr old F with mild untreated psoriatic arthritis and idiopathic CD4 lymphocytopen	Bilateral lung transplant day 58 after admission for Covid-19. Subsequently, standard triple	Day 0 admitted with fever, cough, +ve NP RT-PCR. Day 6 to ICU & intubation; day	Immunoglobuli ns, tocilizumab & lopinavir. Day 6 to ICU & intubation; day

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	ia	immunosuppression was initiated, including tacrolimus, mycophenolate mofetil, and steroids; also 6 additional treatment cycles of immunoabsorption and antithymocyte globulin.	13 ECMO. Day 52 preparation begun for transplant: immunoabsorp tion therapy; day 58 bilateral lung transplant performed. Transferred to non ICU ward day 121.	13 ECMO. Bilateral lung transplant
Niess 2020	56 yr M patient listed for liver transplantation with a Model	admission for liver transplant: 18/3/2020 positive to COVID-19 screening on		

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	For End-Stage Liver Disease Score of 19 points due to cryptogenic cirrhosis and a history of hepatitis B	25/3/2021 after 31-32 days: PCR negative + seroconversion after 36 days of symptom onset and 21 days after seronconversion: transplant; tacrolimus (to target of 4 to 7 ng/ml) + steroids		
Niyonkuru M 2021	Pt1: 66 yr M, recent liver transplant Pt2: 70 yr M,	Pt1: fatigue and tachypnea, hospital admission, tested positive for SARS-CoV- 2	Pt1 day 0 +ve test. Symptom onset day 5, diminished taste and	Pt1: In ICU, non invasive ventilation, IV dexamethason e 6 mg daily

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	previous bone marrow transplant for multiple myeloma	esophageal echocardiography showed vegetation on	smell; day 12 additional symptoms; day 14 hospital admission. On day 12 from day 12 from symptom onset transferred to the ICU for non invasive ventilation. Pt2 admitted	and remdesivir: 200 mg the first day and 100 mg the following 4 days. Pt2: no COVID- 19 treatment (asymptomatic)
		the pacemaker electrode.	on October 21 due to fever and elevated	

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
			CRP concentration (130 mg/L) because of systemic infection due to pacemaker contamination; periodic screening during admission; positive by week 4, always asymptomatic of COVID-19.	

Study ID	Participants (data extracted for transplant	Transplant, immunosuppressive treatment &	Clinical course of COVID-19 infection	COVID-19 treatments
	patients)	comorbidities		
Rajakumar 2021	Two cardiac	Pt1: orthotopic heart	NP swabs (&	Pt1: after day
	transplant	transplant with	saliva & clinical	15,
	recipients (<3	antithymocyte	&	corticosteroids
	months post-	globulin induction &	environmental	&
	transplant):	standard triple	samples) were	antimicrobials
	Pt1: 56 yr F;	immunosuppressive	collected at	initiated for
	history of	therapy & was	regular	presumptive
	dilated	discharged 30 days	intervals	COVID-19
	cardiomyopath	later.	beginning	pneumonitis &
	y with end-		shortly after	superimposed
	stage heart	Pt2: orthotopic heart	admission.	bacterial
	failure, type-2	transplant with		pneumonia;
	diabetes	antithymocyte	Pt 1: 5 days	day 21 O2
	mellitus,	globulin induction	post-discharge,	requirements
	hypothyroidism	therapy, discharged 4	rehospitalized	increased
	, osteoporosis,	weeks later.	following	significantly.
	and anemia.		community	Despite

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
	Pt2: 33 yr F with a history of end-stage heart failure 2ndary to congenital heart disease, liver cirrhosis & kidney disease.	Pt1 and Pt2: prednisone, tacrolimus, and mycophenolate mofetil, and standard prophylactic medications	exposure to COVID-19. Nasal stuffiness & discharge, sneezing, fatigue & cough developed on admission day 4; NP swab +ve for SARS-CoV- 2. All symptoms except fatigue resolved by	discontinuation of MMF & reduction of tacrolimus, cultivatable viral loads increased in the NP & saliva; chest radiograph & clinical condition deteriorated; mechanical ventilation considered. 10-

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
			Dyspnea, cough & hypoxia then developed on day 15; chest radiograph revealed new bibasilar	remdesivir initiated day 27. Clinical condition & chest radiograph improved; O2 discontinued
			interstitial infiltrates. Discharged day 44. Pt2: tested +ve for SARS-CoV-2 shortly after discharge,	day 32; discharged day 44. Pt2: intubation. MMF dose was reduced; dexamethason e &

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
			readmitted 1 week later with progressive dyspnea & hypoxemia requiring intubation. Significant viable virus burdens were noted in the	antimicrobials initiated. MMF was subsequently held & later restarted when an echocardiogra demonstrated a reduction in left ventricular systolic
			saliva, & a used face cloth) 16 days after	suggesting acute graft rejection.

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
			initial SARS- CoV-2 positivity. 5- day course remdesivir initiated followed by clinical recovery & discharge 7 days later.	Pt1: 10-day course of remdesivir from day 27 to day 37 from hospital admission; improvement and subsequent discharge on day 44 Pt2: 5-day course remdesivir,

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
				improvement and discharge 7 days later
Tarhini 2021	71yr European M	Cardiac transplant, also diabetes mellitus & chronic kidney disease; prednisone, mycophenolic acid, belatacept	15 April 2020 hospitalized for asthenia, dry cough, myalgia, and low-grade fever for 1 week. No dyspnea or O2 need. +ve on admission and day 14 with <10% Covid-19	At readmission, treated in ICU for cardiac decompensatio n due to underlying respiratory infection. [Unclear what happened after this; last test day 121 & culture +ve at

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
			involvement	day 103,
			on CT scan.	negative
			Discharged day	serology
			39 after clinical	throughout]
			improvement,	
			despite	
			persistent +ve	
			PCR at day 32	
			(21 Ct). 23	
			June	
			readmitted	
			with dry	
			cough,	
			dyspnea, and	
			02	
			requirement.	

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
Weigang 2021	58 yr M	kidney transplant, also CHD, arterial hypertension, hyperlipidemia, obesity; basiliximab (20mg, day 0 and day 4 post- transplantation) and prednisone (250mg at day 0, 125 mg day 1, 50mg day 2 to 5, 20mg day 6 to 10, then 15 mg/day). Additionally tacrolimus (10mg day	March 2020, mild respiratory symptoms & tested positive for SARS-CoV-2 for over 145 days; discharged on day 72 for home quarantine; re- hospitalized at day 106 to 126 due to another kidney	Ivermectin 4 day course (33mg/day, day 56 to 60); 10 day course remdesivir (200 mg on day 140, then 100 mg/daily, day 141 to 149)
		0, 8mg day 1,	transplant	

Study ID	Participants (data extracted for transplant patients)	Transplant, immunosuppressive treatment & comorbidities	Clinical course of COVID-19 infection	COVID-19 treatments
		5.5mg day 2, 5mg day	failure. Days	
		3 and 4, then 4mg/day) and	140 to 149 treated with	
		Mycophenolate	remdesivir;	
		mofetil (2000mg/	subsequent	
		day). Maintenance	PCR tests	
		immunosuppression	negative &	
		consisted of	virus isolation	
		tacrolimus (4 to 6mg/day),	negative.	
		mycophenolate		
		mofetil		
		(2,000mg/day), and		
		prednisone (10 to		
		20mg/day)		

511 Abbreviations:

512 APS = anti-phospholipid syndrome

- 513 AZA = azathioprine
- 514 CAD = coronary artery disease
- 515 DM = diabetes mellitus
- 516 HTN = hypertension
- 517 MMF = mycophenolate mofetil
- 518 NP = nasopharyngeal
- 519 Pt = patient
- 520 RTI = respiratory tract infection
- 521 RT-PCR = reverse transcriptase polymerase chain reaction

522

523 **Table 2.** Quality of included studies.

Study ID	Were the criteria for diagnosing a case clearly reported and appropriate ?	Was the reporting of patient/ population characteristic s adequate?	Was the study period, including follow-up, sufficient?	Were the methods used to obtain RT- PCR results replicable and appropriate?	Were the methods used to obtain viral culture results replicable and appropriate?
Alshukairi 2021	Unclear*	No**	Yes	Yes	Unclear
Aydillo 2020	Unclear	Yes	Yes	Unclear	Yes
Benotmane I 2021	Yes	Yes	Yes	Yes	No***
Decker A 2020	No	Yes	Yes	Unclear	Unclear
Lang C 2020	Yes	Yes	Yes	Unclear	Unclear
Niess 2020	Yes	Yes	Yes	Yes	Unclear
Niyonkuru M 2021	No*	Yes	Yes	Yes	Yes
Rajakumar 2021	Yes	Yes	Yes	Yes	Yes

Tarhini 2021	Yes	Yes	Yes	Yes	Yes
Weigang 2021	Yes	Yes	Yes	Yes	Yes

524

- ⁵²⁵ *case definition unclear, article reports positive RT-PCR, but Ct cut-off not reported.
- 526 ** data on clinical symptoms lacking
- 527 ***The cell line used was not one that is demonstrated to support SARS-CoV-2 growth.
- 528 Therefore the cell culture results are not reliable.

529

530 **Table 3.** PCR cycle counts/log copies and viral culture results of included studies.

Study ID	Symptoms,	RT-PCR Cycle count/log copies	Viral culture results (days)
	days reported	results	
Alshukairi	NR no viral	Pt1: D3: positive, Ct NA, D26:	Pt1: D26: negative
2021	culture at	positive, 22.87	Pt2: D17: negative
	admission/ons	Pt2: D3: positive, 11.58; D17:	Pt3: D19: negative
	et of	positive, 23.12	Pt4: D12: negative
	symptoms	Pt3: D6: positive, 8.82, D19:	Pt5: D9: negative
		positive, 13.88	
		Pt4: D4: positive, 10.38; D12:	
		positive, 27.57	
		Pt5: D1: positive, 2.8, D9:	
		positive, 14.84	
Aydillo 2020	All	Pt1: D3: 22.5, D27: 34	Pt1 D3: positive, D27: negative
*	symptomatic;	Pt2: D2: 18, D27: 32	Pt2: D2: positive, D27, negative
	variable	Pt4: D5: 19, D28: 18.5, D50: 27.5	Pt4: D5: positive, D28: positive,
	severity		D50: negative
		Pt6: D18: 21, D27: 21.5, D33:	Pt6: D18: negative, D27:
		30.5, D38: 20, D45: 19.5, D52:	negative, D33: negative, D38:

Study ID	Symptoms, days reported	RT-PCR Cycle count/log copies	Viral culture results (days)
		Tesuits	
		20, D62: 18.5	negative, D45: positive, D52:
			positive, D62: positive
		Pt8: D1: 22, D17: 21, D22: 22,	Pt8: D1: positive, D17:
		D37: 35	positive, D22: negative, D37:
			negative
		Pt9: D4: 13, D8: 22, D46: 33.5,	Pt9: D4: positive, D8: positive,
		D56: 27, D82: 38	D46: negative, D56: negative,
			D82: negative
		Pt13: D2: 21.5, D50: 31.5	Pt13: D2: positive, D50:
			negative
		Pt14: D8: 17.5	Pt14: D8: positive
Benotmane			Pt1: D5, D14: negative;
2021			Pt2: D21, D29: negative;
			Pt3: D25, D39: negative
			Pt4: D2: positive, D9, D16, D35:
			negative
		Patient 6: D23: Ct > 30; D29: Ct >	Pt5: D1, D8: positive; D23, D30:
		35	negative

Study ID	Symptoms, days reported	RT-PCR Cycle count/log copies results	Viral culture results (days)
		Patient 7: D38: Ct > 35	Pt6: D6, D9, D23, D29: positive
		Patient 8: D28: Ct > 30	Pt7: D7, D38: positive
			Pt8: D1: negative, D8, D28:
			positive
		Patient 11: D27: Ct > 30	Pt9: D11: negative, D30:
			negative
			Pt10: D2, D8: negative
			Pt11: D11, D27: positive
			Pt12: D17, D27: negative
			Pt13: D2, D9: positive; D31:
			negative
			Pt14: D3, D19: negative
			Pt15: D4, D17: negative
			Pt16: D20: positive, D30:
			negative.
Decker 2020	Mild	PCR +ve on days 1, 5, 7, 11, 18,	Viral culture +ve at day 18 and
	symptoms. Day	21, 25, 28, 33, and still on day 35	day 21 post-onset of
	0: transient	PCR remained positive on day 35	symptoms.

Study ID	Symptoms,	RT-PCR Cycle count/log copies	Viral culture results (days)
	days reported	results	
	episode of	with copy numbers similar to	
	fever & sore	the onset of infection.	
	throat ; day 7	Concurrent with the second	
	temperature	onset of fever there was an	
	increase; no	increased viral load after day 7	
	clinical	that slowly returned to the level	
	symptoms	of infection onset.	
	after day 20.		
Lang 2020	Admitted with	Day 0, Ct 27; Day 17, Ct 21; Day	Samples cultured from day 48
	fever & cough	23, Ct 23; Day 19, Ct 32; Day 31,	and day 65; both negative by
	becoming	Ct 32; Day 36, Ct 29; Day 48, Ct	cell culture.
	severe and life	39; Day 53, Ct 34; Day 59, Ct 33;	
	threatening	Day 61, PCR negative; Day 62, Ct	
	leading to	36; Day 62, PCR negative; Day	
	bilateral lung	64, PCR negative; Day 65, Ct 36;	
	transplant.	Day 66, Ct 39; Day 69, Ct 39; Day	
		70, PCR negative; Day 72, PCR	
		negative; Day 74, PCR negative;	

Study ID	Symptoms, days reported	RT-PCR Cycle count/log copies results	Viral culture results (days)
		Day 76, PCR negative; Day 95, PCR negative;	
Niess 2020	Mild	day 0: positive but	Positive pre-transplant PCRs
	symptoms of	asymptomatic	were not confirmed by cell
	malaise and a	day 8, 12, 19, 22 - positive PCR	cultures
	dry cough	day 31, 32 - negative PCR	
		day 49, 55, 60 - positive PCR	4 negative viral cell culture
		day 58, 63, 64 - negative PCR	results from samples taken on
		results	days 49, 54, 60 and 69
			(*)
Niyonkuru	Pt1: fatigue	Pt1: day 15 from 1st positive	Pt1: day 15 from 1st positive
2021	and tachypnea,	PCR/day 3 from symptoms	PCR/day 3 from
	then	onset: Cq 21.7; day 21 from 1st	symptoms onset viral culture
	ventilation	positive PCR/day 9 from	at 61,277 PFU/swab; day 21
	required.	symptoms onset: Cq 19.21; day	from 1st positive PCR/day 9
		43 from 1st positive PCR/day 13	from symptoms onset viral
	Pt2:	from symptoms onset Cq 35.45	culture at 256,410 PFU/swab;

Study ID	Symptoms, days reported	RT-PCR Cycle count/log copies results	Viral culture results (days)
	asymptomatic		day 22 from 1st positive
	for COVID-19.	Pt2: day 9 from 1st positive PCR:	PCR/day 13 from symptoms
		Cq: 22.33; day 12 from 1st	onset viral culture negative.
		positive PCR Cq 22.57; day 14	
		from 1st positive PCR: Ct approx	Pt2: day 9 from 1st positive
		33.5; day 18 from 1st positive	PCR: culture positive with
		PCR: PCR negative.	11082 PFU/swab; day 12 from
			1st positive PCR: culture
			positive with PFU 55944/swab;
			day 14 from 1st positive PCR:
			culture negative.
Rajakumar		Pt 1: hospital admission, positive	Pt1
2021		PCR day 4 post-symptom onset	Viral culture
		Day 4: N gene Ct 16, E gene Ct	Day 4: positive
		19	Day 12: positive
		Day 12: N gene Ct 13, E gene Ct	Day 20: positive
		20	Day 27: positive

Study ID	Symptoms,	RT-PCR Cycle count/log copies	Viral culture results (days)
	days reported	results	
		Day 20: N gene Ct 14, E gene Ct	Day 32: negative
		19	Day 60: negative
		Day 27: N gene Ct 15, E gene Ct	
		21	Pt 2: Viral culture
		Day 32: N gene Ct 32, E gene Ct	Day 16: positive
		28	Day 22: negative
		Day 60: N gene Ct 30, E gene Ct	Day 25: negative
		35	Day 42: negative
			Day 51: negative
		Pt 2:	
		Day 16: N gene Ct 14, E gene Ct	
		20	
		Day 22: N gene Ct 25, E gene Ct	
		33	
		Day 25: N gene Ct 25, E gene 29	
		Day 42: N gene Ct 29, E gene Ct	
		37	
		Day 51: N gene Ct 37, E gene Ct	
		39	

Study ID	Symptoms, days reported	RT-PCR Cycle count/log copies results	Viral culture results (days)
Tarhini 2021	Severe	Day 6: Ct=25,	Day 6: culture negative
	infection	Day 16: Ct=24	Day 16: culture negative
	requiring	Day 32: Ct=20	Day 80: culture negative
	intensive care	Day 78: Ct=34	Day 91: culture negative
		Day 80: Ct=24	Day 103: culture positive
		Day 91: Ct=28	Day 111: culture negative
		Day 103: Ct=23	Day 120: culture negative
		Day 109: Ct=18	
		Day 120: Ct=26	(*)
		Day 132: Ct=40+ (negative)	
		Day 136: Ct=40+ (negative)	
		(*)	
Weigang	Mild	38 PCR tests: days 0, 6, 10, 14,	27 cell culture tests, days: 0, 6,
2021	respiratory	16, 21, 24, 27, 31, 34, 38, 42, 45,	10, 14, 16, 21, 24, 27, 31, 34,
	symptoms for	46, 49, 52, 56, 58, 63, 65, 71,	38, 42, 45, 49, 52, 56, 58, 63,
	over 145 days	105, 113, 115, 119, 122, 126,	65, 71, 105, 106, 113, 115, 119,
		140, 143, 145, 146, 149, 150,	140, 154; 27 results: -, +, +, +, -,

Study ID	Symptoms,	RT-PCR Cycle count/log copies	Viral culture results (days)
	days reported	results	
		154, 161, 167, 174, 189. 38	+, +, +,+, +, -, -, -, -, -, -, -, -, +,
			-, -, -, -, -, -, (i.e. positive on
		Ct values: 25, 16, 19, 19, 25, 23,	days 6, 10, 14, 21, 24, 27, 31,
		18, 26, 20, 17, 31, 27, 27, 50, 27,	34, 105)
		28, 25, 28, 27, 29, 30, 23, 34, 29,	
		31, 31, 36, 26, 29, 34, 39, 45, 45,	
		34, 45, 45, 45, 45.	

531

532

- 533 (*) Numbers have been read from a figure in the published article and may not be an accurate
- 534 estimate.
- 535
- 536 Ct = cycle threshold
- 537 D = day
- 538 NR = not reported
- 539 NA = not available
- 540 Pt = patient
- 541 RT-PCR = reverse transcriptase polymerase chain reaction

Figure 1. PRISMA flow chart of study screening for inclusion.

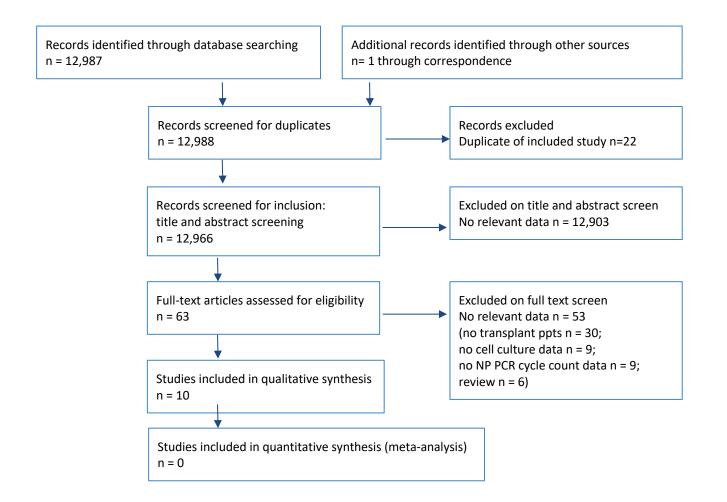
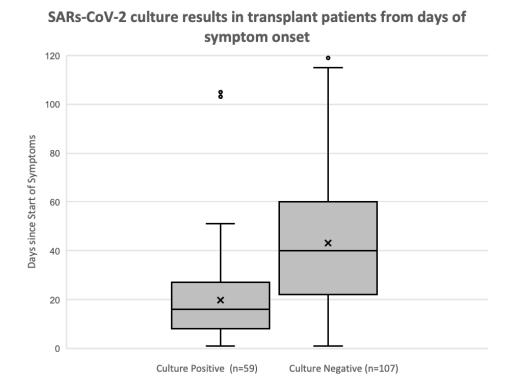
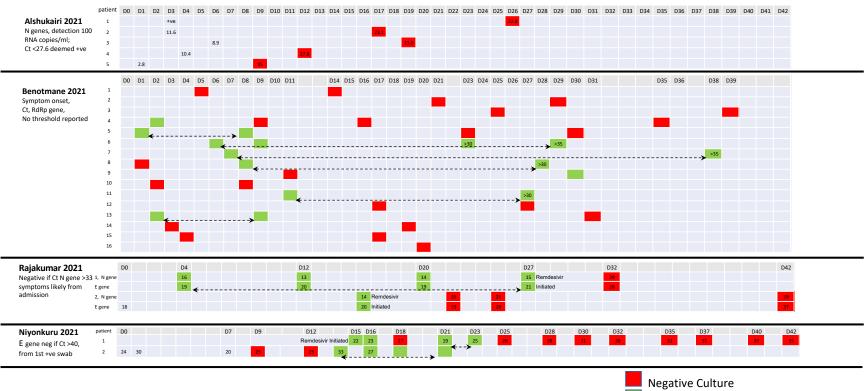
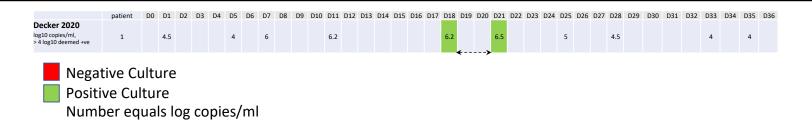




Figure 2. SARS-CoV-2 culture results in transplant patients from days of symptom onset.

Culture positive (n=59 samples): median 16 (IQR 8-27, Range 1-105 days, mean 19.7 days Culture negative (n=107 samples): median 40 (IQR 22-60), Range 1-119 days, mean 43.2 days

Figure 3a. Timings of positive culture results in Transplant Patients by duration of symptoms and Ct results Alshukairi ^[7], Benotmane ^[8], Rajakumar ^[15] & Niyonkuru ^[14] (days 1- 42)


Negative Culture Positive Culture

Number equals RT-PCR Cycle Threshold

Figure 3b. Timings of positive culture results in Transplant Patients by duration of symptoms and Ct results Aydillo ^[6] (day 1-90), Tarhini ^[9] & Weigang ^[12] (day 1-120)

Negative Culture Positive Culture Number equals RT-PCR Cycle Threshold **Figure 3c.** Timings of positive culture results in Transplant Patients by duration of symptoms and log10 copies/ml results Decker ^[10] (days 1-36)

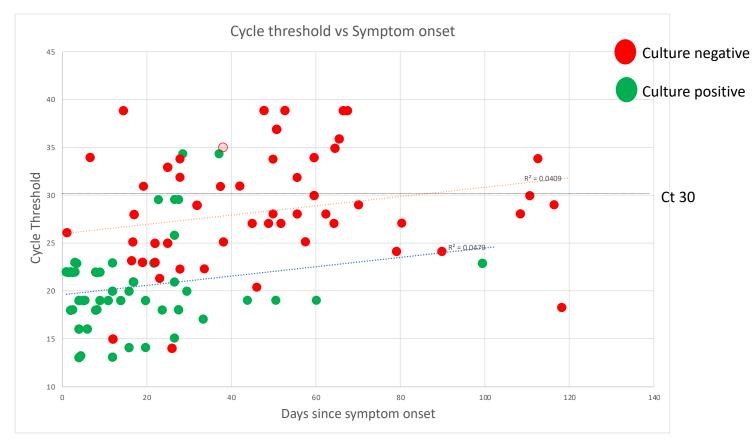


Figure 4. Relationship between cycle threshold, symptom onset (in days) and likelihood of shedding replication competent virus