The cost of the COVID-19 pandemic vs the cost-effectiveness of mitigation strategies in the EU/UK/EEA and OECD countries: a systematic review

Constantine Vardavas¹, Konstantinos Zisis¹,², Katerina Nikitara¹, Ioanna Lagou¹, Katerina Aslanoglou¹, Kostas Athanasakis², Revati Phalkey³, Jo Leonard-Bee³, Esteve Fernandez⁴, Orla Condell⁵, Favelle Lamb⁵, Frank Sandmann⁵, Anastasia Pharris⁵, Charlotte Deogan⁵, Jonathan E. Suk⁵*

Author affiliations
1: School of Medicine, University of Crete, Heraklion, Greece
2: Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
3: Centre for Evidence Based Healthcare, School of Medicine, University of Nottingham, Nottingham, UK
4: Catalan Institute of Oncology, Barcelona, Spain
5: European Centre for Disease Prevention and Control (ECDC)

*Corresponding Author:
Jonathan Suk PhD
European Centre for Disease Prevention and Control (ECDC)
Gustav III:s boulevard 40, 169 73 Solna, Sweden
Phone +46 (0)8 58 60 10 00 / Fax +46 (0)8 58 60 10 01
Email: jonathan.suk@ecdc.europa.eu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objectives: COVID-19 poses a threat of loss of life, economic instability, and social disruption. We conducted a systematic review of published economic analyses to assess the direct and indirect costs of the SARS-CoV-2 pandemic, and to contrast these with the costs and the cost-benefit of public health surveillance, preparedness, and response measures in averting and/or responding to SARS-CoV-2 pandemic.

Setting: A systematic literature review was conducted to identify peer-reviewed articles estimating the cost of the COVID-19 pandemic and the cost-effectiveness of pharmaceutical or non-pharmaceutical interventions in EU/EEA/UK and OECD countries, published from the 1st of January 2020 through 22nd April 2021 in Ovid Medline and EMBASE. The cost-effectiveness of interventions was assessed through a dominance ranking matrix approach. All cost data were adjusted to the 2021 Euro, with interventions compared with the null.

Primary and secondary outcome measures: Direct and indirect costs for SARS-CoV-2 and preparedness and/or response or cost-benefit and cost-effectiveness were measured.

Results: We included data from 41 economic studies. Ten studies evaluated the cost of COVID-19 pandemic, while 31 assessed the cost-benefit of public health surveillance, preparedness, and response measures. Overall, the economic burden of SARS-CoV-2 was found to be substantial for both the general population and within specific population subgroups. Community screening, bed provision policies, investing in personal protective equipment and vaccination strategies were cost-effective, in most cases due to the representative economic value of below acceptable cost-effectiveness thresholds. Physical distancing measures were associated with health benefits; however, their cost-effectiveness was dependent on the duration, compliance and the phase of the epidemic in which it was implemented.

Conclusions: SARS-CoV-2 is associated with substantial economic costs to healthcare systems, payers, and societies, both short term and long term, while interventions including testing and screening policies, vaccination and physical distancing policies were identified as those presenting cost-effective options to deal with the pandemic, dependent on population vaccination and the Re at the stage of the pandemic.
MAIN TEXT
INTRODUCTION
In the aftermath of significant outbreaks since the beginning of the 21st century, including among others those of Ebola, avian influenza (H5N1, H7N9), the 2009 H1N1 influenza virus pandemic, Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), it was acknowledged that large-scale infectious disease outbreaks represent a menace for loss of life, economic disturbance, and social disruption (1). The most recent pandemic caused by SARS-CoV-2 has undoubtedly hit hard on societies and healthcare systems. According to the situation update conducted by ECDC, as of week 17 of 2022, 512,690,034 cases of COVID-19 have been reported, including 6,252,316 deaths (2). To mitigate the pandemic and given the lack of preventative treatments until the rollout of vaccines in late 2020, governments worldwide implemented various non-pharmaceutical interventions (NPIs). These measures included personal protective, environmental, and physical distancing strategies as well as travel restrictions (3) which have been loosened and reinforced depending on the variation of the epidemiological situation (4), leading to an unprecedented decline in global economic activities and an economic burden both from direct costs of the NPIs and indirect costs. The closure of businesses led to significant disruptions to the global value chains in the first quarter of 2020 through increased unemployment rates, revenue loss, and a sharp decrease in personal incomes while the earlier action of NPIs implementation contributed to reduced economic impact as was shown in a study assessing the short-term economic consequences of the first-wave Covid-19 pandemic (5).

In the US, the cost of the COVID-19 pandemic has been estimated at $13tn for the first 20 weeks of the pandemic (90% of the country’s annual GDP) when drastic NPIs were predominately implemented, and approximately half of that figure corresponds to the projected 10-year decline in GDP attributable to the pandemic (6). Additionally, the global cost of the COVID-19 crisis has been estimated at 14% of 2019 GDP (around 12,206 mm$), while for Europe, it is even higher: 16% for the Eurozone and 19% for the UK (7). Considering the cost-effectiveness of NPIs, in a recent systematic review and meta-analysis conducted by Zhou et al. (2021), the pooled incremental net benefit (INB) for NPIs was estimated at $972·05, with subgroup analyses indicating the highest pooled INBs were for screening ($2390·89) and suppression ($2156·00) interventions (8).
Robust national preparedness and response strategies require recent data on the health impacts and the economic burden of respiratory infectious disease outbreaks in contrast to those associated with emergency response and preparedness actions. This evidence will ensure well-informed decisions regarding the proper allocation of resources (9, 10), information relevant not only for the COVID-19 pandemic but also for future pandemics.

This systematic review aims to a) summarise the total direct and indirect costs of the COVID-19 pandemic across EU/EEA/UK and OECD countries, and b) to contrast with the costs and the cost-benefit of public health surveillance, preparedness, and response measures in averting and/or responding to COVID-19 pandemic in this setting.

METHODS

Search strategy and selection criteria

A systematic review was conducted to identify peer-reviewed articles published from the 1st January 2020 through 22nd April 2021 in Ovid Medline and EMBASE. The review is reported adhering to the PRISMA framework (Preferred Reporting Items for Systematic Reviews and Meta-analyses) (11) and the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) (12). Two sets of inclusion criteria were used to determine the eligibility of the studies based on the two objectives; however, a single search strategy was used to capture eligible studies. The complete search strategy and search terms is available in Online Supplementary Appendix 1.

The inclusion criteria for Objective 1: To summarise the total direct and indirect costs of the COVID-19 pandemic) were as follows:

- Population: EU/EEA/UK and remaining OECD countries
- Exposure: COVID-19 outbreak or public health preparedness measures or interventions.
- Outcome measures: direct and indirect costs for disease and preparedness and/or response.
- Perspective: All direct and indirect costs were considered pertaining to all relevant perspectives (e.g., individual, health and social care, and societal- including national and regional).
- Study designs: We included all relevant analytical epidemiological designs which estimate cost, including partial cost evaluation studies, cost studies, cost-outcome description studies, cost-description studies, and economic modelling studies.
The inclusion criteria for Objective 2: To contrast with the costs and the cost-effectiveness of public health surveillance, preparedness, and response measures in averting and/or responding to COVID-19 were as follows:

- **Population**: EU/EEA/UK and remaining OECD countries
- **Intervention**: Public health preparedness measures or interventions.
- **Comparator**: (i) No intervention (cost of inaction) or current practice; (ii) cost of preparedness vs cost of response (for studies reporting cost and benefit of public health preparedness).
- **Outcome measures**: Cost-benefit and cost-effectiveness outcomes (e.g., cost per life-year saved). Studies that use other methods to formally combine cost and clinical outcome data (pertinent to infectious diseases) were also included. Typical outcome measures of economic evaluations include: Life years gained (or cost per life-year achieved with the intervention under investigation when incremental costs are combined), Quality-Adjusted Life Years (cost per QALY gained), Cases averted (e.g., cost per case that is averted with the intervention versus the comparator) and monetary outcomes (in the case of a cost-benefit analysis). Where available the incremental cost-effectiveness ratio (ICER) was also provided.
- **Perspective**: All direct and indirect costs were considered pertaining to all relevant perspectives (e.g., individual, health and social care, and societal- including national and regional).
- **Study designs**: We included all designs specific to cost benefit questions either as full economic evaluation studies, including cost-minimization, cost-effectiveness, cost-utility and cost-benefit analyses; cost-outcome and economic modelling studies; or partial economic evaluations.

Data analysis and extraction

Studies identified from the searches were uploaded into a bibliographic database (Covidence) in which duplicate entries were removed. Initially, a random sample of 100 titles and abstracts were screened independently for eligibility by two reviewers to enable consistency in screening and identify areas for amendments in the inclusion criteria. Since a high measure of inter-rater agreement was achieved (inter-rater agreement = 88.7%), the remaining titles and abstracts were screened for eligibility by one reviewer. Full-text articles of potentially eligible studies were retrieved and screened independently by two reviewers (inter-rater agreement = 89.3%). Data were extracted with the use of a predefined data extraction sheet. Initially, two reviewers piloted the data extraction template independently on a random sample of five included studies, and given the high consistency in data extraction, the remaining studies...
were extracted only by one reviewer. Disagreements in every step of the process were subsequently discussed with a third reviewer and agreed upon.

Appraisal of methodological quality

The Consensus on Health Economic Criteria (CHEC) checklist was used (13) to evaluate the methodological quality of full health economic evaluations, which comprises of 19 questions with answers of “Yes” or “No”. For each positive response of full health economic evaluations, a single point was assigned for the methodological quality, with a maximum score of 19. For the quality appraisal of partial economic evaluations, we used items from the CHEC checklist that was applicable – hence the maximum score was 17. In cases of insufficient information or details reported in both full and partial economic evaluation studies, with regard to a specific item, no point was awarded for that question. Studies were categorised as high (>80%), good (60%–80%), medium (40%–60%), or low (<40%) quality. The quality appraisal process was completed by one reviewer, since piloting of three studies by two independent reviewers had an inter-rater agreement of 85.6%.

Comparative economic analysis approach

All cost data were adjusted to a common currency (Euro in 2021) and price year, using the Campbell and Cochrane Economics Methods Group–Evidence for Policy and Practice Information and Coordinating Centre cost converter (13). A two-stage computation is used, where the 2021 implied conversion factor is US $1 = € 0.88. The 2021 implied conversion factor of British pounds is £1 = € 1.18. In our study, we first inflated the cost from the original price year to 2021, using a Gross Domestic Product deflator index (GDP values), obtained from the International Monetary Fund World Economic Outlook Database GDP deflator index data set. After that, we converted the original currency to the next rounded 2021 Euros, using conversion rates based on Purchasing Power Parities for GDP (PPP values). For studies that did not state the year of cost calculation, the costs were calculated one year before the publication year.

Synthesis of cost-effectiveness

The Dominance Ranking Matrix (DRM) was used to assess the cost-effectiveness of the interventions noted within the identified studies (14). The DRM is a three-by-three matrix with the following classification options:
(a) Strong dominance for the intervention when the incremental cost-effectiveness measure shows the intervention vs. the comparator is (i) more effective and less costly; or (ii) as effective and less costly; or (iii) equally costly and more effective. Strong dominance suggests that under the similar circumstances, the intervention is preferable to the comparator.

(b) Weak dominance for the intervention vs. the comparator is not decided when the measure shows the intervention as (iv) equally costly and effective; or (v) more effective and more costly; or (vi) less effective and less costly. In principle weak dominance indicates that no conclusion can be drawn and hence judgment by policymakers is required on whether the intervention is preferable when taking into consideration whether the cost/benefit tradeoffs are worth the introduction of the intervention within the particular context.

(c) Non-dominance for the intervention vs. the comparator when the measure shows the intervention as (vii) more costly and less effective; or (viii) equally as costly and less effective; or (ix) more costly and as effective. In this case the comparator is preferable to the measured intervention, at least under the circumstances of the specific study.

Patient and public involvement
This study was performed under contract for the European Center for Disease Prevention and Control (ECDC). Patients or the public were not explicitly involved in the design, or conduct, or reporting, or dissemination plans of our research.

RESULTS
10,314 non-duplicate studies were identified, of which 403 proceeded to full text screening with 362 full text studies were excluded for the following reasons: inadequate data on costs and/or cost-effectiveness (n=269), reviews/editorials/perspectives/views/opinion papers (n=68), not referring to outbreaks of Covid-19 infectious disease (n=23), and no full text available (2). Subsequently, 41 studies met all inclusion criteria and were included in the systematic review (Figure 1).

Approximately half of the studies (20/41) were of high methodological quality, ten had good quality, and the remaining 11 studies were of medium quality (Online Supplementary Appendix 2). Lower scores were mainly due to missing information relating to the comparative intervention, lack of sensitivity analysis, not reporting incremental costs among comparative interventions (since in some studies alternative strategies were not included).

Objective 1: Economic impact of COVID-19 infection to healthcare systems and societies
Ten studies evaluated the cost of the COVID-19 pandemic within EU/EEA/UK and OECD countries (Table 1), among which eight studies used a cost of illness analysis approach (15-22). The direct medical costs were presented in seven out of ten studies (15-17, 19, 20, 22, 23), while in eight studies the costs were estimated for a time horizon shorter than one year (16-18, 20-24), and specific discount rates were not applied in seven studies (15-17, 20, 22-24). With regards to the country of origin, five out of the ten studies took place in the European region, including in the UK and Turkey (15-19), three were from the USA (20-22), one from Korea (23) and one from Australia (24). Six of the 10 studies were observational (17-20, 22, 23), while a few used modelling techniques (15, 16, 24) or simulation methods (21). Furthermore, it should be noted that the healthcare system perspective was included in the analysis of four studies (15, 16, 21, 22), the societal in two (17, 18), the third payer perspective was assessed in three (19, 21, 23), and one study (24) assessed data from the public health payer perspective. The perspective considered within one study was unclear (20).

Overall economic burden on the population and to the healthcare system

Overall, the economic burden of COVID-19 pandemic was found to be substantial (Table 2). The socioeconomic implications of COVID-19 in Italy, appraised by Nurchis et al. (2020) (18) through a cost of illness analysis of indirect costs, showed a temporary productivity loss reaching 114,120,531 € for 110,868 cases (1,029 € per case). Individuals at the age of > 40 years old were found to be affected the most. Furthermore, the permanent productivity losses were estimated at 333,063,591 € for 3,926 deaths (84,836 € per death) with ages > 50 years old to consistently having higher indirect costs due to death. Bartsch et al. (2020) (19) at the start of the pandemic, when no vaccines were available showed that the more people infected, the higher medical costs are presented using a Monte Carlo simulation model to highlight the devastating impact of the pandemic on the US healthcare system and third payers. In the case of 20% of the US population to be infected with COVID-19 over the course of the pandemic (and not accounting for reinfections), the total costs accrued were estimated at 129.8 billion € and reaching 170.3 billion € including post discharge costs after one year. In the case that 80% of the US population is infected, the direct medical costs reached an estimated 519.4 billion €, and 682.6 billion € with the post discharge costs after one year of infection. Mallow et al. (2021) (24) assessed the value of statistical life in a total of 6,429 deaths in Ohio USA, where the economic burden of premature deaths was estimated at 13.8 billion € as of 30 November 2020. Additional analyses have been performed by Kirigia et al. (2020) (21) using the human capital approach to estimate the total present value of human
lives lost due to COVID-19 in the UK as of July 2, 2020. Notably, the value for 43,906 lives lost approached 7.8 billion € at a 3% discount rate with, approximately 76.2% of the total present value sustained by those aged 30 - 79 years. Lee et al. (2020) (20) aimed to determine the hospitalisation periods and medical costs among 145 hospitalised children with COVID-19 in Korea. According to the results, the estimated medical expenses reached 252,389 € totally and increased per age as 54 patients in the ages of 16-19y accounted for 156,738 € (more than 60% of the total cost) and per patient at 2,903 € for a mean hospitalization period of approximately 10 days, indicating that these ages contributed to higher costs than younger ages included in the study.

DiFusco et al. (2021) (22) by conducting a cost of illness analysis to estimate the direct medical costs of inpatient setting for a time horizon of 8 months, showed that the mean total of hospital costs related to COVID-19 was 19,513 € for 8.3 mean hospital length of stay days (LOS) (SD 9.1). Higher costs were presented for those people treated in the ICU, reaching a mean cost of 20,400 €, which represent 21,850 € in case of ICU usage without invasive mechanical ventilation (IMV) for a mean LOS of 9.1 days and estimated at a mean cost of 62,139 € if both ICU and IMV are used for mean LOS of 18.6 days.

Moreover, Gedik et al. (2020) (23) performed a simple cost-analysis of COVID-19 patients in Turkey and showed that the mean cost per ICU patient was much higher than clinical patients in wards and particularly estimated at 2,322 € for mean hospitalization days of 14.7 compared to 700. € for 9 mean hospitalization days.

Overall economic burden to specific population subgroups

With regards to the costs for specific sub-populations, Degeling et al. (2021) (15) estimated the health and economic impacts of delays in treatment initiation of 65,415 cancer cases (breast cancer, colorectal cancer, lung cancer and melanoma) due to COVID-19 infection in Australia. Apart from the excess deaths and life-years lost, costs to the health care system exceeded more than 6 million € for the 3-month delay while more than 25 million € for a 6-month delay. Czernichow et al. (2021) (16) identified a strong relationship between obese and overweight patients (BMI 25.0 to ≥40) with increased direct medical costs of secondary care related to COVID-19 across the EU, UK and EFTA countries, with 44% of the total treatment costs of COVID-19 in Europe to be associated with those populations (due to the higher probability of being hospitalized, a longer length of stay, and higher risk of severe outcomes). The total costs of 14.2 billion € were the total secondary medical care costs for a 6-month time horizon.
analysis, with cases with a BMI ≥ 40 accounting for the highest direct costs per case. In a similar study conducted by Bain et al. (2021) (17), whose aim was to estimate the impact of diabetes on the total secondary care costs of COVID-19 and for the same timeframe and population numbers in regards to the same European countries, poor glycemic control was associated with excess direct medical costs of secondary care due to COVID-19 infection, estimated at 400.4 million € for 6 869 hospitalizations of Type 1 diabetes cases and 1,498 billion € for 31 701 hospitalizations of Type 2 diabetes cases.

Objective 2: Economic evaluation of strategies for the mitigation of COVID-19 virus transmission

Our systematic review identified 31 studies assessing the cost-effectiveness of interventions for reducing SARS-CoV-2 transmission within EU/EEA/UK and OECD countries (Table 3). We identified studies that assessed isolation, lockdown policies, physical distancing scenarios (25-35), testing/screening policies (36-42), personal protective equipment intervention (43), vaccinations (44-47) and pharmaceutical treatment strategies (n=4) (47-50). Multiple strategies were evaluated by four studies (51-54), that mainly assessed the combination of testing, isolation, and vaccinations, and one study (55) analysed an ICU bed provision scenario.

Concerning study characteristics, thirteen out of 31 studies were from the USA (25, 26, 36, 38, 40, 41, 44-46, 48, 50, 52, 54), seven from the UK (30-33, 42, 49, 53), three from Germany (28, 51, 55), one from Switzerland (47), Israel (34), and Wales (37), while five of these studies included analyses for multiple OECD countries (27, 29, 35, 39, 43). The societal perspective was followed in 14 studies (26, 28, 30, 31, 33, 34, 36, 39, 41, 43, 51, 52, 54, 55), while 9 studies performed an analysis via a healthcare perspective (25, 27, 37, 38, 40, 42, 46, 47, 49, 53). Various perspectives were included in 4 studies (44, 45, 48, 50), including the payer for some of them (45, 48, 50), while the perspective considered was unclear in three studies (29, 32, 35).

Cost-effectiveness of testing & screening policies

Seven studies (Table 4) assessed the cost-effectiveness of testing and screening interventions. Stevenson et al. (2021) (42) compared 30 interventions and found that the least costly testing intervention was testing on hospital admission, and routine retesting following hospital admission. The authors noted that strategies with shorter times to test results were more cost-effective, all other things being equal, as were SARS-CoV-2 tests with greater diagnostic accuracy. Strategies that included saliva sampling and nasopharyngeal have been assessed within the systematic review and meta-analysis by Bastos et al. (2021) (39). The incremental cost per additional SARS-CoV-2 infection detected with nasopharyngeal
swabs versus saliva sampling was 6,427 € if the prevalence was 1%, and the cost-savings of saliva sampling were estimated at 505,177 € (95% CI 371,217-660,568) if 100,000 persons are tested. The clinical and economic value of PCR testing was investigated by Neilan et al. (2020) (38), who showed that under all epidemic growth scenarios considered, testing people with any COVID-19-consistent symptoms would be cost-saving compared to restricting testing to only those with symptoms severe enough to warrant hospital care, leading to lower costs and reducing infections and deaths. According to their results, and within the context of the first wave of the pandemic, the symptomatic and asymptomatic monthly testing scenario was a cost-effective strategy only with an (R_e) > 1.6 but would be no longer cost-effective option for lower reproduction scenarios, unless testing cost was lower. A cost-minimization analysis performed by Currie et al. (2020) (37) comparing community testing undertaking swabbing of suspected cases in Wales with standard hospital testing showed that community testing for COVID-19 was a superior strategy, resulting in significant benefits for the healthcare system.

Two studies appraised the cost-effectiveness outcomes of different testing strategies within specific settings. Baggett et al. (2020) (40) investigated the clinical outcomes, costs, and cost-effectiveness associated with strategies for COVID-19 management among adults experiencing sheltered homelessness in Boston, USA. Daily symptom screening with subsequent PCR testing of individuals who screened positively was the most efficient strategy and was cost-saving relative to no intervention in all epidemic scenarios.

Paltiel et al. (2020) (41) examined the SARS-2 screening performance standards that would permit the safe return of students to US residential college campuses for the fall semester of 2020 and noted that screening with a less expensive, less sensitive test dominated the intervention of screening with more expensive, more accurate tests. Paltiel et al. (2021) (36), assessed the clinical and economic effects of widespread home-based SARS-CoV-2 antigen testing and noted that the cost per infection averted was 6,266 €.

Cost-effectiveness of quarantine, isolation, physical distancing, and physical restriction policies

Twelve studies were included to assess the cost-effectiveness across different strategies to prevent or mitigate SARS-COV-2 transmission (Table 4).

Kouidere et al. (2021) (35) conducted a mathematical compartmental modelling to assess three different strategies for diabetics and concluded that awareness programs and quarantine for those infected having symptoms as well as those having complications in hospitals with treatment was the most effective
strategy and associated with an incremental cost-effectiveness ratio (ICER) of -0.6951 (cost per infection averted) compared to sensitisation and prevention.

The cost-effectiveness of comparing the national lockdown policy for the susceptible population with the isolation of those infected or being at high risk in Israel returning to the workforce under social distancing measures after a 14-day isolation period was appraised by Shlomai et al. (2020) (34). The national lockdown of the susceptible population was associated with a higher economic burden but contributed to a reduction in deaths making this intervention superior to the comparator only in terms of health outcomes but was not cost-effective since it contributed to high economic costs, estimated at 36,568,451 € costs per death averted, and 3.6 million € costs per QALY gained. Furthermore, Keogh-Brown et al. (2020) (33) assessed the direct and indirect costs of three different strategies in the UK, and indicated that although mitigation and suppression policies contribute to lower mortality rates, the economic impact of COVID-19 is likely to be dominated by public prevention measures rather than the direct health costs of the disease and indicated that a three-month mitigation scenario resulted in a prediction of 13.5% loss to GDP with the direct-health related economic impact of 2% of the GDP while the suppression scenario was associated with an approximately 22% loss in GDP. Furthermore, Miles et al. (2020) within the context of a cost-benefit analyses (32) noted that a full lockdown policy for four months followed by an extension for three months showed that net extra economic costs of the lockdown relative to the easing of restrictions was estimated at 116.2 billion € with the best scenario of lives not lost at 96.5 billion €. The main factors of the substantial costs in lockdown policy were associated mainly with employment restrictions and physical restrictions. Miles et al (2021) also (31) conducted an additional modelling and simulation study to assess a few physical restriction scenarios in a timeframe of 6 months in the UK and found that the strategy of relatively slowly easing restrictions comes at a cost in terms of GDP reduction of up to 697,121 €/life-year saved. Moreover, the cost per life-year saved with a short transition physical restriction policy (8 weeks medium then 18 weeks low) was associated with a cost of per life-year saved at 206,888 € while keeping the policies strict for 26 weeks was estimated at a cost of per life-year saved of 1,553,988 €.

Suppression and physical distancing interventions was assessed by Zala et al. (2020) (30) and Barnett-Howell et al. (2021) (29). Zala et al., noted that suppression policies compared to an unmitigated scenario strategy was associated with an ICER below 56 972 €, while all of the four suppression policies presented ICER results. Barnett-Howell et al. (29) investigated five physical distancing strategies,
including an unmitigated intervention, to assess the value of statistical life lost. Full lockdown policies were associated with lower VSL in the US, UK and Mexico countries (US: 23 billion €, UK: 4.76 billion €, Mexico: 794 million €) while the no-action scenario, which was the unmitigated spread of COVID-19, contributed to higher VSL in those countries (US: 38.9 billion €, UK: 7.1 billion €, Mexico: 1.58 billion €).

Additional studies focusing on policies related to stay-home and shutdown orders, were investigated by Gandjour (2020) (28) and Thom et al. (2021) (27). Gandjour assessed the clinical and economic cost of a shutdown during the SARS-CoV-2 pandemic in Germany to estimate the cost of life-years gained per capita estimating the indirect costs for one year. The results showed that economic cost of the intervention of lockdown was associated with 3,472 € or extrapolated to the total population, 8% of Germany’s GDP in 2019 (ranging from 1% to 12% in the sensitivity analysis). Thom et al. (27) provided an exploratory comparison of health-related benefits and costs saved by government mitigation measures across European countries (UK, Ireland, Germany, Spain and Sweden) over a timeframe of seven months, where the authors concluded that the benefit of government COVID-19 responses might outweigh their economic costs, saving millions of QALYs (0.5 million for Sweden to approximately 5 million for Germany) and ideally those countries with more mask-wearing and testing, had better outcomes.

The last studies focusing on stay-home policies were by the same authors, Chen et al., (2020) (25, 26). Their first study (25) estimated the total medical costs by keeping the US economy open and assessed 13 interventions with different stay home isolation and voluntary home isolation compliance rates for one year. Without mitigation, the total medical costs would be a 5% of the US GDP. In their second study (26), Chen et al compared the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising NPIs including stay-home with varying compliance rates. The study results indicated that the preferred mitigation scenario in terms of lives saved, and infections averted is when the compliance is at 90%, the stay at home duration is 45 days; with an economic impact of 2.76 trillion €.

Cost-effectiveness of vaccination measures

Three included studies (44-46) focused on vaccination interventions used modelling and simulation methods to assess the cost-effectiveness of the included interventions (Table 4). Shaker et al. (2021) (44) appraised the universal COVID-19 vaccination versus risk-stratified vaccination approach over the
timeframe of one year, and they found that the universal COVID-19 vaccination dominates the risk-stratified approach, making it a cost-effective strategy for the US population from the societal perspective and the healthcare perspective. ICER analyses indicated that in the case of societal perspective, the universal approach presents a cost of 52,033 € per death averted compared to the risk-stratified vaccination, with cost-savings estimated at 395 million €. When considering the healthcare perspective, the cost per death averted of the risk-stratified approach was 52,575 € making it the dominant option. Bartsch et al. (2021) (45) noted that that NPI implementation before vaccination was associated with less total costs compared to the case of non-implementation of NPIs. Finally, Kohli et al. (2021) (46) conducted a CUA to assess the COVID-19 vaccine vs. no vaccine for the US population over one year. Base case analysis presented good value for money outcomes where the ICER per age was found to be 74,652 € for ages 18-49 y, 6,353 € for 50-64 y while for ages 65 + the COVID-19 vaccine dominates. This strategy was also cost-effective under additional scenarios, such as with the per risk-based prioritisation scheme.

Cost-effectiveness of treatment measures

Our analysis included four studies (47-50) assessing pharmaceutical interventions (Table 4). Lee et al. (2021) (48) simulated the transmission spread of SARS-CoV-2 and the economic and clinical impact of the spread in the US over one year. The authors noted that starting treatment at an of Rₖ 3.5 was cost-effective and provided ICER results of 2,690 €/QALY saved from the societal perspective when treating 75% of symptomatic cases and treatment course costs 397 €, and ≤6,267 €/QALY saved from the third-payer perspective when at least 50% of all patients were treated. The study also concluded that treating 25% or 50% of symptomatic patients at Rₖ 2.5 and at a treatment cost of 397 €, was also cost-effective. Across all Rₖ assessed, the net cost-savings were high from the third-payer perspective and even higher from the societal perspective. Sheinson et al. (2021) (50) assessed the cost-effectiveness of treating hospitalised COVID-19 patients with COVID-19 treatment vs. treating them with the best supportive care (BSC). Under the payer perspective, treatment of patients with COVID-19 was more cost-effective than BSC as it was associated with 15,784 € (with a FFS payment) and 18,593 € (with a bundled payment). The ICER results from a societal perspective were even better, making the COVID-19 treatment process a dominant strategy as treatment of patients with COVID-19 was associated with a cost of 6,508 € (with FFS payment) and 9,317 € (with bundled payment).
With regards to specific pharmaceutical regiments, Águas et al. (2021) (49) estimated that the incremental cost per life-year gained for dexamethasone treatment was 1,071 € compared to no treatment. On the contrary, within a cost-analysis performed by Vernaz et al. (2020) (47) compared standard care among pharmaceutical interventions including lopinavir/ritonavir and hydroxychloroquine (a pharmaceutical discussed early in the pandemic but not a legitimate treatment) for hospitalized patients with SARS-CoV-2 in Switzerland. The results highlighted the additional costs attributable to the length of stay presented a mean cost of 648,102 € for 93 patients.

Cost-effectiveness of bed provision policies

We identified one study indicating the scenario of increasing ICU bed availability. Gandjour et al. (2021) (55) performed a cost-effectiveness and return on investment (ROI) analysis and estimated that the provision of a staffed ICU bed reserve capacity was cost-effective even for a low probability of bed utilisation and estimated that the provision of 1 ICU bed would cost 14,306 € to 22,986 € per life-year gained, while the addition of 10,000 ICU beds provided cost 18,389 € to 29,627 € per life-year gained.

Cost-effectiveness of personal protective equipment strategies

Risko et al. (2020) (43) conducted a cost-effectiveness analysis indicating that investing in personal protective equipment (PPE) was a cost-effective option for 166 million simulated workers over a period of 7.5 months (Table 4). In general, they found that an investment of USD 9.6 billion (7.62 billion €, 2021) concerning the purchasing and distribution of PPE to allow for adequate protection of all HCWs was cost-effective and lead to an ICER of cost per case averted at 57 €, and an ICER of cost per death averted of 4,159 €, which translates to 41.1 billion € (95% CI 39.6 to 42.6) in economic gains.

Cost-effectiveness of other combined strategies

The review included four studies (51-54) that assessed multiple combined interventions related to testing, isolation, vaccination and physical distancing strategies (Table 4). The value of immunisation alongside physical distancing policies was evaluated by Sandmann et al. (2021) (53), who assessed the clinical and economic value of COVID-19 vaccination in the UK and estimated that without the initial lockdown, vaccination, and increased physical distancing, 3.1 million (0.84 – 4.5) deaths would occur in the UK over ten years with a cost of 169 million €. The introduction of vaccination provided estimations of incremental net monetary values ranging from 13.7 billion € to 381.4 billion € in the best-case
scenario and from 1.25 billion € to 64.8 billion € in the worst-case scenario compared to no immunization – under the healthcare perspective. In regard to the wider societal perspective, where GDP income loss was included in the relevant analyses, the incremental net monetary value of introducing vaccination vs. no vaccination was found to be extremely positive across physical distancing scenarios. Pandey et al. (2021) (54) assessed the cost-effectiveness of eight testing measures in conjunction with isolation measures over a timeframe of five months. In cases of an $R_0=2$ and assuming the test cost of approximately 4 € and the societal willingness-to-pay (WTP) per year-life lost (YLL) averted of 79,417 €, the optimal strategy was daily testing plus a 2-week isolation. On contrary, at a lower R_0 (1.5 - 1.8) weekly testing plus 1-week isolation was found to be the optimal strategy. Furthermore, the weekly testing plus 2-week isolation was also optimal if $R_0 > 2$ (under the same assumptions and when the test costs <318 €).

The combination of isolation with laboratory testing and self-screening in college campuses over 3.5 months was assessed by Losina et al. (2020) (52), who concluded that a comprehensive physical distancing policy with a mandatory mask-wearing policy can prevent most COVID-19 cases on college campuses and is relatively cost-effective. The last study that assessed multiple interventions was that of Ebigbo et al. (2021) (51) that appraised the use of low vs. high-risk PPE (masks, goggles, gloves and apron, and centralised laboratory-based testing) applied during routine pre-endoscopy procedures. The authors noted that routine pre-endoscopy testing combined with high-risk PPE becomes more cost-effective with rising prevalence rates of COVID-19 while in lower prevalence rates the dominant strategy appeared to be the intervention of point-of-care antigen test without routine high risk PPE use.

DISCUSSION

This systematic review aimed to assess the economic burden of COVID-19 infection to societies and healthcare systems and to assess the strategies used to prevent and mitigate COVID-19 outbreaks in the EU/UK/EEA and OECD countries from studies published through 22nd April 2021. Our findings indicate that the overall economic impact of the virus is substantial for individuals, healthcare systems and payers, while our review identified that NPIs and pharmaceutical measures, including ICU bed provision implemented within the context of the COVID-19 pandemic from both healthcare and societal perspectives and within one year time horizon are cost effective response and mitigation measures.
Overall, in the studies identified, the economic burden of COVID-19 pandemic was found to be substantial in all studies included in the systematic review, with both direct and indirect costs playing a significant role. Direct costs were primarily attributed to medical expenses from hospitalisations and ICU admissions while the indirect and societal costs yielded by NPIs, mainly from stay-home and isolation strategies, contributed to the further increase of economic costs and also resulted in a decrease in GDP. Moreover, the delays in treatment initiation of other diseases (e.g., cancer) were also found to have substantial economic impact. At the patient level, increased medical costs were also related to comorbidities such as obesity and diabetes. Regarding indirect costs, temporary and permanent productivity loss, as well as human lives lost due to COVID-19 were substantial.

The NPIs implemented for the pandemic control led to a benefit in life years in an individual or societal level compared to the no intervention scenario, although the cost benefit of such interventions differed depending on the perspective, the timeframe, the setting and the epidemiological situation of the pandemic. Considering the testing strategy, results were dependent on the cost per test and the R₀ at the time of assessment. Overall, low-cost repeated community screening was a cost-effective approach, in combination with other NPIs, especially when the cost of testing remains low and at higher Rₑ. As for lockdown strategies, studies showed that if performed early in the pandemic for a limited period of time and with sufficient compliance, they substantially could reduce the medical costs of COVID-19 from a healthcare perspective – especially prior to population immunisation. In general, mitigation scenarios resulted in less GDP loss compared to suppression ones. Finally, quarantine and physical distancing strategies were found to be effective for the containment of the COVID-19 pandemic, while it was indicated that with an increasing R, a combination of NPIs, including screening, physical distancing, and quarantine of contacts would be more efficient. With regards to PPMs they showed a benefit both in health and costs when used by HCWs, as also was the provision of ICU beds. Regarding pharmaceutical measures, vaccination was consistently found to be cost-effective, with the universal COVID-19 vaccination dominating the risk-stratified approach. Additionally, pharmaceutical treatments were also cost-effective when provided in scenarios of high transmissibility (high Rₑ). Finally, the combination of testing, vaccination, physical distancing measures and mask wearing was found to be cost saving, with a significant number prevented cases and deaths.

A systematic review on previous respiratory infectious disease outbreaks prior to COVID-19 (56) concluded to similar results by pointing out the significant burden of both direct and indirect medical costs for management and response activities. Most direct costs occured from the additional personnel
hours, the response planning and contact tracing activities, the provision of training and educational materials and the laboratory costs. Indirect costs were greater than direct ones, particularly when school closures and/or workplace closures were implemented, due to lower productivity (56). However, given the strictness of the NPIs in COVID-19 pandemic the economic burden has been found to be high for primary production sectors including industries associated with activities in raw materials extraction, secondary industrial sectors involving the production of finished products and tertiary sectors encompassing service provision industries (57).

This systematic review provides a wide range of cost-effective options across comparative strategies implemented to prevent or mitigate virus transmission. Strategies, including vaccination measures (ideally universal vaccinations), screening policies (with the saliva sampling to be a cost-saving option compared to nasopharyngeal swabs) and expanding a staffed ICU bed reserve capacity were found to be dominant strategies against SARS-COV-2 transmission, indicating the cost-savings as well as the economic value of their implementation. An earlier systematic review by Vandepitte et al. (2021) also showed that frequent and universal testing activities are a cost-effective strategy, highlighting that it would have a greater impact if enacted in a setting with a high R_e. Moreover, they noted that PPM was also a cost-effective strategy depending on the compliance, the context, and the R_e. (58). Similarly in another review, contact tracing and isolation of cases was a cost-effective NPIs, along with adequate surveillance, PPM for healthcare professionals, and vaccination. Contrastingly, physical distancing strategies including school and workplace closures were found to be effective but costly, making them the least cost-effective options. Additionally, combined NPIs were more cost-effective than individual ones, while the significance of early implementation was emphasised (59).

Strengths and limitations

This review provides several strengths, including covering within one review both the economic burden of COVID-19 and the cost-effectiveness of the strategies and programs implemented to mitigate the pandemic. Moreover, this review followed a systematic approach to study identification, data extraction and quality apprasial with most of the included studies of good or high quality. Furthermore, this study used the Dominance Ranking Matrix approach, which summarised and interpreted the results of economic evaluation studies. On the other hand there are some limitations, as publication bias can not be excluded and as our search was performed up to the end of April 2021 it only reflects the cost-
effectiveness of interventions assessed during the first waves of the pandemic with the majority of the populations unvaccinated, while most studies have a short duration on which modelling was performed. A further limitation is that most studies estimate costs and benefits based on a health care perspective, excluding wider societal effects, with a time horizon of 1 year. As we restricted our search to EU/UK/EEA/US and OECD countries, the studies primarily refer to high-income countries. Finally, as costs and resources varied between different countries, different pandemic settings and over time, and as indicated in this review, dependent on multiple other factors including population vaccination status, preexisting healthcare capacity and the infectivity of the COVID-19 variant at each time point, the comparison of cost-effectiveness measures is a complex process to interpret and the cost effectiveness of each intervention should be weighed by policymakers against the regional circumstances. Moreover, as the complete economic and health consequences are yet unknown, further research is needed on the cost-effectiveness of NPIs, while the cost of the long-term effects of COVID-19 (both physical and mental) should be also assessed in future analyses.

CONCLUSION

This systematic review assessed economic evaluation studies concerning SARS-CoV-2 and the cost-effectiveness of strategies to prevent and mitigate virus spread within the EU/UK/EEA and OECD country context. Results of this study are based primarily on first wave of the pandemic and mostly from a health care perspective with a short time horizon; particularly within 1 year time horizon. Our review showed that SARS-CoV-2 is associated with substantial economic costs to healthcare systems, payers, and societies, both short term and long term, while interventions including testing and screening policies, vaccination and physical distancing policies were identified as those presenting cost-effective options to deal with the pandemic – dependent on population vaccination and the R_e at the stage of the pandemic. Policymakers could benefit from these findings as they indicate the value of both pharmaceutical and non-pharmaceutical interventions to mitigate and respond to the ongoing COVID-19 pandemic and in preparation for future respiratory pandemics.
ACKNOWLEDGEMENTS
We would like to thank Chrysa Chatzopoulou, Katerina Papathanasaki and Konstantinos Skouloudakis for contributing to file and data archiving and data management.

CONTRIBUTORS
CV, JLB, and JES designed the study. KN and KZ undertook the systematic review and extracted the data with help from KA, IL and KPA. JLB and RP developed the search strategy and JLB ran the searches. KZ and KA analysed and interpreted the economic data. OC, FL, FS, AP, CD, EF and JES participated in data evaluation and interpretation along with CV, JLB, RP, JES, KN, KZ, KA, and ST. Authors CV, KA and KZ wrote the first draft of the manuscript with input from all authors. All authors reviewed and revised subsequent drafts.

Declaration of interests
We declare no competing interests.

Funding
This report was commissioned by the European Centre for Disease Prevention and Control (ECDC), to the PREP-EU Consortium, coordinated by Dr. Vardavas under specific contract ECD. 11986 within Framework contract ECDC/2019/001. The information and views in this manuscript are those of the authors and do not necessarily reflect the official opinion of the Commission/Agency. The Commission/Agency do not guarantee the accuracy of the data included in this study. Neither the Commission/Agency nor any person acting on the Commission’s/Agency’s behalf may be held responsible for the use which may be made of the information contained therein.

Data sharing statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES

 Reconstruction and Development / The World Bank
2. ECDC. COVID-19 situation update worldwide, as of week 17, updated 5 May 2022. 2022
3. ECDC. Covid Statistic Measures 2021
4. ECDC. Latest risk assessment: further emergence and potential impact of the SARS-CoV-2
 Omicron variant of concern in the context of ongoing transmission of the Delta variant of concern in the
 EU/EEA, 15 December 2021. 2021
5. Demirgüç-Kunt A, Lokshin M, Torre I. The sooner, the better: The economic impact of non-
 pharmaceutical interventions during the early stage of the COVID-19 pandemic. Economics of
7. López-Valcárcel BG, Vallejo-Torres L. The costs of COVID-19 and the cost-effectiveness of
9. Meltzer MI, Gambhir M, Atkins CY, Swerdlow DL. Standardizing scenarios to assess the need
11. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews
 model to estimate the excess mortality and health economic impact of delayed access to cancer services
 2021;11(2):e12442.

TABLES AND FIGURES

Figure 1. PRISMA flow chart of the search strategy

- Identification
 - Records identified from*: Databases (n = 11,422)
 - Records removed before screening: Duplicate records removed (n = 1,108)

- Screening
 - Records screened (n = 10,314)
 - Records excluded**: (n = 9,911)
 - Reports sought for retrieval (n = 403)
 - Reports not retrieved (n = 2)
 - Reports assessed for eligibility (n = 401)
 - Reports excluded (n = 360): Inadequate data (n = 269) Inadequate study design (n = 68) Not on COVID-19 (n = 23)

- Included
 - Studies included in review (n = 41)
<table>
<thead>
<tr>
<th>Study/Publication Year</th>
<th>Country</th>
<th>Population</th>
<th>Study design</th>
<th>Economic evaluation method</th>
<th>Costs calculation</th>
<th>Perspective</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degeling et al, 2021 (15)</td>
<td>Australia</td>
<td>65,415 cases - 2020 Australian incident breast cancer, colorectal cancer, lung cancer, and melanoma patient populations</td>
<td>Modeling</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>Public healthcare payer</td>
<td>No funding</td>
</tr>
<tr>
<td>Czernichow et al, 2021 (16)</td>
<td>European countries</td>
<td>720•547 hospitalizations</td>
<td>Modeling</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>Healthcare system</td>
<td>Yes</td>
</tr>
<tr>
<td>Bain et al, 2021 (17)</td>
<td>European countries</td>
<td>720•547 hospitalizations</td>
<td>Modeling</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>Healthcare system</td>
<td>Yes</td>
</tr>
<tr>
<td>Mallow et al, 2021 (24)</td>
<td>USA/Ohio</td>
<td>6,429 Ohioans deaths</td>
<td>Retrospective cohort study</td>
<td>Partial economic evaluation</td>
<td>Not clearly specified</td>
<td>Not clearly specified</td>
<td>No funding</td>
</tr>
<tr>
<td>Nurchis et al, 2020 (18)</td>
<td>Italy</td>
<td>Italian population</td>
<td>Observational study</td>
<td>Cost of illness analysis</td>
<td>Indirect costs</td>
<td>Societal</td>
<td>No funding</td>
</tr>
<tr>
<td>Bartsch et al, 2020 (19)</td>
<td>USA</td>
<td>USA population</td>
<td>Simulation</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1) Health system, 2) third-payer</td>
<td>Yes</td>
</tr>
<tr>
<td>Lee et al, 2020 (20)</td>
<td>Korea</td>
<td>145 hospitalized children with COVID-19</td>
<td>Retrospective cohort study</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>Third payer</td>
<td>Not clearly specified</td>
</tr>
<tr>
<td>Kirigia et al, 2020 (21)</td>
<td>UK</td>
<td>UK population</td>
<td>Retrospective cohort study</td>
<td>Economic impact analysis/Cost of illness</td>
<td>Indirect costs (using human capital approach)</td>
<td>Societal</td>
<td>No funding</td>
</tr>
<tr>
<td>Gedik et al, 2020 (23)</td>
<td>Turkey</td>
<td>459 patients - 393 clinical patients 66 intensive care unit patients</td>
<td>Retrospective cohort study</td>
<td>Cost analysis</td>
<td>Direct medical costs</td>
<td>Third payer</td>
<td>Not clearly specified</td>
</tr>
<tr>
<td>DiFusco et al, 2021 (22)</td>
<td>USA</td>
<td>173,942 hospitalized COVID-19 patients</td>
<td>Retrospective cohort study</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>Healthcare system</td>
<td>Yes</td>
</tr>
</tbody>
</table>

USA: United States of America, UK: United Kingdom
Table 2. Econometric outcomes of studies evaluating the economic impact of COVID-19 in the EU/EEA/UK and OECD countries (n=10)

<table>
<thead>
<tr>
<th>Study/Publication Year</th>
<th>Time horizon</th>
<th>Discounting</th>
<th>Modeling - uncertainty assessment</th>
<th>Economic evaluation outcomes, €, 2021</th>
<th>Uncertainty assessment results, €, 2021</th>
</tr>
</thead>
</table>
| Degeling et al, 2021 | 5 and 10-year| Not applied | Incremental cost – 3 month delay | Breast cancer: 1 09 million €
Coloecteral cancer: 227 082 €
Lung cancer: -
Melanoma: 5 02 million €
Incremental cost – 6 month delay
Breast cancer: 4 25 million €
Coloecteral cancer: 895 070 €
Lung cancer: -
Melanoma: 20 1 million € | Not applied |
| Czernichow et al, 2021 | 6 months | Not applied | Costs per average hospital admission - By BMI - Average (weighted for all countries)
2) BMI <25: 16 173 €
3) BMI 25–29.9: 17 389 € - 24 324 €
4) BMI 30–34.9: 24 324 €
5) BMI 35–39.9: 25 409 €
6) BMI ≥40: 31 652 €
Total direct costs of secondary care of COVID-19 – by BMI
1) Totally (720 547 hosp. people): 14 2 billion €
2) With diabetes (95 255 hosp. people): 12 0 billion €
3) Without diabetes (625 292 hosp. people): 2 2 billion € | Not applied |
| Bain et al, 2021 | 6 months | Not applied | Total direct costs of secondary care of COVID-19 – per diabetes type
1) Type 1
a) Good glycaemic control (2 656 hosp. cases): 78 6 million € | Lower and upper bound estimations
The range for total direct secondary care costs is 11 3 billion € - 21 8 billion € |
<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
<th>Type</th>
<th>Value</th>
<th>Type of Analysis</th>
</tr>
</thead>
</table>
| Mallow et al, 2021 | From the beginning of Covid-19 infection as of 30 November 2020 in Ohio | Not applied | Not applied | Value of statistical life: Low: 15 492 826 678 €
| | | | | Base: 13 814 246 372 €
| | | | | High: 17 979 395 429 €
| | | | | Value of statistical life, per sex:
| | | | | Male: 7 443 681 213 €
| | | | | Female: 6 351 426 503 €
| | | | | Unknown: 19 138 654 €
| | | | | Value of statistical life, per age:
| | | | | Less than 60 y: 3 092 373 227 €
| | | | | 60 y or older: 10 720 747 342 €
| | | | | Unknown: N/A
| Nurchis et al, 2020 | Approximately 3 months | 3% for the individual future annual wages | Not applied | Value of statistical life: Low: 15 492 826 678 €
| | | | | Base: 13 814 246 372 €
| | | | | High: 17 979 395 429 €
| | | | | Value of statistical life, per sex:
| | | | | Male: 7 443 681 213 €
| | | | | Female: 6 351 426 503 €
| | | | | Unknown: 19 138 654 €
| | | | | Value of statistical life, per age:
| | | | | Less than 60 y: 3 092 373 227 €
| | | | | 60 y or older: 10 720 747 342 €
| | | | | Unknown: N/A
| Bartsch et al, 2020 | Incurred during the course of the infection and postdischarge for one year | 3% for costs | Monte Carlo simulation | Direct medical cost, per case:
| | | | | 1) A person with symptomatic infection, i) including only costs during the course of the infection, ii) one year after postdischarge:
| | | | | Median: 2 418 € (95% UI 2 282 - 2 545 €)
| | | | | Median: 3 192 € (95% UI 3 017 - 3 336 €)
| | | | | 2) A person with only mild symptoms by age group, including only costs during the course of the infection:
| | | | | a) 0-17 y - Median: 72 € (95% UI 48 - 98 €)
| | | | | b) 18-64 y - Median: 45 € (95% UI 43 - 53 €)
| | | | | 20% attack (infection) rate:
| | | | | Decreasing post-discharge costs by 50 percent would lower that amount to a median of 149 8 billion € [95% UI: 142 0 €, 158 7 billion €].
| | | | | Decreasing the currently reported values for the probability of death by a relative 95 percent had little impact on direct medical costs - median: 170 7 billion € [95% UI: 280 7 billion € - 161 9 billion €].
varying several key parameters to determine their impact on our results:

c) 65 y or older Median: 76 € (95% UI 71 € - 82 €)

3) A person with symptomatic infection requiring hospitalization, by age group - including only costs during the course of the infection:
 a) 0-17 y - Median: 9 027 € (95% UI 7 203 – 10 991 €)
 b) 18-44 y - Median: 10 429 € (95% UI 9 141 – 11 707 €)
 c) 45-64 y - Median: 12 661 € (95% UI 11 451 – 13 943 €)
 d) 65-84 y - Median: 12 661 € (95% UI 11 261 – 12 340 €)
 e) 85 y or older - Median: 9 451 € (95% UI 8 807 – 10 193 €)

Direct medical costs,

i) incurred during the course of the infection,
ii) post discharge (with current reported values) - Attack (infection) rates in US

1) 20% infection rate: 129 8 billion (95% UI 122 7 – 137 5), ii) 170 3 billion (95% 160 7 –181)

2) 50% infection rate: i) 324 6 billion (95% UI 306 7 – 344 2), ii) 426 3 billion (95% 403 1 –453 3)

3) 80% infection rate: i) 519 4 billion (95% UI 489 05 – 550), ii) 682 6 billion (95% 642 8 – 724 05)

Medical costs, per age-group and mean hospitalization days

a) Totally (145 patients): 252 389 € for 10.38 days (95% UI 8 38 – 12 38 hospitalization days)
 Per patient: 1.740 6 €
 b) 0-5y (57 patients): 33 927 € for 4.63 days (95% UI 2 99 – 6 27 hospitalization days)
 Per patient: 594 8 €
 c) 6-10y (15 patients): 30 786 € for 10.87 days (95% UI 6 85 – 14 89 hospitalization days)
 Per patient: 2.051 8 €
 d) 11-15y (19 patients): 30 937 € for 14.88 days (95% UI 8 86 – 14 72 hospitalization days)
 Per patient: 1.628 05 €

Lee et al, 2020 2 months Not applied Not applied Uncertainty assessment Not applied

<table>
<thead>
<tr>
<th>Medical costs, per age-group and mean hospitalization days</th>
<th>Lee et al, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Totally (145 patients): 252 389 € for 10.38 days (95% UI 8 38 – 12 38 hospitalization days)</td>
<td>2 months</td>
</tr>
<tr>
<td>Per patient: 1.740 6 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>b) 0-5y (57 patients): 33 927 € for 4.63 days (95% UI 2 99 – 6 27 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 594 8 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>c) 6-10y (15 patients): 30 786 € for 10.87 days (95% UI 6 85 – 14 89 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 2.051 8 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>d) 11-15y (19 patients): 30 937 € for 14.88 days (95% UI 8 86 – 14 72 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 1.628 05 €</td>
<td>Not applied</td>
</tr>
</tbody>
</table>

161 06 billion €, 180 4 €.

50% attack (infection) rate: Reducing the post-discharge costs by 50 percent decreased the median direct medical costs to 375 2 billion € [95% UI: 355 billion €, 398 1 billion €].

80% attack (infection) rate: If post-discharge costs were 50 percent lower, median costs would be reduced from 682 7 billion € to 600 5 billion € [95% UI: 565 8 billion €, 637 4 billion €]. The decrease of the probability of severe disease leads to decreased costs by a relative 49 7%, to 261 2 billion €. Decreasing the reported value for the probability of death by a relative 95% had no impact on cost when costs that might be incurred after discharge were included[median: 682 7 billion €; 95% UI: 646 2 billion €, 722 2 billion €]

Lee et al, 2020 2 months Not applied Not applied Uncertainty assessment Not applied

<table>
<thead>
<tr>
<th>Medical costs, per age-group and mean hospitalization days</th>
<th>Lee et al, 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Totally (145 patients): 252 389 € for 10.38 days (95% UI 8 38 – 12 38 hospitalization days)</td>
<td>2 months</td>
</tr>
<tr>
<td>Per patient: 1.740 6 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>b) 0-5y (57 patients): 33 927 € for 4.63 days (95% UI 2 99 – 6 27 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 594 8 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>c) 6-10y (15 patients): 30 786 € for 10.87 days (95% UI 6 85 – 14 89 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 2.051 8 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>d) 11-15y (19 patients): 30 937 € for 14.88 days (95% UI 8 86 – 14 72 hospitalization days)</td>
<td>Not applied</td>
</tr>
<tr>
<td>Per patient: 1.628 05 €</td>
<td>Not applied</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Onset and as of July 2020</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Kirigia et al, 2020</td>
<td>16-19y (54 patients): 156 738 € for 15.81 days (95% UI 11 42 – 20 20 hospitalization days) Per patient: 2.902 7 €</td>
</tr>
<tr>
<td>Gedik et al, 2020</td>
<td>Appro. 2 months</td>
</tr>
<tr>
<td>DiFusco et al, 2021</td>
<td>8 months</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Direct costs (hospital charges)

1. Overall study population (n= 173,942) for 8.3 mean LOS: 72,132 € (mean), 126,212 € (SD)
2. Without ICU or IMV (n= 128,063) for 6.1 mean LOS: 40,157 € (mean), 43,931 € (SD)
3. With ICU but without IMV (n= 16,496) for 9.6 mean LOS: 75,879 € (mean), 79,852 € (SD)
4. Without ICU but with IMV (n= 7,751) for 12.1 mean LOS: 125,887 € (mean), 156,833 € (SD)
5. With ICU and IMV (n= 21,632) for 18.6 mean LOS: 239,308 € (mean), 260,664 € (SD)

BMI: Body mass index, US: United States, y: years, n: number, N/A: Not applicable SD: Standard deviation, ICU: Intensive Care Unit, IMV: Invasive mechanical ventilation, LOS: Length of stay

1 The base case is the best estimate of YPLL and associated value of statistical life years lost. The low and high represent the estimated range.
<table>
<thead>
<tr>
<th>Study/Publication Year, Funding</th>
<th>Country and Population</th>
<th>Study design</th>
<th>Perspective</th>
<th>Intervention/strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pandey et al, 2021 (54)</td>
<td>USA 328 2 million (US population)</td>
<td>Modeling and simulation</td>
<td>Societal</td>
<td>1. Daily test plus 1-week isolation, 2. Daily test plus 2-week isolation, 3. Test every 7 days plus 1-week isolation, 4. Test every 7 days plus 2-week isolation, 5. Test every 14 days plus 1-week isolation, 6. Test every 14 days plus 2-week isolation, 7. Test every 28 days plus 1-week isolation, 8. Test every 28 days plus 2-week isolation</td>
</tr>
<tr>
<td>Lee et al, 2021 (48)</td>
<td>USA 327 167 434 persons (US population)</td>
<td>Modeling and simulation</td>
<td>Third payer and societal perspective</td>
<td>Starting treatment (medication of vaccination)</td>
</tr>
<tr>
<td>Stevenson et al, 2021 (42)</td>
<td>UK Patients admitted to hospital</td>
<td>Modeling and simulation</td>
<td>Healthcare system</td>
<td>30 testing strategies - All of these used the base-case values for the laboratory-based test and the POCT 1. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours 2. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours</td>
</tr>
</tbody>
</table>
result of 35.9 hours, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.

3. Test on admission to the hospital with SARS-CoV-2 POCTs with a time to test result of 30 minutes, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 POCTs and with a time to test result of 30 minutes, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 POCTs with a time to test result of 30 minutes.

4. Test on admission to the hospital with SARS-CoV-2 POCTs with a time to test result of 30 minutes, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 POCTs and with a time to test result of 30 minutes, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.

5. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 POCTs and with a time to test result of 30 minutes, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 POCTs with a time to test result of 30 minutes.

6. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and weekly asymptomatic staff testing with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.

7. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and weekly asymptomatic staff testing with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.

8. Test on admission to the hospital with SARS-CoV-2 POCTs with a time to test result of 30 minutes, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 POCTs and with a time to test result of 30 minutes, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay test with SARS-CoV-2 POCTs with a time to test result of 30 minutes.

9. Test on admission to the hospital with SARS-CoV-2 POCTs with a time to test result of 30 minutes, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.
<table>
<thead>
<tr>
<th>Model</th>
<th>Source</th>
<th>Funding</th>
<th>Population</th>
<th>Methodology</th>
<th>Cost Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shlomai et al, 2020 (34)</td>
<td>No funding</td>
<td>Israel</td>
<td>Simulated population of Israel (9 million population)</td>
<td>Modeling and simulation</td>
<td>Societal</td>
<td>1. Isolation – complete isolation of infected individuals or individuals at high exposure risk in a dedicated facility, 2. National lockdown of the susceptible population - national lockdown, isolation of all infected individuals, and a 14-day isolation period for the high exposure risk group</td>
</tr>
<tr>
<td>Keogh-Brown et al,</td>
<td>Yes</td>
<td>UK population</td>
<td>Modeling and simulation</td>
<td>Societal</td>
<td>1. No action is taken to mitigate the virus spread VS 2. Mitigation policy,</td>
<td></td>
</tr>
</tbody>
</table>

SARS-CoV-2 test with SARS-CoV-2 POCTs with a time to test result of 30 minutes, routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, and weekly asymptomatic staff testing with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours.
10. Test on admission to the hospital with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, retest those with clinical symptoms suggestive of COVID-19 but with a negative SARS-CoV-2 test with SARS-CoV-2 laboratory-based tests with a time to test result of 35.9 hours, routine retesting following admission to hospital in a non-SARS-CoV-2 infection-suspected bay with SARS-CoV-2 POCTs with a time to test result of 30 minutes, and weekly asymptomatic staff testing with SARS-CoV-2 POCTs with a time to test result of 30 minutes.
11. As strategy 2 but using a time to test result of 24 hours for the laboratory-based test.
12. As strategy 2 but using a time to test result of 6 hours for the laboratory-based test.
13. As strategy 3 but using the acceptable TPP for POCTs.
14. As strategy 3 but using data from currently available POCTs.
15. As strategy 4 but using a time to test result of 8 hours.
16. As strategy 4 but using the acceptable TPP for POCTs.
17. As strategy 4 but using data from currently available POCTs.
18. As strategy 5 but using a time to test result of 24 hours for the laboratory-based test.
19. As strategy 5 but using a time to test result of 6 hours for the laboratory-based test.
20. As strategy 6 but using a time to test result of 24 hours for the laboratory-based test.
21. As strategy 6 but using a time to test result of 6 hours for the laboratory-based test.
22. As strategy 7 but using a time to test result of 24 hours for the laboratory-based test.
23. As strategy 7 but using a time to test result of 6 hours for the laboratory-based test.
24. As strategy 8 but using the acceptable TPP for POCTs.
25. As strategy 8 but using data from currently available POCTs.
26. As strategy 25 but using a time to test result of 8 hours.
27. As strategy 9 but using the acceptable TPP for POCTs.
28. As strategy 9 but using data from currently available POCTs.
29. As strategy 10 but using a time to test result of 24 hours for the laboratory-based test.
30. As strategy 10 but using a time to test result of 6 hours for the laboratory-based test.
31. As strategy 2 but using a time to test result of 24 hours for the laboratory-based test.
32. As strategy 2 but using a time to test result of 6 hours for the laboratory-based test.
33. As strategy 3 but using the acceptable TPP for POCTs.
34. As strategy 3 but using data from currently available POCTs.
35. As strategy 4 but using a time to test result of 8 hours.
36. As strategy 4 but using the acceptable TPP for POCTs.
37. As strategy 4 but using data from currently available POCTs.
38. As strategy 5 but using a time to test result of 24 hours for the laboratory-based test.
39. As strategy 5 but using a time to test result of 6 hours for the laboratory-based test.
40. As strategy 6 but using a time to test result of 24 hours for the laboratory-based test.
41. As strategy 6 but using a time to test result of 6 hours for the laboratory-based test.
42. As strategy 7 but using a time to test result of 24 hours for the laboratory-based test.
43. As strategy 7 but using a time to test result of 6 hours for the laboratory-based test.
44. As strategy 8 but using the acceptable TPP for POCTs.
45. As strategy 8 but using data from currently available POCTs.
46. As strategy 25 but using a time to test result of 8 hours.
47. As strategy 9 but using the acceptable TPP for POCTs.
48. As strategy 9 but using data from currently available POCTs.
49. As strategy 10 but using a time to test result of 24 hours for the laboratory-based test.
50. As strategy 10 but using a time to test result of 6 hours for the laboratory-based test.
51. As strategy 2 but using a time to test result of 24 hours for the laboratory-based test.
52. As strategy 2 but using a time to test result of 6 hours for the laboratory-based test.
53. As strategy 3 but using the acceptable TPP for POCTs.
54. As strategy 3 but using data from currently available POCTs.
55. As strategy 4 but using a time to test result of 8 hours.
56. As strategy 4 but using the acceptable TPP for POCTs.
57. As strategy 4 but using data from currently available POCTs.
58. As strategy 5 but using a time to test result of 24 hours for the laboratory-based test.
59. As strategy 5 but using a time to test result of 6 hours for the laboratory-based test.
60. As strategy 6 but using a time to test result of 24 hours for the laboratory-based test.
61. As strategy 6 but using a time to test result of 6 hours for the laboratory-based test.
62. As strategy 7 but using a time to test result of 24 hours for the laboratory-based test.
63. As strategy 7 but using a time to test result of 6 hours for the laboratory-based test.
64. As strategy 8 but using the acceptable TPP for POCTs.
65. As strategy 8 but using data from currently available POCTs.
66. As strategy 25 but using a time to test result of 8 hours.
67. As strategy 9 but using the acceptable TPP for POCTs.
68. As strategy 9 but using data from currently available POCTs.
69. As strategy 10 but using a time to test result of 24 hours for the laboratory-based test.
70. As strategy 10 but using a time to test result of 6 hours for the laboratory-based test.
71. As strategy 2 but using a time to test result of 24 hours for the laboratory-based test.
72. As strategy 2 but using a time to test result of 6 hours for the laboratory-based test.
73. As strategy 3 but using the acceptable TPP for POCTs.
74. As strategy 3 but using data from currently available POCTs.
75. As strategy 4 but using a time to test result of 8 hours.
76. As strategy 4 but using the acceptable TPP for POCTs.
77. As strategy 4 but using data from currently available POCTs.
78. As strategy 5 but using a time to test result of 24 hours for the laboratory-based test.
79. As strategy 5 but using a time to test result of 6 hours for the laboratory-based test.
80. As strategy 6 but using a time to test result of 24 hours for the laboratory-based test.
81. As strategy 6 but using a time to test result of 6 hours for the laboratory-based test.
82. As strategy 7 but using a time to test result of 24 hours for the laboratory-based test.
83. As strategy 7 but using a time to test result of 6 hours for the laboratory-based test.
84. As strategy 8 but using the acceptable TPP for POCTs.
85. As strategy 8 but using data from currently available POCTs.
86. As strategy 25 but using a time to test result of 8 hours.
87. As strategy 9 but using the acceptable TPP for POCTs.
88. As strategy 9 but using data from currently available POCTs.
89. As strategy 10 but using a time to test result of 24 hours for the laboratory-based test.
90. As strategy 10 but using a time to test result of 6 hours for the laboratory-based test.
91. As strategy 2 but using a time to test result of 24 hours for the laboratory-based test.
92. As strategy 2 but using a time to test result of 6 hours for the laboratory-based test.
93. As strategy 3 but using the acceptable TPP for POCTs.
94. As strategy 3 but using data from currently available POCTs.
95. As strategy 4 but using a time to test result of 8 hours.
96. As strategy 4 but using the acceptable TPP for POCTs.
97. As strategy 4 but using data from currently available POCTs.
98. As strategy 5 but using a time to test result of 24 hours for the laboratory-based test.
99. As strategy 5 but using a time to test result of 6 hours for the laboratory-based test.
100. As strategy 6 but using a time to test result of 24 hours for the laboratory-based test.
101. As strategy 6 but using a time to test result of 6 hours for the laboratory-based test.
102. As strategy 7 but using a time to test result of 24 hours for the laboratory-based test.
103. As strategy 7 but using a time to test result of 6 hours for the laboratory-based test.
104. As strategy 8 but using the acceptable TPP for POCTs.
105. As strategy 8 but using data from currently available POCTs.
106. As strategy 25 but using a time to test result of 8 hours.
107. As strategy 9 but using the acceptable TPP for POCTs.
108. As strategy 9 but using data from currently available POCTs.
109. As strategy 10 but using a time to test result of 24 hours for the laboratory-based test.
110. As strategy 10 but using a time to test result of 6 hours for the laboratory-based test.
<table>
<thead>
<tr>
<th>Year (Ref)</th>
<th>Study Type</th>
<th>Country</th>
<th>Population</th>
<th>Intervention</th>
<th>Study Design</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020 (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Suppression policy</td>
</tr>
<tr>
<td>Heras et al, 2021 (49)</td>
<td>Yes</td>
<td>UK</td>
<td>300 000 Hospitalised COVID-19 patients</td>
<td>Modeling and simulation</td>
<td>Healthcare system</td>
<td>1. Dexamethasone treatment VS 2. No Dexamethasone treatment</td>
</tr>
<tr>
<td>Miles et al, 2020 (32)</td>
<td>Not clearly specified</td>
<td>UK</td>
<td>Over 5 million citizens</td>
<td>Modeling</td>
<td>Societal</td>
<td>Lockdown policy</td>
</tr>
<tr>
<td>Shaker et al, 2021 (44)</td>
<td>Yes</td>
<td>USA</td>
<td>Individual and 300 000 000 simulated persons</td>
<td>Simulation</td>
<td>1) Healthcare and 2) Societal</td>
<td>1. Universal COVID-19 vaccination VS 2. Risk-stratified vaccination²</td>
</tr>
<tr>
<td>Miles et al, 2021 (31)</td>
<td>Not clearly specified</td>
<td>UK</td>
<td>56 000 000 citizens</td>
<td>Modeling and simulation</td>
<td>Not clearly specified, however, societal could be ideal to mention</td>
<td>Physical restriction scenarios: 1. Base—no transition (0 wk High then 0 wk Medium then 26 wk Low), 2. I - Short transition (8 wk Medium then 18 wk Low), 3. II - Long transition (4 wk High then 12 wk stepped reduction - Medium), 4. III - Keep at high for 26 wk</td>
</tr>
<tr>
<td>Zala et al, 2020 (30)</td>
<td>No funding</td>
<td>UK</td>
<td>UK population</td>
<td>Simulation</td>
<td>Societal</td>
<td>Suppression policies: 1) Suppression 1 (triggered “on” when there are 100 ICU cases in a week and “off” when weekly cases halve to 50 cases) VS unmitigated, 2) Suppression 1 (triggered “on” when there are 100 ICU cases in a week and “off” when weekly cases halve to 50 cases) VS mitigated, 3) Suppression 2 (triggered “on” when there are 400 ICU cases in a week and “off” when weekly cases halve to 200 cases) VS unmitigated, 4) Suppression 2 (triggered “on” when there are 400 ICU cases in a week and “off” when weekly cases halve to 200 cases) VS mitigated</td>
</tr>
<tr>
<td>Sheinson et al, 2021 (50)</td>
<td>Yes</td>
<td>USA</td>
<td>Modeled population of hospitalized</td>
<td>Modeling</td>
<td>1) Healthcare, 2) Societal, 3) Payer</td>
<td>Treatment in the hospital with COVID-19 treatments VS Best supportive care (BSC)</td>
</tr>
<tr>
<td>Study Authors</td>
<td>Funding</td>
<td>Country</td>
<td>Setting</td>
<td>Study Design</td>
<td>Healthcare Model</td>
<td>Testing Strategies</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--</td>
<td>-------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Neilan et al, 2020 (38)</td>
<td>Yes</td>
<td>USA</td>
<td>Initial distribution of COVID-19 disease severity by age which has been derived from the Massachusetts Census and Department of Public Health</td>
<td>Modeling and simulation</td>
<td>Healthcare system</td>
<td>1) hospitalized: PCR testing only for patients with severe/critical symptoms warranting hospitalization, 2) symptomatic: PCR for any COVID-19–consistent symptoms, with self-isolation if positive, 3) symptomatic + asymptomatic once: symptomatic and 1-time PCR for the entire population, 4) symptomatic + asymptomatic monthly: symptomatic with monthly retesting for the entire population</td>
</tr>
<tr>
<td>Baggett et al, 2020 (40)</td>
<td>Yes</td>
<td>USA</td>
<td>Modeled cohort of 2258 adults residing in homeless shelters in Boston, Massachusetts</td>
<td>Modeling and simulation</td>
<td>Healthcare system</td>
<td>1) No intervention VS 2) Symptom screening, PCR, and hospital, 3) Symptom screening, PCR, and ACS, 4) Universal PCR testing and hospital, 5) Universal PCR and ACS, 6) Universal PCR and temporary housing, 7) Hybrid hospital (symptom screening, PCR, and hospital strategy and adds shelter-based universal PCR testing every 2 weeks for those without symptoms), 8) Hybrid ACS (symptom screening, PCR, and ACS strategy and adds shelter-based universal PCR testing every 2 weeks for those without symptoms)</td>
</tr>
<tr>
<td>Currie et al, 2020 (37)</td>
<td>No funding</td>
<td>Wales</td>
<td>192 suspected COVID-19 cases in community and standard hospital testing practices</td>
<td>Retrospective cohort study</td>
<td>Healthcare system</td>
<td>1) Community testing by swabbing VS 2) Hospital standard testing</td>
</tr>
<tr>
<td>Sandmann et al, 2021 (53)</td>
<td>Yes</td>
<td>UK</td>
<td>UK population</td>
<td>Modeling and simulation</td>
<td>Healthcare system and society</td>
<td>Vaccination alongside physical distancing measures 1) No vaccination VS 2) Vaccination (worst case), 3) Vaccination (best case)</td>
</tr>
<tr>
<td>Study</td>
<td>Funding</td>
<td>Country/Population</td>
<td>Methodology</td>
<td>Setting/Modeling</td>
<td>Physical distancing strategies:</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| Barnett-Howell et al, 2021 (29) | Yes | High and low income countries (including the UK, US) Susceptible modeled population at the start of the pandemic | Simulation | Not clearly specified | 1) Unmitigated spread of COVID-19, where the virus progresses through each country at a high level of infectivity,
2) Individual distancing policy, similar to the case of a country like Sweden where workplaces, schools and restaurants mostly remain open but large gatherings are discouraged, reducing infectivity by 15%,
3) Broad physical distancing policy, equivalent to the closure of schools and workplaces, that reduces infectivity by 35%,
4) Physical distancing+, which is an even more intensive physical distancing policy with targeted stay-at-home orders,
5) Full lockdown policies designed to entirely suppress physical contact, closing transit and stay-at-home orders for the entire population, reducing infectivity by 60% |
| Gandjour et al, 2020 (28) | No funding | Germany German population | Modeling | Societal | 1) No intervention, VS |
| | | | | | 2) Shutdown in scenario of “Flattening the curve”,
3) Shutdown in scenario of “Squashing the curve”,
4) ICU capacity exceeded by 50 %,
5) ICU capacity exceeded by 100 %,
6) ICU capacity exceeded by 200 %,
7) ICU capacity exceeded by 300 % |
| Gandjour et al, 2021 (55) | No funding | Germany German population | Modeling | Societal | ICU bed provision |
| Bartsch et al, 2021 (45) | Yes | USA U.S. population | Modeling and simulation | a) third-party payer, b) societal | 1) Vaccine that reduces severe disease,
2) Vaccine that prevents infection, 5% have already been infected,
3) Vaccine that prevents infection, 25% have already been infected,
4) Vaccine that prevents infection, 50% have already been infected |
| Thom et al, 2021 (27) | Yes | European countries (UK, Ireland, Germany, Spain and Sweden) Population of these European countries | Modeling | Health system | 1) Scenario A (base case) - Government response mitigation under R0=2.7,
2) Scenario B - Government response mitigation under R0=1.6,
3) Scenario C - Government response mitigation under R0=3.9,
4) Scenario: All GDP reduction due to response |
<p>| Kohli et al, | Yes | USA | Modeling and | Healthcare | 1) No vaccine VS |</p>
<table>
<thead>
<tr>
<th>Year</th>
<th>Study Authors</th>
<th>Country</th>
<th>Study Group</th>
<th>Study Design</th>
<th>System</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021 (46)</td>
<td></td>
<td></td>
<td>Every adult (18 years and older) in the US</td>
<td>Simulation</td>
<td>System</td>
<td>2) COVID-19 vaccine</td>
</tr>
<tr>
<td>Chen et al, 2020 (25)</td>
<td>Yes</td>
<td>USA</td>
<td>US population</td>
<td>Modeling and simulation</td>
<td>Healthcare system</td>
<td>1) Stay-home for 0 days (unmitigated scenario) VS 2) Stay-home for 30 days, with VHI & SHI 60% compliance rate, 3) Stay-home for 30 days, with VHI & SHI 70% compliance rate, 4) Stay-home for 30 days, with VHI & SHI 80% compliance rate, 5) Stay-home for 30 days, with VHI & SHI 90% compliance rate, 6) Stay-home for 45 days, with VHI & SHI 60% compliance rate, 7) Stay-home for 45 days, with VHI & SHI 70% compliance rate, 8) Stay-home for 45 days, with VHI & SHI 80% compliance rate, 9) Stay-home for 45 days, with VHI & SHI 90% compliance rate, 10) Stay-home for 60 days, with VHI & SHI 60% compliance rate, 11) Stay-home for 60 days, with VHI & SHI 70% compliance rate, 12) Stay-home for 60 days, with VHI & SHI 80% compliance rate, 13) Stay-home for 60 days, with VHI & SHI 90% compliance rate.</td>
</tr>
<tr>
<td>Losina et al, 2020 (52)</td>
<td>Yes</td>
<td>USA</td>
<td>105,000 cohort size</td>
<td>Simulation</td>
<td>Modified societal</td>
<td>No intervention VS Isolation intervention, masks wearing and laboratory testing/self-screen strategies a) Residence-based isolation, incl. self-screen, b) Designated space for isolation, incl. self-screen, c) Designated spaces for isolation + 1-time laboratory testing, d) Designated spaces for isolation + routine laboratory testing every 14 days, e) Designated spaces for isolation + routine laboratory testing every 7 days, f) Designated spaces for isolation + routine laboratory testing every 3 days</td>
</tr>
<tr>
<td>Chen et al, 2020 (26)</td>
<td>Yes</td>
<td>USA</td>
<td>US population</td>
<td>Simulation</td>
<td>Societal</td>
<td>1) No non-pharmaceutical interventions applied VS 2) Stay-home for 30 days, with 60%-70%-80%-90% compliance rate, 3) Stay-home for 45 days, with 60%-70%-80%-90% compliance rate, 4) Stay-home for 60 days, with 60%-70%-80%-90% compliance rate.</td>
</tr>
<tr>
<td>Vernaz et al, 2020 (47)</td>
<td>No funding</td>
<td>Switzerland</td>
<td>840 Hospitalized patients with a SARS-CoV-2 infection in COVID-19 wards</td>
<td>Retrospective cohort study</td>
<td>Healthcare system</td>
<td>1) Standard of Care (SoC) VS 2) 400 mg of lopinavir/ritonavir twice daily for 5 days under the age of 75 years and 400 mg of lopinavir/ritonavir in the morning and 200 mg of lopinavir/ritonavir in the evening for patients over 75, 3) A single dose of 800 mg of hydroxychloroquine, 4) Lopinavir/ritonavir and hydroxychloroquine dual therapy at the same dosages. Lopinavir/ritonavir was first prescribed on 5 March 2020, and hydroxychloroquine alone or combined with lopinavir/ritonavir on 20 March 2020.</td>
</tr>
<tr>
<td>Ebigbo et al, 2021 (51)</td>
<td>Not mentioned/Not specified</td>
<td>Germany</td>
<td>Simulation of 10,000 asymptomatic patients, 20</td>
<td>Simulation</td>
<td>Societal</td>
<td>1) No routine pre-endoscopy virus test; use of surgical masks, goggles, gloves, and apron for all procedures, 2) No routine pre-endoscopy virus test; additional use of FFP-2 masks and water-resistant gowns for all procedures, 3) Decentralized POC antigen test; use of surgical masks, goggles, gloves, and apron for all procedures, 4) Decentralized POC antigen test; additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result, 5) Centralized</td>
</tr>
</tbody>
</table>
39

full-time HCWs with two FFP-2 masks per day laboratory-based rapid PCR test; use of surgical masks, goggles, gloves, and apron for all procedures, 6) Centralized laboratory-based rapid PCR test; additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result, 7) Centralized laboratory-based standard PCR test; use of surgical masks, goggles, gloves, and apron for all procedures, 8) Centralized laboratory-based standard PCR test; additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result

Paltiel et al, 2020 (41)
Yes USA 4,990 students without SARS-CoV-2 infection and 10 students with undetected asymptomatic cases of SARS-CoV-2
Modeling Societal 1) Symptom-based screening, with no test sensitivity, 2) Weekly screening, with 70% test sensitivity, 3) Weekly screening, with 80% test sensitivity, 4) Weekly screening, with 90% test sensitivity, 5) Every 3 days screening, with 70% test sensitivity, 6) Every 3 days screening, with 80% test sensitivity, 7) Every 3 days screening, with 90% test sensitivity, 8) Every 2 days screening, with 70% test sensitivity, 9) Every 2 days screening, with 80% test sensitivity, 10) Every 2 days screening, with 90% test sensitivity, 11) Daily screening, with 70% test sensitivity, 12) Daily screening, with 80% test sensitivity, 13) Daily screening, with 70% test sensitivity

Paltiel et al, 2021 (36)
Yes USA U.S. population
Modeling Societal 1) No home-based SARS-CoV-2 antigen testing VS 2) home-based SARS-CoV-2 antigen testing

1 Including countries in Europe
2 based on history of anaphylaxis attributable to any trigger, where vaccination is deferred in patients with a history of self-reported anaphylaxis
Table 4. Economic evaluation outcomes concerning interventions and strategies to mitigate Covid-19 (n=31)

<table>
<thead>
<tr>
<th>Study/Publication Year</th>
<th>Economic evaluation method</th>
<th>Cost calculation</th>
<th>Time horizon</th>
<th>Discounting</th>
<th>Modeling</th>
<th>Uncertainty assessment method</th>
<th>Economic evaluation outcomes, €, 2021</th>
<th>Uncertainty assessment results</th>
</tr>
</thead>
</table>
| Pandey et al, 2021 | Cost-effectiveness analysis (CEA) | Direct medical and indirect costs | 5 months | Not applied | Stochastic transmission individual-based chain-binomial model | 1. transmission scenarios, with Re ranging from 1·1 to 3 - by assuming a willingness to pay per YLL averted of US$100 000 and determining the best testing strategy at a price of $5 per test and a threshold test price at which the status-quo strategy outperforms all testing strategies considered. 2. Robustness assessment of structural features of the model - 3. Visualizing individual simulation results and reporting the probability that the chosen strategy was suboptimal to one or more of the alternative strategies | **Cost-effectiveness acceptability frontier**
A) **Daily test plus 1-week isolation:** -
B) **Daily test plus 2-week isolation:**
Optimal strategy in Re of 2·5 & 3·0, assuming that each test costs US 3 97 € and assuming a societal WTP per YLL averted of 79 417 €. Optimal in testing threshold of 218 € and 318 €, respectively.
C) **Test every 7 days plus 1-week isolation:** Optimal strategy in Re of 1·5, 1·6, 1·7, 1·8, assuming that each test costs 3 97 € and assuming a societal willingness to pay per YLL averted of 79 417 €. Optimal in testing threshold of 258 €, 218 €, 338 €, 377 €, respectively.
D) **Test every 7 days plus 2-week isolation:** a) Optimal strategy in Re of 2·2 - At the base case, with a price of 3.97 € per test and willingness to pay per YLL averted of 79 417 €, is optimal for prices under 318 € per test, b) Furthermore, optimal at all willingness to pay per YLL averted thresholds above 7 942 €
E) **Test every 14 days plus 1-week isolation:** Assuming a test cost of 3 97 € and willingness to pay per YLL averted of 79 417 €, testing every 14 days with 1-week isolation is optimal for moderate transmission rates (Re 1·3–1·4), and | Under several assumptions, weekly testing combined with 2-week isolation remains the preferred strategy under high transmission scenarios. Specifically, weekly testing combined with 2-week isolation remains the preferred strategy under high transmission scenarios (Re of 2·2) for larger population sizes, if individuals are assumed to resume testing 30 days after a positive test, when using QALYs to assess COVID-19 morbidity averted in addition to YLL averted, and even when the strategy options are extended to include 10-day in addition to 1-week and 2-week isolation periods |
<table>
<thead>
<tr>
<th>Lee et al, 2021</th>
<th>Cost-utility analysis (CUA)</th>
<th>a) Direct medical costs for the third payer perspective, b) direct and indirect costs for the societal perspective</th>
<th>1 year</th>
<th>3% for costs</th>
<th>Stochastic compartment model</th>
<th>Sensitivity analyses, by varying the proportion of the population receiving medication or vaccination, ranging from 25% to 75%</th>
<th>ICER (cost/QALY) Scenario of decreasing average infectious period by 0.5 days</th>
</tr>
</thead>
</table>

monthly testing with 1-week isolation is optimal for lower transmission scenarios

F) Test every 14 days plus 2-week isolation:

G) Test every 28 days plus 1-week isolation: Optimal strategy in Re of 1·1 & 1·2, assuming that each test costs 3·97 € and assuming a societal willingness to pay per YLL averted of 79·417 €. Optimal in testing threshold of 60 € and 99 €, respectively.

H) Test every 28 days plus 2-week isolation:

ICER (cost/QALY)

Sensitivity analysis results are shown in the results section. Sensitivity analyses varied the proportion of the population receiving medication or vaccination, ranging from 25% to 75%, in order to show a more aggressive upper bound of potential coverage, when treatment started during the epidemic (after 5–15% of the population has been exposed), total treatment cost (397·1 € - 1985 €), and R0 (2.0–3.5)

A) At Ro 3.5
Cost-effective from the societal perspective: 2690.65 €/QALY, when treating 75% of symptomatic cases and treatment course costs 397.1 €. Cost-effective from the third payer perspective: ICER was ≤ 267 €/QALY saved, when at least 50% of all cases were treated

B) At Ro 2.0
Cost-effective from the third payer perspective: ICER was 42.1 € - 14,075 €/QALY saved, when treating 25% or 50% of symptomatic patients

C) At Ro 2.5
From third-payer perspective: Not cost-effective, treating symptomatic patients
if treatment costs 397.1 €

Scenario of decreasing average infectious period by 3.5 days

At Ro 3.5
Cost-effective from the third-payer perspective: 2950 35 €/QALY, when treating 50% of symptomatic cases and treatment course costs 397 1 €

Cost-savings (Net)
A) At Ro 3.5

Scenario of decreasing average infectious period by 0.5 days
From the societal perspective: 90 13 billion €, when treating 75% of symptomatic cases and treatment course costs 397 1 €

Scenario of decreasing average infectious period by 2 days
From the societal perspective: 432 19 billion €, when treating 25-75% of symptomatic cases and treatment course costs 397 1 € - in case of treating all infected the savings are 174 24 billion €.

From the third-payer perspective: 1 59 billion €, when treating 25-75% of symptomatic cases and treatment course costs 397 1 €

Scenario of decreasing average infectious period by 3.5 days
From the societal perspective: 259 46 billion €, when treating 50% of symptomatic cases and treatment course costs 397 1 € - 339 27 billion € when
treating 75\% of all infected patients

B) At $R_0 = 2.0$
Scenario of decreasing average infectious period by 0.5 days

From societal perspective: 60.05 billion €, when treating 25\% or 50\% of symptomatic patients
From the third payer perspective: 3.01 billion €, when treating 25\% or 50\% of symptomatic patients

Scenario of decreasing average infectious period by 3.5 days

From societal perspective: 476.98 billion €, when treating 50\% of symptomatic patients
From the third payer perspective: 29.86 billion €, when treating 50\% of symptomatic patients

C) At $R_0 = 2.5$
Scenario of decreasing average infectious period by 0.5 days

From societal perspective: 166.38 billion €, when treating 25\% of symptomatic patients, if the treatment costs 397.1 €
Even if treatment costs 1985.43 € and treating 50\% of those patients, cost-savings of 35.66 € presented.
From third-payer perspective: Not cost-saving, if treatment costs 397.1 €

Scenario of decreasing average infectious period by 2.0 days
<table>
<thead>
<tr>
<th>Source</th>
<th>Cost-effectiveness analysis (CEA)</th>
<th>Not clearly mentioned</th>
<th>Appr. 3.5 months</th>
<th>Not applied</th>
<th>Two mathematical models: i) for transmission of the COVID-19 disease between people, ii) for the dynamics of the diabetes population</th>
<th>Not applied</th>
<th>Mathematical ICER (cost per averted infection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kouidere et al, 2021</td>
<td>Direct medical, non-medical and indirect costs</td>
<td>Not clearly specified</td>
<td>Not applied</td>
<td>Wilson method and generalized linear mixed models for the secondary analysis</td>
<td>Not applied</td>
<td>Quarantine: 0.4774 Sensitization and prevention: -0.1962 Awareness program and quarantine: -0.6951 compared to sensitization and prevention</td>
<td></td>
</tr>
<tr>
<td>Bastos et al, 2021</td>
<td>Direct medical, non-medical and indirect costs</td>
<td>Not clearly specified</td>
<td>Not applied</td>
<td>Incremental cost per additional SARS-CoV-2 infection identified - If the prevalence of SARS-CoV-2 in the sample population is: a) 0.01%, b) 0.1%, c) 1%, d) 10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risko</td>
<td>Direct</td>
<td>7.5</td>
<td>Not applied</td>
<td>Bayesian multivariate</td>
<td>ICER (Cost per case averted)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applied

| | |

From third-payer perspective: > 7.39 billion €, when treating 50% of all infected patients if treatment costs 397.1 €.

From societal perspective: 154.32 billion €, when treating 50% of all infected patients, if the treatment costs 397.1 €.

Total cost per strategy

Quarantine: 293,000,000 €
Sensitization and prevention: 124,000,000 €
Awareness program and quarantine: 75,500,000 €

Cost-savings, if 100,000 persons are tested

Saliva Sampling: 505,177 € (95% CI 371,217 - 660,568 €) compared to Nasopharyngeal Swab
<table>
<thead>
<tr>
<th>Stevenson et al, 2021</th>
<th>Cost-utility analysis (CUA)</th>
<th>Direct medical costs</th>
<th>Appr. 6.5 months</th>
<th>Sensitivity analyses were performed by changing and/or removing parameters</th>
<th>Efficiency Frontier (ICER)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5% per annum for health benefits. No discounting for costs.</td>
<td>Computer individual patient model</td>
<td>Strategy 1: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dominated strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extendedly Dominated strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strategy 8: 5 990 805 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strategy 9: 62 365 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strategy 12: 10 258 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strategy 23: 35 207 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total costs of testing</td>
</tr>
</tbody>
</table>

Purchasing and distribution of personal protective equipment to allow for adequate protection of all HCWs: 57.2 € (53.2 € to 61.2 €)

ICER (Cost per death averted)
Purchasing and distribution of personal protective equipment to allow for adequate protection of all HCWs: 4 159 € (3 861 to 4 556)

Return on investment
The investment of 7.6 billion € for purchasing PPE contributes to economic gains of 41.1 billion € (39.6 to 42.6)

that the societal ROI from productivity gains is estimated to be 599.84 billion €, yielding the equivalent of a 7 932% ROI

Sensitivity analyses exploring the impact of no testing: It is seen that, at low willingness-to-pay values (≤ £30 000 per QALY or 34 182 €, converted), no testing appears to be one of the options with the highest NMB values, owing to the high costs associated with testing. As the willingness-to-pay threshold increases to £50 000 per QALY or 56 971 €, converted, these strategies compare unfavourably with other strategies. This indicates that the cost of SARS-CoV-2 tests is, as expected, a key driver of the cost-effectiveness of SARS-CoV-2 testing.
<table>
<thead>
<tr>
<th>Shlomai et al, 2020</th>
<th>Cost-effectiveness analysis (CEA) and cost-utility analysis (CUA)</th>
<th>Direct and indirect costs</th>
<th>Appr. 6.5 months</th>
<th>The discount rate was 0(^{1})</th>
<th>Modified Susceptible, Exposed, Infectious, Recovered, and Deceased (SEIRD) model</th>
</tr>
</thead>
</table>

ICER

| Isolation\(^{2}\): - |
| National lockdown of the susceptible population\(^{3}\): 36 568 451 € cost per death averted, 3.6 million € cost per QALY |

Total costs

| Isolation\(^{3}\): 99 6 million € |
| National lockdown of the susceptible population\(^{3}\): 10 13 million € |

Even after sensitivity analyses results, the outcomes remain similar - the difference in the number of deaths and ICER remain similar. Sensitivity analysis indicates that the transmission rate (b) is the parameter with the most influence on ICER.

Modified Susceptible, Exposed, Infectious, Recovered, and Deceased (SEIRD) model

1) One-way sensitivity analysis (via Tornado diagram), 2) Probabilistic sensitivity analysis (via Monte Carlo simulation)

Shlomai et al, 2020

Cost-effectiveness analysis (CEA) and cost-utility analysis (CUA)

Direct and indirect costs

Appr. 6.5 months

The discount rate was 0\(^{1}\)

Modified Susceptible, Exposed, Infectious, Recovered, and Deceased (SEIRD) model

1) One-way sensitivity analysis (via Tornado diagram), 2) Probabilistic sensitivity analysis (via Monte Carlo simulation)

ICER

Isolation\(^{2}\): -

National lockdown of the susceptible population\(^{3}\): 36 568 451 € cost per death averted, 3.6 million € cost per QALY

Total costs

Isolation\(^{3}\): 99 6 million €

National lockdown of the susceptible population\(^{3}\): 10 13 million €

Even after sensitivity analyses results, the outcomes remain similar - the difference in the number of deaths and ICER remain similar. Sensitivity analysis indicates that the transmission rate (b) is the parameter with the most influence on ICER.

Cost-effectiveness analysis (CEA) and cost-utility analysis (CUA)

Direct and indirect costs

Appr. 6.5 months

The discount rate was 0\(^{1}\)

Modified Susceptible, Exposed, Infectious, Recovered, and Deceased (SEIRD) model

1) One-way sensitivity analysis (via Tornado diagram), 2) Probabilistic sensitivity analysis (via Monte Carlo simulation)

ICER

Isolation\(^{2}\): -

National lockdown of the susceptible population\(^{3}\): 36 568 451 € cost per death averted, 3.6 million € cost per QALY

Total costs

Isolation\(^{3}\): 99 6 million €

National lockdown of the susceptible population\(^{3}\): 10 13 million €

Even after sensitivity analyses results, the outcomes remain similar - the difference in the number of deaths and ICER remain similar. Sensitivity analysis indicates that the transmission rate (b) is the parameter with the most influence on ICER.
Keogh-Brown et al, 2020

Macroeconomic analysis, including Cost of illness

Direct medical costs and indirect costs

Not clearly mentioned

Not applied

Computable General Equilibrium (CGE) model

Sensitivity analyses conducted. For each sensitivity analysis, the parameter concerned is decreased or increased by 50% to give an upper or lower limit value.

Total health-related costs

a) No action is taken to mitigate the virus spread

Total health-related costs: 45 1 billion €
Hospitalised costs: 798 million €
Hospitalised recovered ICU: 342 million €
Hospitalised recovered non-ICU: 114 million €
Total labour supply losses: 44 3 billion €
Hospitalised fatalities: 3 2 billion €
Hospitalised recovered: 5 3 billion €
Non-hospitalised recovered: 35 1 billion €

b) Mitigation policy

Total health-related costs: 60 5 billion €
Hospitalised costs: 798 million €
Hospitalised intensive-care: 342 million €
Hospitalised non-intensive-care: 342 million €
Labour supply losses: 59 7 billion €
Hospitalised fatalities: 2 28 billion €
Hospitalised recovered: 5 6 billion €
Non-hospitalised recovered: 50 4 billion €

No action scenario

The results indicate that respectively lowering and increasing the clinical attack rate, from central 48% value, changes the direct health-related economic burden to respectively 22 0 billion € and 69 6 billion € (±51–54%), and this is the epidemiological parameter to which the economic impacts are most sensitive. Lowering and increasing the overall and age-specific case fatality rates changes the economic burden to 43 6 billion € and 46 5 billion € (±3%).

Variations in age-specific hospitalization rates

This contributed to have a relatively small impact changing the economic burden to 41 6 billion € and 49 1 billion € (±7–8%).

Varying age-specific ICU admission rates

Has a small effect on economic burden estimates, changing the economic burden estimates to 44 3 billion € and 46 9 billion € (±4%).

Águas et al, 2021

Cost-effectiveness

Direct medical

6 months

Not applied

Decision state

Sensitivity analyses through Latin-hypercube

ICER

No dexamethasone treatment: -

Sensitivity of ICER estimates to assumptions regarding the
<table>
<thead>
<tr>
<th>Costs analysis (CEA)</th>
<th>Costs</th>
<th>transition model</th>
<th>sampling and 1 million iterations</th>
<th>Dexamethasone treatment: 1 071 € (90% CI: 74 06 € to 2 301 6 €)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles et al, 2020</td>
<td></td>
<td></td>
<td></td>
<td>Incremental cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No dexamethasone treatment: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dexamethasone treatment: 97 million €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(90% CI: 6 8 million € to 376 million €)</td>
</tr>
<tr>
<td>Probability of receiving oxygen therapy when needed and the efficacy of dexamethasone when not receiving oxygen: The results show non-significant differences in the median ICERs for the explored parameter ranges.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits, costs and net benefits, 1 Life saved = 5 QALYs – scenario of i) 9% GDP loss, ii) 15% GDP loss, iii) 20% GDP loss, iv) 25% GDP loss

Lives not lost
Scenario a) 440 000
Benefits: i) 59 5 billion €, ii) 59 5 billion €, iii) 59 5 billion €, iv) 59 5 billion €,
Costs: i) -158 8 billion €, ii) -262 1 billion €, iii) -349 4 billion €, iv) -639 2 billion €,
Net benefits: i) -99 3 billion €, ii) -202 5 billion €, iii) -289 9 billion €, iv) -552 1 billion €.

Scenario b) 50 000
Benefits: 7 15 billion €
Costs: -158 8 billion €
Net benefits: -151 6 billion €

Cost of easing - in case of each add. death = 5 QALY valued at £30,000
a) Continue lockdown (0 7): -
b) Ease scenario I (0 9): 1 07 €
c) Ease scenario II (1): 2 6 €
d) Ease scenario III (1 15): 9 050 €

Cost of easing - in case of each add. death
<table>
<thead>
<tr>
<th>Shaker et al, 2021</th>
<th>Cost-effectiveness analysis (CEA)</th>
<th>1. Direct medical costs for healthcare perspective</th>
<th>2. Direct and indirect costs for societal perspective</th>
<th>1 year</th>
<th>Not applied</th>
<th>Decision tree</th>
<th>Deterministic and probabilistic sensitivity analyses</th>
<th>ICER (cost per death averted) - Societal perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Universal Covid-19 vaccination: 52 033 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk-stratified vaccination: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICER (cost per death averted) – Healthcare perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Universal Covid-19 vaccination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a) Base-case: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b) Higher COVID risk; Lower anaphylaxis risk: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c) Lower COVID risk; Higher anaphylaxis risk: 1 213 486 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d) Second-order Monte-Carlo simulations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n = 10,000 simulations): -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risk-stratified vaccination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a) Base-case: - 52 575 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b) Higher COVID risk; Lower anaphylaxis risk: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c) Lower COVID risk; Higher anaphylaxis risk: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>d) Second-order Monte-Carlo simulations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n = 10,000 simulations): -141 462 €</td>
</tr>
<tr>
<td></td>
<td>Cost-savings – Societal perspective</td>
<td>Universal Covid-19 vaccination: 395 816 347 € compared to risk-stratified vaccination</td>
<td>Universal Covid-19 vaccination compared to risk-stratified vaccination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cost-savings – Healthcare perspective</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Universal Covid-19 vaccination, compared to risk-stratified vaccination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a) Base-case: 399 941 958 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b) Higher COVID risk; Lower anaphylaxis</td>
</tr>
</tbody>
</table>

a) In one-way sensitivity analysis when the risk of vaccine anaphylaxis exceeds 0.8%, risk stratification was the most cost-effective strategy (WTP = 10 000 000 per death prevented).

b) Two-way sensitivity analysis of anaphylaxis risk and COVID-19 risk
As risk of COVID-19 increased, cost-effectiveness of a risk-stratified approach required vaccine deferral at higher anaphylaxis risk thresholds. Moreover, in tornado diagram results, as vaccine anaphylaxis risk exceeded 0.8%, a risk-stratification approach was cost-effective (WTP = 10 000 000 per death prevented).

c) Probabilistic sensitivity analysis
Demonstrated universal vaccination strategy to be the most cost-effective strategy in 99.58% of simulations.
<p>| Miles et al, 2021 | Cost-effectiveness analysis (CEA) | Indirect costs | 6 months | Not applied | Simulation model | Sensitivity analysis, by making 7 assumptions: 1) Seasonality Colder March = Winter Reproduction Rates, 2) Virus Base Reproduction Rate Increases: +10%, 3) The virus remains Infectious: 14 d, 4) Vaccine Effectiveness falls to Round 1:50% + Round 2:15%, 5) Vaccination Delivery Rate falls to 2 000 000/wk, 6) Worst Case (1,2,4,5 together), 7) Opportunity Vaccine Effectiveness Round 1 = 80%, Round 2 = 10% & Delivery 3 000 000/wk | Cost per life-year saved | GDP/life-year saved vs base €k (£), in different physical restriction scenarios |
|---|---|---|---|---|---|---|
| | | | | | | a) Base—no transition (0 wk high then 0 wk medium then 26 wk low): - |
| | | | | | | b) I—short transition (8 wk medium then 18 wk low): -206 888 € |
| | | | | | | c) II—long transition (4 wk high then 12 wk stepped reduction—medium): -507 922 € |
| | | | | | | d) III—keep at high for 26 wk: -1 553 988 € |
| | | | | | | Seasonality Colder March = Winter Reproduction Rates: |
| | | | | | | 1) -, 2) -147 611 €, 3) -360 311 €, 4) - 1 093 720 € |
| | | | | | | Virus Base Reproduction Rate Increases: +10%: |
| | | | | | | 1) -, 2) -67 413 €, 3) -167 370 €, 4) - 509 085 € |
| | | | | | | The virus remains Infectious: 14 days: |
| | | | | | | 1) -, 2) -154 585 €, 3) -361 473 €, 4) -1 087 908 € |
| | | | | | | Vaccine Effectiveness falls to Round 1:50% + Round 2:15%: |
| | | | | | | 1) -, 2) -76 711 €, 3) -195 266 €, 4) - 593 933 € |
| | | | | | | Vaccination Delivery Rate falls to 2 000 000/wk: |
| | | | | | | 1) -, 2) -145 287 €, 3) -363 798 €, 4) -1 106 505 € |
| | | | | | | Worst Case (1,2,4,5 together): |
| | | | | | | 1) -, 2) -48 886 €, 3) -119 716 €, 4) - 363 798 € |
| | | | | | | Opportunity Vaccine Effectiveness Round 1 = 80%, Round 2 = 10% |</p>
<table>
<thead>
<tr>
<th>Zala et al, 2020</th>
<th>Cost-utility analysis (CUA)</th>
<th>Direct and indirect costs</th>
<th>Not clearly specified (hypothetical suppression policy until late 2021)</th>
<th>Imperial model–projected suppression policy</th>
<th>Sensitivity analysis has been performed in parameters: a) No death-related healthcare cost-savings, b) Unemployment QALY loss included, c) End-of-life cost included, d) Net national income loss 50% less, e) Net national income loss 50% more</th>
<th>ICER (cost per QALY)</th>
<th>Base-case results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppression policy 1: 22 842 €</td>
<td>Suppression policy 1: 38 757 €</td>
<td>Suppression policy 2: 24 381 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incremental costs</td>
<td>Incremental costs</td>
<td>ICER (cost per QALY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenarios followed by:</td>
<td>Base-case results</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1) No death-related healthcare cost saving. 2) Unemployment QALY loss included,</td>
<td>Suppression policy 1: 1) 19 475 €, 2) 30 389 €, 3) 22 812 €, 4) 98 911 €, 5) 32 426 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) End-of-life cost included, 4) Net national income loss 50% less, 5) Net national income loss 50% more</td>
<td>Suppression policy 1: 1) 35 389 €, 2) 75 518 €, 3) 38 726 €, 4) 17 817 €, 5) 56 329 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppression policy 2: 1) 21 014 €, 2) 32 247 €, 3) 24 351 €, 4) 10 565 €, 5) 34 831 €</td>
<td>Suppression policy 2: 1) 41 165 €, 2) 91 319 €, 3) 44 501 €, 4) 20 490 €, 5) 65 207 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppression policy 2: 1) 99 674 508 225 €</td>
<td>Suppression policy 2: 99 732 793 629 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Incremental costs</td>
<td>Incremental costs</td>
<td>ICER (cost per QALY)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scenarios followed by:</td>
<td>Base-case results</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1) No death-related healthcare cost saving. 2) Unemployment QALY loss included,</td>
<td>Suppression policy 1: 1) 84 978 298 977 €, 2) 99 674 508 225 €, 3) 99 540 957 789 €, 4) 43 157 324 544 €, 5) 141 495 452 558 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) End-of-life cost included, 4) Net national income loss 50% less, 5) Net national income loss 50% more</td>
<td>Suppression policy 1: 1) 99 674 507 439 €, 2) 99 674 507 439 €, 3) 99 540 958 299 €, 4) 43 157 323 758 €, 5) 141 495 452 008 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suppression policy 2: 1) 85 956 924 826 €, 2) 99 732 793 629 €, 3) 99 607 606 958 €, 4) 43 215 609 948 €, 5) 141 495 452 008 €</td>
<td>Suppression policy 2: 1) 85 956 924 826 €, 2) 99 732 793 629 €, 3) 99 607 606 958 €, 4) 43 215 609 948 €, 5) 141 495 452 008 €</td>
<td></td>
</tr>
</tbody>
</table>
Sheinson et al, 2021 | Cost-effectiveness analysis (CEA) | Direct and indirect costs | Lifetime | 3% for both costs and health outcomes | Short-term acute care decision tree followed by a post-discharge three-state Markov cohort model | Scenario analyses, univariate & probabilistic sensitivity analyses | ICER (cost per QALY) 1) Payer perspective, 2) Societal perspective
Treatment in the hospital with Covid-19 treatments a) With Bundled payment: 1) 18 593 € compared to best supportive care, 2) 9 317 € compared to best supportive care b) With FFS payment: 1) 15 784 € compared to best supportive care, 2) 6 508 € compared to best supportive care | Univariate SA results All univariate sensitivity analyses produced upper bound cost per QALY estimates well below commonly accepted WTP thresholds. Probabilistic SA results (5000 draws) For the base case clinical profile, upper bounds of 95% credible intervals ranged from 14 800 € (FFS, including societal impacts) to 24 569 € (health payer, without societal impacts). Over 99% of draws had a cost per QALY gained below the $100,000 and $150,000 WTP thresholds across all clinical profiles and all perspectives. Without including societal impacts, all draws resulted in the treatment of interest being more costly and more effective, with the exception of the base case treatment profile (which includes the LOS benefit), in which 1.4% of draws were cost-saving under the FFS perspective. When including societal impacts, draws for all three treatment profiles were similarly clustered in the northeast and southeast quadrants, with 18.4% and 15.6% of draws resulting in cost-saving scenarios for health payer and FFS perspectives, respectively.

<p>|
| Suppression policy 2: 1) 75 850 393 534 €, 2) 82 055 472 369 €, 3) 81 999 084 407 €, 4) 37 754 592 049 €, 5) 120 151 273 854 € |</p>
<table>
<thead>
<tr>
<th>Neilan et al, 2020</th>
<th>Cost-utility analysis (CUA)</th>
<th>Direct medical and non-medical costs</th>
<th>6 months</th>
<th>3% year for health benefits (no discount for costs at base-case analysis)</th>
<th>Microsimulation model (Clinical and Economic Analysis of COVID-19 Interventions model)</th>
<th>Scenario analyses, 1-way and multiway sensitivity analyses</th>
<th>ICER (Cost/QALY), per reproduction number scenarios: 1) Slowing (Re = 0.9), 2) Intermediate (Re = 1.3), 3) Surging Re = 2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hospitalized: 1) Dominated, 2) Dominated, 3) 26 208 €</td>
<td>Hospitalized: 1) Dominated, 2) Dominated, 3) 26 208 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic: 1) N/A, 2) N/A, 3) N/A</td>
<td>Symptomatic: 1) N/A, 2) N/A, 3) N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic + Asymptomatic once: 1) 154 069 €, 2) 87 359 €, 3) Dominated</td>
<td>Symptomatic + Asymptomatic once: 1) 154 069 €, 2) 87 359 €, 3) Dominated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic + Asymptomatic monthly: 1) 721 107 €, 2) 227 927 €, 3) 26 207 €</td>
<td>Symptomatic + Asymptomatic monthly: 1) 721 107 €, 2) 227 927 €, 3) 26 207 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total costs, per reproduction number scenario</td>
<td>Total costs, per reproduction number scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i) Slowing (Re = 0.9), ii) Intermediate (Re = 1.3), iii) Surging Re = 2.0</td>
<td></td>
<td>i) 349 034 504 €, ii) 674 952 259 €, iii) 2 189 550 522 €</td>
<td>i) 349 034 504 €, ii) 674 952 259 €, iii) 2 189 550 522 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic: i) 272 231 745 €, iii) 388 267 382 €, iii) 1 277 129 797 €</td>
<td>Symptomatic: i) 272 231 745 €, iii) 388 267 382 €, iii) 1 277 129 797 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic + Asymptomatic once: i) 480 874 953 €, ii) 577 593 158 €, iii) 1 454 284 097 €</td>
<td>Symptomatic + Asymptomatic once: i) 480 874 953 €, ii) 577 593 158 €, iii) 1 454 284 097 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic + Asymptomatic monthly: i) 1 607 487 765 €, ii) 1 660 679 799 €, iii) 2 189 550 522 €</td>
<td>Symptomatic + Asymptomatic monthly: i) 1 607 487 765 €, ii) 1 660 679 799 €, iii) 2 189 550 522 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In 1-way sensitivity analyses, the economically preferred strategy in each epidemic scenario was most sensitive to test acceptance, the transmission reduction after a positive PCR test, and PCR test costs. In the surging scenario, symptomatic + asymptomatic monthly would not be cost-effective in assumption of low-test acceptance (15%), half the transmission reduction after a positive test (33%), or triple PCR test costs (122 €). Symptomatic + asymptomatic monthly would become cost-effective in the intermediate and slowing scenarios only with reductions in test costs (intermediate: (\leq) 10 5 €; slowing: (\leq) 4 €). If costs decrease for PCR assays, many combinations of program and assay costs symptomatic + asymptomatic monthly strategy would be cost-effective or cost-saving.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Holding other parameters equal to the base case, symptomatic + asymptomatic monthly would become cost-effective at an Re (\geq) 1.6. In the surging scenario, symptomatic + asymptomatic monthly would no longer be cost-effective if tests occur more frequently than every 30 days; however, if test costs were (\leq 2.4) €, then testing as frequently as every 14 days would be cost-effective in all epidemic scenarios. While total costs would vary widely with rates</td>
<td></td>
</tr>
<tr>
<td>Cost-effectiveness analysis (CEA) and Budget-Impact analysis (BIA)</td>
<td>Direct medical and non-medical costs</td>
<td>4 months</td>
<td>Not applied</td>
<td>Microsimulation model (Clinical and Economic Analysis of COVID-19 interventions model)</td>
<td>One-way and two-way sensitivity analyses</td>
<td>Total costs, per reproduction number scenario</td>
<td>1-way sensitivity analyses results</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Baggett et al, 2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Costs

- **Symptom screening, PCR, and hospital**: i) 883,913 €, ii) 1,273,851 €, iii) 10,022,447 €
- **Symptom screening, PCR, and ACS**: i) 209,661 €, ii) 324,816 €, iii) 10,255,933 €
- **Universal PCR testing and hospital**: i) 1,579,000 €, ii) 2,089,465 €, iii) 10,255,933 €
- **Universal PCR and ACS**: i) 973,655 €, ii) 1,132,488 €, iii) 3,290,253 €
- **Universal PCR and temporary housing**: i) 30,936,165 €, ii) 30,952,049 €, iii) 31,067,203 €
- **Hybrid hospital**: i) 1,591,520 €, ii) 1,880,598 €, iii) 9,690,483 €
- **Hybrid ACS**: i) 984,772 €, ii) 1,052,277 €, iii) 2,881,255 €
- **ICER (Cost per case prevented), per reproduction number scenario**
 - Slowing (Re, 0.9), ii) Growing (Re, 1.3), iii) Surging (Re, 2.6)

1-way sensitivity analyses results

If PCR cost decreased from 40.25 € to 19.85 €, with an Re of 2.6, the hybrid ACS strategy became cost-saving compared with the symptom screening, PCR, and ACS strategy. With an Re of 2.6, the hybrid ACS strategy with universal PCR testing every 7 rather than every 14 days was associated with 29% fewer infections (incremental cost of 794.17 €/case prevented compared with testing every 14 days). Testing every 3 days had fewer infections, at 1,588 €/case prevented.

In other Re scenarios, the hybrid ACS strategy did not result in a cost per case prevented below 15,883 €, compared with the symptom screening, PCR, and ACS strategy, regardless of universal testing frequency.

Although the universal PCR with temporary housing strategy had the lowest number of cases in all scenarios, with an Re of 2.6, daily costs of temporary housing needed to be 15,9 €, per day or less to have an incremental cost per case prevented of 794 19 €, or less.
No intervention: i) Dominated, ii) Dominated, iii) Dominated
Symptom screening, PCR, and hospital: i) Dominated, ii) Dominated, iii) Dominated
Symptom screening, PCR, and ACS: i) N/A, ii) N/A, iii) N/A
Universal PCR testing and hospital: i) Dominated, ii) Dominated, iii) Dominated
Universal PCR and ACS: i) Dominated, ii) Dominated, iii) Dominated
Universal PCR and temporary housing: i) Dominated, ii) Dominated, iii) Dominated
Hybrid hospital: i) Dominated, ii) 303 374 €, iii) Dominated
Hybrid ACS: i) 53 386 €, ii) 21 443 €, iii) 794 17 €

Compared with the hybrid ACS strategy. In the lower Re scenarios, the universal PCR and temporary housing strategy had higher costs per case prevented.

2-way sensitivity analyses results
In several combinations, hybrid ACS strategy was cost-saving or had an incremental cost per case prevented of 714 19 € to 2 383 € compared with the symptom screening, PCR, and ACS strategy.

Currie et al, 2020
Cost-minimization analysis (CMA)
Direct medical and non-medical costs
1 month
Not applied
Community model pathway for COVID-19 testing
Not applied
Average cost per test
Home (community) testing: 52 08 €
Hospital standard testing (one ambulance dispatched): 115 20 €
Hospital standard testing (two ambulances dispatched): 230 38 €
Total cost, for 173 tests
Home (community) testing (with courier costs): 9 010 €
Hospital standard testing (one ambulance dispatched): 19 928 €
Hospital standard testing (two ambulances dispatched): 39 856 €
Overall cost-savings
Community testing: 28 522 € compared to hospital standard testing
Not applied

Sandmann
Cost-
Direct
10 years
For base-
Age-
Deterministic and
Net monetary value
In sensitivity analyses with a longer
et al, 2021

effectiveness analysis (CEA)

medical costs

case: 3.5% for costs and benefits
For sensitivity analysis: Variation between 0% - 10%

structured dynamic transmission and economic model (CovidM)

probabilistic sensitivity analyses

a) healthcare perspective, b) societal perspective (in case of 15% daily GDP Loss)

1) Initial Lockdown only
No vaccination: a) -554 billion € (95% UI -419 billion € to -729 billion €), b) -8 00 trillion € (95% UI -3 4 trillion € to -17 1 trillion €)
Vaccination, worst case: a) -490 billion € (95% UI -365 billion € to -627 billion €), b) -6 8 trillion € (95% UI -2 3 trillion € to -15 9 trillion €)
Vaccination, best case: a) -160 billion € (95% UI -137 billion € to -216 billion €), b) -2 3 trillion € (95% UI -1 1 trillion € to -5 7 trillion €)

2) No lockdown, Incidence trigger of increased physical distancing
No vaccination: a) -513 billion € (95% UI -399 billion € to -684 billion €), b) -5 7 trillion € (95% UI -2 3 trillion € to -12 5 trillion €)
Vaccination, worst case: a) -467 billion € (95% UI -353 billion € to -581 billion €), b) -5 7 trillion € (95% UI -2 8 trillion € to -12 5 trillion €)
Vaccination, best case: a) -148 billion € (95% UI -120 billion € to -199 billion €), b) not specific values (related to zero net monetary value)

3) No lockdown, Incidence trigger of increased physical distancing (10 cases/100 000)
No vaccination: a) -80 billion € (95% UI -57 billion € to -103 billion €), b) -45 6 trillion € (95% UI -20 5 trillion € to -106 trillion €)
Vaccination, worst case: a) -68 billion €

duration of natural immunity, the incremental economic value of immunisation decreases, potentially becoming lower than no vaccination for long durations of natural immunity and 50% vaccine efficacy against disease (worse-case scenario).
Similarly, with a longer duration of vaccine-induced protection against disease or infection, the economic value of vaccination compared with no vaccination increases.
(95% UI -57 billion € to -91 billion €), b) -41 trillion € (95% UI -19 4 trillion € to -96 8 trillion €)

Vaccination, best case: a) -57 billion € (95% UI -46 billion € to -68 billion €), b) 9 1 trillion € (95% UI -3 4 trillion € to -21 6 trillion €)

4) No lockdown, Incidence trigger of increased physical distancing (20 cases/100 000)

No vaccination: a) -103 billion € (95% UI -91 billion € to -137 billion €), b) -44 4 trillion € (95% UI -20 5 trillion € to -100 2 trillion €)

Vaccination, worst case: a) -114 billion € (95% UI -80 billion € to -125 billion €), b) -37 6 trillion € (95% UI -19 3 trillion € to -93 4 trillion €)

Vaccination, best case: a) -68 billion € (95% UI -57 billion € to -80 billion €), b) 8 0 trillion € (95% UI -2 3 trillion € to -20 5 trillion €)

5) No lockdown, Incidence trigger of increased physical distancing (30 cases/100 000)

No vaccination: a) -125 billion € (95% UI -108 billion € to -160 billion €), b) -43 3 trillion € (95% UI -19 3 trillion € to -96 8 trillion €)

Vaccination, worst case: a) -125 billion € (95% UI -90 billion € to -125 billion €), b) -36 5 trillion € (95% UI -17 1 trillion € to -88 9 trillion €)

Vaccination, best case: a) -80 billion € (95% UI -57 billion € to -80 billion €), b) b) -6 8 trillion € (95% UI -1 7 trillion € to -15 9 trillion €)
6) No lockdown, Incidence trigger of increased physical distancing (40 cases/100,000)
 No vaccination: a) -148 billion € (95% UI -114 billion € to -182 billion €), b) -38.7 trillion € (95% UI -20.5 trillion € to -92.3 trillion €)
 Vaccination, worst case: a) -148 billion € (95% UI -114 billion € to -160 billion €), b) -47.9 trillion € (95% UI -15.9 trillion € to -85.5 trillion €)
 Vaccination, best case: a) -80 billion € (95% UI -74 billion € to -108 billion €), b) -5.7 trillion € (95% UI -1.7 trillion € to -13.7 trillion €)

7) No lockdown, Incidence trigger of increased physical distancing (50 cases/100,000)
 No vaccination: a) -171 billion € (95% UI -137 billion € to -216 billion €), b) -37.6 trillion € (95% UI -18.2 trillion € to -87.7 trillion €)
 Vaccination, worst case: a) -160 billion € (95% UI -137 billion € to -205 billion €), b) -45.6 trillion € (95% UI -14.8 trillion € to -79.8 trillion €)
 Vaccination, best case: a) -91 billion € (95% UI -97 billion € to -114 billion €), b) -5.2 trillion € (95% UI -1.5 trillion € to -13.1 trillion €)

8) No lockdown, Incidence trigger of increased physical distancing (60 cases/100,000)
 No vaccination: a) -194 billion € (95% UI
Barnett-Howell et al., 2021

<table>
<thead>
<tr>
<th>Benefit-cost analysis</th>
<th>Not clearly specified</th>
<th>Not clearly specified</th>
<th>Not applied</th>
<th>Not applied</th>
<th>Value of the total statistical life (VSL) lost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unmitigated spread of Covid-19: a) US: 38.9 billion €, b) UK: 7.1 billion €, c) Mexico: 1.58 billion €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Individual distancing policy: a) US: 38.9 billion €, b) UK: 36.5 billion €, c) Mexico: 1.43 billion €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broad physical distancing policy: a) US: 30.2 billion €, b) UK: 6.03 billion €, c) Mexico: 1.03 billion €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Physical distancing +: a) US: 25.4 billion €, b) UK: 5.2 billion €, c) Mexico: 794</td>
</tr>
</tbody>
</table>

-148 billion € to -228 billion €), b) -35.8 trillion € (95% UI -16.6 trillion € to -84.3 trillion €)

Vaccination, worst case: a) -205 billion € (95% UI -148 billion € to -228 billion €), b) -42.7 trillion € (95% UI -12.5 trillion € to -75.7 trillion €)

Vaccination, best case: a) -97 billion € (95% UI -103 billion € to -120 billion €), b) -4.8 trillion € (95% UI -1.3 trillion € to -12.7 trillion €)

9) No lockdown, Incidence trigger of increased physical distancing (100 cases/100,000)

No vaccination: a) -239 billion € (95% UI -194 billion € to -308 billion €), b) -33.6 trillion € (95% UI -16.6 trillion € to -77.4 trillion €)

Vaccination, worst case: a) -228 billion € (95% UI -182 billion € to -285 billion €), b) -30.8 trillion € (95% UI -11.1 trillion € to -66.1 trillion €)

Vaccination, best case: a) -103 billion € (95% UI -108 billion € to -125 billion €), b) -4.3 trillion € (95% UI -1.2 trillion € to -12.1 trillion €)
Cost-effectiveness analysis (adopted outcomes)

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>Indirect costs</th>
<th>Lifetime</th>
<th>Decision model</th>
<th>One-way sensitivity analyses</th>
<th>Value of YLs gained, per capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gandjour et al, 2020</td>
<td>Cost-effectiveness analysis (CEA) and Return on Investment (ROI) analysis</td>
<td>Not applied</td>
<td>Decision Life-table model</td>
<td>One-way sensitivity analyses</td>
<td>Independence assumption scenario</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No intervention: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shutdown in scenario of “flattening the curve”: 3 472 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shutdown in scenario of “Squashing the curve”: 38 166 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 50%: 2 165 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 100%: 1 020 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 200%: 327 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 300%: 80 5 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Harvesting assumption scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No intervention: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shutdown in scenario of “flattening the curve”: 4 093 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shutdown in scenario of “Squashing the curve”: 38 115 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 50%: 2 518 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 100%: 1 173 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 200%: 379 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ICU capacity exceeded by 300%: 93 €</td>
</tr>
</tbody>
</table>

Using lower and higher estimates based on the sensitivity analysis, the economic value ranges between 1% and 12% of the GDP.

Marginal cost per life year gained

<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>Base-case analysis</th>
<th>Decision model</th>
<th>One-way deterministic analyses and threshold sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gandjour et al, 2021</td>
<td>Cost-effectiveness analysis (CEA) and Return on Investment (ROI) analysis</td>
<td>No discounting Sensitivity analysis: 3% discount rate for the costs and 2% for health benefits</td>
<td>Decision model</td>
<td>Marginal cost per life year gained</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>i) Independence assumption scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By adding 1 ICU: 22 986 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By adding 1000 ICU: 29 627 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ii) Harvesting assumption scenario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By adding 1 ICU: 14 306 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By adding 1000 ICU: 18 389 €</td>
</tr>
</tbody>
</table>

One-way sensitivity analysis results

The variables with the greatest impact on net monetary benefit were the mortality rates in the ICU and after discharge threshold sensitivity analysis results: Expanding staffed ICU bed capacity by another 10 000 beds or 102% of the available capacity (9 765 beds on October 26, 2020) is projected to increase societal costs by 51 1 billion €.
Scenarios using Monte Carlo simulations of 2,000 trials - Sensitivity analyses varied population coverage (25%–75%), vaccination cost ($45–$125), NPI use, and the probability of ambulatory care and deterministic analysis also included in the study.

Direct and indirect medical costs, billion, no NPI use before vaccination onset VS NPI use similar to current US measures - per vaccine efficacy scenarios: 1) 20% VE, 2) 50% VE, 3) 80%
- Vaccine that prevents infection, 5% have already been infected
 - NO NPI USE
 1) a) Median direct costs: 263.7 € (95% UI 230.1 € - 293.6 €), b) median indirect costs: 220.6 € (95% UI 195.6 € - 497.9 €)
 2) a) Median direct costs: 208.3 € (95% UI 169.9 € - 238.1 €), b) median indirect costs: 171.5 € (95% UI 169.9 € - 238.1 €)
 - NPI USE
 1) a) Median direct costs: 223.3 € (95% UI 177.1 € - 262.2 €), b) median indirect costs: 182.3 € (95% UI 179.6 € - 397.5 €)
 2) a) Median direct costs: 172.2 € (95% UI 142.1 € - 204.9 €), b) median indirect costs: 138.3 € (95% UI 130.7 € - 303.7 €)
 - Vaccine that reduces severe disease
 Direct & indirect costs
 NO NPI USE
 1) N/A, 2) N/A, 3) N/A
 NPI USE
 1) N/A, 2) N/A, 3) N/A

- Vaccine that prevents infection, 25% have already been infected
 - NO NPI USE
 1) a) Median direct costs: 273.2 € (95% UI 230.1 € - 293.6 €), b) median indirect costs: 220.6 € (95% UI 195.6 € - 497.9 €)
 - NPI USE
 1) a) Median direct costs: 223.3 € (95% UI 177.1 € - 262.2 €), b) median indirect costs: 182.3 € (95% UI 179.6 € - 397.5 €)

With the scenario of a vaccine that prevents infection
1) Duration of Infectiousness gives an estimation of impact on third-party total costs with a range of -15 883 € (minimum) to 49 238 € (maximum). Regarding the impact on total cases, the minimum impact is -22 million with the maximum at 43 million
2) Vaccine Efficacy gives an estimation of impact on third-party total costs with a range of -30 178 € (minimum)

Overall, the duration of the infectious period, followed by vaccine efficacy and vaccination coverages are the largest drivers of total cases and third-party paper costs when vaccinating. Hourly wage, then vaccine efficacy, followed by the duration of infectiousness are the largest drivers of total societal costs when vaccinating.
Vaccine that prevents infection, 50% have already been infected

NO NPI USE
1) a) Median direct costs: 285 8 € (95% UI 253 1 € - 305 €), b) median indirect costs: 238 8 € (95% UI 206 3 € - 501 7 €)
2) a) Median direct costs: 262 8 € (95% UI 232 4 € - 291 2 €), b) median indirect costs: 214 6 € (95% UI 193 5 € - 463 9 €)
3) a) Median direct costs: 241 7 € (95% UI 196 7 € - 268 1 €), b) median indirect costs: 214 7 € (95% UI 193 5 € - 463 9 €)

NPI USE
1) a) Median direct costs: 263 7 € (95% UI 229 9 € - 293 6 €), b) 220 € (95% UI 195 6 € - 497 9 €)
2) a) Median direct costs: 208 3 € (95% UI 169 9 € - 238 €), b) 171 5 € (95% UI 73 5 € - 389 8 €)

<p>| Thom et al, 2021 | Cost-effectiveness analysis (CEA) | Direct medical costs | 7 months | Not applied | Age-structured deterministic mathematical model of SARS-CoV-2 transmission | Incremental health-related net benefit, per capita at £20 000 (22 789 €)/QALY Scenario A:*: a) UK: 1 146 1 €, b) Ireland: 1 133 3 €, c) Spain: 1 700 7 €, d) Germany: 1 801 7 €, e) Sweden: 1 581 8 € Scenario B:*: a) UK: 251 2 €, b) Ireland: 516 5 €, c) Spain: 415 5 €, d) Germany: 245 3 €, e) Sweden: 564 5 € Scenario C:*: a) UK: 1 865 7 €, b) Ireland: 1 374 8 €, c) Spain: 2 042 5 €, d) Germany: 2 173 6 €, e) Sweden: 1 900 7 € Scenario D:*: N/A Incremental costs, billion Scenario A:*: a) UK: -37 53 €, b) Ireland: -1 90€, c) Spain: -27 16 €, d) Germany: -49 25 €, e) Sweden: -5 45 € Scenario B:*: a) UK: -9 81 €, b) Ireland: -0 93 €, c) Spain: -9 12 €, d) Germany: -9 15 €, e) Sweden: -2 32 € Scenario C:*: a) UK: -43 62 €, b) Ireland: -2 32 €, c) Spain: -32 76 €, d) Germany: -60 15 €, e) Sweden: -6 57 € Scenario D:*: N/A Incremental benefit, millions of QALYs Scenario A:*: a) UK: 3 166, b) Ireland: 0 162, c) Spain: 2 297, d) Germany: 4 467, e) Sweden: 0 463 Scenario B:*: a) UK: 0 319, b) Ireland: 0 No specific relevant data. The authors indicated that they could not conduct probabilistic sensitivity analysis and that the costs of hospitalization were assumed to be independent of the number of hospitalizations. | 9 € (95% UI 109 7 € - 179 6 €), b) median indirect costs: 119 € (95% UI 51 2 € - 256 2 €) |</p>
<table>
<thead>
<tr>
<th>Kohli et al., 2021</th>
<th>Cost-utility analysis (CUA)</th>
<th>Direct medical costs</th>
<th>1 year</th>
<th>3%</th>
<th>Markov model</th>
<th>Deterministic sensitivity analyses</th>
<th>ICER (incremental cost per QALY gained), per age-based prioritization scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Covid-19 vaccine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18–49 y: 74 652 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50–64 y: 6 353 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65+ y: Dominates</td>
</tr>
</tbody>
</table>

The incremental cost per QALY gained is most sensitive to changes in the attack rate, the vaccine price, and the costs of hospitalizations, but changes in the amount of disutility experienced by patients due to the morbidity associated with COVID-19 has minimal effect. Varying the expected age-specific baseline utility has more impact on this outcome.

Under base case assumptions, a vaccine targeted at the entire population would have to be priced at over 119 € per dose (238 € per course) in order to exceed an incremental cost per QALY of over 39 709 €. The incremental cost per QALY for the lowest risk individuals decreases as incidence of disease or vaccine efficacy decreases. For example, it is 19 854 € for those aged 18 to 49 years and 87 359 € for those aged 18 to 49 years with no comorbid conditions if the incidence pattern shifts and a higher number of deaths are seen in those under 50 years.
Total costs (incl. vaccination and hospitalization costs)

Covid-19 vaccine

Per Vaccine supply scenario: 1) Low, 2) Medium, 3) High, 4) Immediate

2) No priority: 21,824 €, Age-based: 21,370 €, Occupational/age-based: 21,511 €, Risk-group-based: 21,370 €

3) No priority: 20,752 €, Age-based: 20,509 €, Occupational/age-based: 20,532 €, Risk-group-based: 20,534 €

No Covid-19 vaccine: 16,382 €

<table>
<thead>
<tr>
<th>Chen et al, 2020</th>
<th>Cost of illness analysis</th>
<th>Direct medical costs</th>
<th>1 year</th>
<th>Not applied</th>
<th>Susceptible-Exposed-Infectious-Removed (SEIR) model</th>
<th>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</th>
<th>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
<tr>
<td>Chen et al, 2020</td>
<td>Cost of illness analysis</td>
<td>Direct medical costs</td>
<td>1 year</td>
<td>Not applied</td>
<td>Sensitivity analysis was applied by varying the length of hospital stay to 7 days and dedicated beds availability to 80%, 90%, and 120%. However, the type of SA has not been specified.</td>
<td>Total medical costs, i) in case of unlimited supply of hospital beds, ii) under different capacity scenarios a) constrained without sharing, b) constrained with sharing</td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity analysis of the length of hospital stays, and dedicated bed capacity available to COVID-19 patients

In almost all cases, analysis shows 70% of dedicated bed capacity and an average 14 days hospital stay, can still lead to 100-200% increase in deaths, if the compliance is below 90% and no sharing of hospital beds is allowed. Even for the 7 days average hospital stay case, at least 70% or more compliance is needed to minimize the effect of shortage of beds on additional deaths.
<table>
<thead>
<tr>
<th>Study</th>
<th>Cost-effectiveness and cost-utility analyses</th>
<th>Direct medical, non-medical and indirect costs</th>
<th>3.5 months</th>
<th>Not applied</th>
<th>Microsimulation model of SARS-CoV-2</th>
<th>Yes, by conducting sensitivity analysis (type not specified) and threshold analysis</th>
<th>ICER, i) Cost/infection prevented, ii) Cost/QALY</th>
<th>a) Minimum physical distancing interventions, b) Extensive physical distancing interventions, c) Masks intervention, d) Combination of extensive physical distancing interventions and masks intervention</th>
<th>Sensitivity analysis for the case when sharing of beds is allowed among hospitals in the neighboring HRR: Sharing helps eliminate almost all shortages in all mitigation scenarios. Even a 14 days hospital stay with just 70% of beds available can be enough to handle the demand if sharing among HRRs is allowed. Another sensitivity analysis of medical costs to different RO: Shows that when R0 is 2.6 and VHI compliance rate is 60%, the costs are much higher for a 30 days SH duration (pink circle) compared to 60 days SH duration (blue +). Although SH compliance is also slightly higher for this element in the last panel (80% vs. 90%), the costs are 15 times as much for SH duration of 30 days compared to 60 days; (2) sensitivity of costs to R0 decreases as the SH duration increases.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Losina et al, 2020</td>
<td>80% compliance rate: i) 222 billion €, ii) a) 278 billion €, b) 246 billion € Stay-home for 30 days with VHI & SHI 90% compliance rate: i) 222 billion €, ii) a) 79 4 billion €, b) 71 4 billion € Stay-home for 45 days with VHI & SHI 60% compliance rate: i) 596 billion €, ii) a) 834 billion €, b) 596 billion Stay-home for 45 days with VHI & SHI 70% compliance rate: i) 278 billion €, ii) a) 389 billion €, b) 298 billion € Stay-home for 45 days with VHI & SHI 80% compliance rate: i) 47 6 billion €, ii) a) 63 5 billion €, b) 47 6 billion € Stay-home for 45 days with VHI & SHI 90% compliance rate: i) 23 8 billion €, ii) a) 23 8 billion €, b) 19 8 billion € Stay-home for 60 days with VHI & SHI 60% compliance rate: i) 461 billion €, ii) a) 715 billion €, b) 536 billion € Stay-home for 60 days with VHI & SHI 70% compliance rate: i) 87 4 billion €, ii) a) 139 billion €, b) 95 billion € Stay-home for 60 days with VHI & SHI 80% compliance rate: i) 27 8 billion €, ii) a) 23 8 billion €, b) 19 8 billion € Stay-home for 60 days with VHI & SHI 90% compliance rate: i) 23.8 billion €, ii) a) 23 8 billion €, b) 16 billion €</td>
<td>Sensitivity analysis for the case when sharing of beds is allowed among hospitals in the neighboring HRR: Sharing helps eliminate almost all shortages in all mitigation scenarios. Even a 14 days hospital stay with just 70% of beds available can be enough to handle the demand if sharing among HRRs is allowed. Another sensitivity analysis of medical costs to different RO: Shows that when R0 is 2.6 and VHI compliance rate is 60%, the costs are much higher for a 30 days SH duration (pink circle) compared to 60 days SH duration (blue +). Although SH compliance is also slightly higher for this element in the last panel (80% vs. 90%), the costs are 15 times as much for SH duration of 30 days compared to 60 days; (2) sensitivity of costs to R0 decreases as the SH duration increases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Residence-based isolation, incl. self-screen: a) i) 135 €, ii) 33 276 €, b) i) 95 €, ii) 20 728 €, c) i) 63 €, ii) 13 739 €, d) i) 79 €, ii) 20 251 €

Designated space for isolation, incl. self-screen: a) i) strong dominance, ii) strong dominance, b) i) strong dominance, ii) strong dominance, c) i) 294 €, ii) 57 419 €, d) i) strong dominance, ii) strong dominance

Designated spaces for isolation + 1-time laboratory testing: a) i) weak dominance, ii) weak dominance, b) i) strong dominance, ii) strong dominance, c) i) weak dominance, ii) strong dominance, d) i) strong dominance, ii) strong dominance

Designated spaces for isolation + routine laboratory testing every 14 days: a) i) weak dominance, ii) weak dominance, b) i) 460 €, ii) weak dominance, c) i) 405 €, ii) 136 042 €, d) i) 1 596 €, ii) 644 391 €

Designated spaces for isolation + routine laboratory testing every 7 days: a) i) 349 €, ii) 92 918 €, b) i) 468 €, ii) 171 065 €, c) i) 1 152 €, ii) 386 762 €, d) i) 1 152 €, ii) 386 762 €

Designated spaces for isolation + routine laboratory testing every 3 days: a) i) 524 €, i) 524 €, ii) 1 390 €, ii) 423 770 €, c) i) 2 033 €, ii) 550 996 €, d) i) 13 668 €, ii) 2 227 334 €

led to a favorable cost of 127 07 € per infection prevented (33 911 € per QALY) and adding RLTq14 to ExtSocDist+Masks led to 166 78 € per infection prevented (66 392 € per QALY).

If the implementation cost of ExtSocDist doubled from 198 542 € to 397 085 €, ExtSocDist+ResIsol cost 198 5 € per infection prevented (42 091€ per QALY). Lowering the cost of designated isolation spaces from 23 8 € to 3 97 € per room per day reduced total costs attributable to COVID-19 mitigation by 07% to 1.7% (6 750 € to 11 357 €), depending on the strategy.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Type of analysis</th>
<th>Direct medical costs</th>
<th>Indirect costs</th>
<th>Time horizon</th>
<th>Model</th>
<th>Total costs</th>
<th>Sensitivity analysis results</th>
</tr>
</thead>
</table>
| Chen et al., 2020| Cost of illness analysis | Direct medical and indirect costs | 1 year | Not applied | Susceptible-Exposed-Infectious-Removed (SEIR) model | No NPI applied: Approx. 993 billion €
Stay-home for 30 days, with 60%-70%-80%-90% compliance rate: 1) 2.06 trillion €, 2) 2.14 trillion €, 3) 1.9 trillion €, 4) 1.8 trillion €
Stay-home for 45 days, with 60%-70%-80%-90% compliance rate: 1) 2.6 trillion €, 2) 2.5 trillion €, 3) 2.46 trillion €, 4) 2.7 trillion €
Stay-home for 60 days, with 60%-70%-80%-90% compliance rate: 1) 3.18 trillion €, 2) 3.01 trillion €, 3) 3.25 trillion €, 4) 3.49 trillion € | Not applied |
| Vernaz et al., 2020| Cost analysis | Direct medical costs | Approx. 3 months | Not applied | Monte Carlo simulation model | Total additional cost, attributable to LOS
A single dose of 800 mg of hydroxychloroquine: Mean cost of 648 102 € for 93 patients (95% CI; 236 830 – 1 057 646)
Lopinavir/ritonavir and hydroxychloroquine: Mean cost of 1 331 143 € for 158 patients (95% CI; 491 297 – 1 682 737) | Sensitivity analysis results were similar to those reported as base-case results |
| Ebibgo et al., 2021| Cost-effectiveness analysis (CEA) | Direct medical, non-medical and indirect costs | Approx. 8.5 months | Not applied | Monte Carlo simulation model | ICER, per prevalence of asymptomatic infections: 1) 0.01±%, 2) 0.10±%, 3) 1±%, 4) 5±%
Strategy 1: -
Strategy 2: -
Strategy 3: -
Laplace: 1) 265 485 €, 2) 12 029 €, 3) -13 317 €, 4) -15 570 €, Minimum: 1) 138 087 €, 2) -711 €, 3) −14 282, 4) -15 824 € | Not applied |
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Laplace</th>
<th>Minimum</th>
<th>Minimax</th>
<th>C1 Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>4<sub>ls</sub></td>
<td>1) 428 183 €, 2) 17 828 €, 3) -23 207 €, 4) -26 854 €</td>
<td>1) 221 921 €, 2) -2 798 €, 3) -25 270 €, 4) -27 269 €</td>
<td>1) 905 260 €, 2) 65 536 €, 3) -18 436 €, 4) -25 900 €</td>
<td>1) 429 729 €, 2) 42 972 €, 3) 4 297 €, 4) 859 €</td>
</tr>
<tr>
<td>5<sub>ld</sub></td>
<td>1) 1 632 368 €, 2) 148 718 €, 3) 352 €, 4) -12 836 €</td>
<td>1) 886 619 €, 2) 74 142 €, 3) -7 105 €, 4) -14 327 €</td>
<td>1) 3 357 256 €, 2) 321 206 €, 3) 17 602 €, 4) -9 386 €</td>
<td>1) 1 553 697 €, 2) 155 639 €, 3) 117 699 €, 4) 3 108 €</td>
</tr>
<tr>
<td>6<sub>ls</sub></td>
<td>1) 1 736 817 €, 2) 158 913 €, 3) 673 €, 4) -13 356 €</td>
<td>1) 943 487 €, 2) 79 172 €, 3) -7 206 €, 4) -14 942 €</td>
<td>1) 3 351 759 €, 2) 341 999 €, 3) 19 024 €, 4) -9 686 €</td>
<td>1) 1 652 828 €, 2) 165 283 €, 3) 16 528 €, 4) 3 296 €</td>
</tr>
<tr>
<td>7<sub>ls</sub></td>
<td>1) 2 689 263 €, 2) 254 406 €, 3) 10 921 €, 4) -10 722 €</td>
<td>1) 1 465 396 €, 2) 132 020 €, 3) -1 318, 4) -13 170 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimax: 1) 5 520 029 €, 2) 537 482 €, 3) 39 928 €, 4) -5 060 €
C1 Width: 1) 2 549 812 €, 2) 254 982 €, 3) 25 497 €, 4) 5 100 €

Strategy 8:
 Laplace: 1) 2 794 398 €, 2) 264 148 €, 3) 11 112 €, 4) -11 369 €
Minimum: 1) 1 522 581 €, 2) 136 965 €, 3) -1 595, 4) -13 912 €
Minimax: 1) 5 736 060 €, 2) 558 418 €, 3) 40 539 €, 4) -5 485 €
C1 Width: 1) 2 649 709 €, 2) 264 970 €, 3) 26 497 €, 4) 5 299 €

Total cost, per strategy
Strategy 1: 161 436 € (dependent on both diagnostic yield of tests and prevalence)
Strategy 2: 161 436 €
Strategy 3: 2 452 519 €
Strategy 4: 287 442 €
Strategy 5: 1 722 968 € (dependent on both diagnostic yield of tests and prevalence)
Strategy 6: 1 824 450 €
Strategy 7: 2 797 551 € (dependent on both diagnostic yield of tests and prevalence)
Strategy 8: 2 902 205 €
Table 1: Sensitivity Analysis and Cost-Benefit Analysis (CBA) and Budget-Impact Assessment (BIA) of Initial Number of Asymptomatic Infections Between 0 and 100 Days

<table>
<thead>
<tr>
<th>Screening Frequency</th>
<th>Test Sensitivity (%)</th>
<th>Total Costs (€)</th>
<th>Base Case</th>
<th>Worst Case</th>
<th>Best Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 2 days</td>
<td>70%</td>
<td>4,621,364</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>4,621,364</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>3,540,542</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Every 3 days</td>
<td>70%</td>
<td>9,610,176</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>9,610,176</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>7,259,313</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td>Daily</td>
<td>70%</td>
<td>23,025,457</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>6,102,528</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
<tr>
<td></td>
<td>90%</td>
<td>3,540,542</td>
<td>Dominated</td>
<td>Dominated</td>
<td>Dominated</td>
</tr>
</tbody>
</table>

Initial Number of Asymptomatic Infections: The initial number of asymptomatic infections was varied between 0 and 100, and this did not materially change the findings.}

Analysis and Indirect Days: The model was evaluated for different screening frequencies and test sensitivities. The results showed that the total costs varied significantly depending on the screening frequency and sensitivity. The cost analysis was performed under base, worst, and best case scenarios.

- **Base Case:** The costs were calculated based on the most likely scenario.
- **Worst Case:** The costs were calculated assuming the least favorable conditions.
- **Best Case:** The costs were calculated under the most favorable conditions.

Total Costs: The total costs were calculated as the sum of all costs associated with screening, testing, and treatment. The costs were expressed in euros (€).
<table>
<thead>
<tr>
<th>Paltiel</th>
<th>Cost-</th>
<th>Direct and</th>
<th>2 months</th>
<th>Not applied</th>
<th>Simple</th>
<th>Sensitivity analyses -</th>
<th>ICER (Cost/infection averted), per i)</th>
<th>ICER (Cost/infection averted), per ii)</th>
<th>ICER (Cost/infection averted), per iii)</th>
</tr>
</thead>
</table>
| Symptom-based screening, with no test sensitivity: N/A Weekly screening, with 70% test sensitivity: i) 564 286 €, ii) 546 125 €, iii) 476 562 € Weekly screening, with 80% test sensitivity: i) 1 236 768 €, ii) 1 033 065 €, iii) 1 161 570 € Weekly screening, with 90% test sensitivity: i) 2 300 519 €, ii) 2 654 995 €, iii) 2 257 195 € Every 3 days screening, with 70% test sensitivity: i) 1 268 427 €, ii) 1 223 674 €, iii) 1 106 357 € Every 3 days screening, with 80% test sensitivity: i) 1 872 846 €, ii) 2 669 656 €, iii) 2 654 996 € Every 3 days screening, with 90% test sensitivity: i) 5 464 818 €, ii) 5 146 596 €, iii) 5 385 120 € Every 2 days screening, with 70% test sensitivity: i) 1 897 655 €, ii) 1 837 497 €, iii) 1 657 590 € Every 2 days screening, with 80% test sensitivity: i) 4 260 440 €, ii) 4 105 018 €, iii) 4 065 048 € Every 2 days screening, with 90% test sensitivity: i) 8 203 794 €, ii) 7 916 300 €, iii) 8 078 532 € Daily screening, with 70% test sensitivity: i) 2 928 191 €, ii) 3 608 637 €, iii) 3 240 935 € Daily screening, with 80% test sensitivity: i) 8 464 290 €, ii) 8 275 789 €, iii) 8 121 178 € Daily screening, with 90% test sensitivity: i) 16 301 784 €, ii) 19 666 200 €, iii) 16 143 119 €
| Effectiveness Analysis (CEA) | Indirect Costs | Compartmental Epidemic Model | Sensitivity to Testing Frequency (daily to once every 15 days), Sensitivity to Rt, Sensitivity to the Costs of Testing, Sensitivity to Behavioral Factors | \(\text{ICER (Cost/death averted), per i) worst-case, ii) base-case, iii) best-case behavioral scenarios} \)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-based SARS-COV-2 antigen testing: i) 17 472 €, ii) 6 266 €, iii) 5 075 €</td>
<td>ICER (Cost/death averted), per i) worst-case, ii) base-case, iii) best-case behavioral scenarios</td>
<td>Home-based SARS-COV-2 antigen testing: i) 3 287 871 €, ii) 1 135 666 €, iii) 849 764 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity to the Costs of Testing</td>
<td>Total costs, per i) worst-case, ii) base-case, iii) best-case behavioral scenarios</td>
<td>Home-based SARS-COV-2 antigen testing: i) 3 287 871 €, ii) 1 135 666 €, iii) 849 764 €</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home-based SARS-COV-2 antigen testing: i) 19 1 billion €, ii) 25 7 billion €, iii) 43 5 billion €</td>
<td>No Home-based SARS-COV-2 antigen testing: 8 02 billion €, attributable to 2 17 billion € for inpatient severe disease, 3 0 billion € for inpatient critical disease, and 2 81 billion € for productivity losses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity to Test Frequency</td>
<td>Sensitivity to Rt: 1) Rt 0.9, 2) Rt 1.3, 3) Rt 1.7, 4) Rt 2.1</td>
<td>Sensitivity to Rt: 1) Rt 0.9, 2) Rt 1.3, 3) Rt 1.7, 4) Rt 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Even under worst-case behavioral assumptions, cumulative infections could be cut more than 30% via the daily offer of testing.</td>
<td>Even under the worst-case behavioral scenario (25% participation; 25% isolation of persons with positive results; 33% rate of daily abandonment), more than 600 000 infections could be...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Both more costly and poorer health outcomes

1 Present benefits and future benefits are valued equally
2 Includes complete isolation of infected individuals or individuals at high exposure risk in a dedicated facility
3 Includes national lockdown, isolation of all infected individuals, and a 14-day isolation period for the high exposure risk group
4 Triggered ‘‘on’’ when there are 100 ICU cases in a week and ‘‘off’’ when weekly cases halve to 50 cases VS unmitigated
5 Triggered ‘‘on’’ when there are 100 ICU cases in a week and ‘‘off’’ when weekly cases halve to 50 cases VS mitigated
6 Triggered ‘‘on’’ when there are 400 ICU cases in a week and ‘‘off’’ when weekly cases halve to 50 cases VS unmitigated
7 Triggered ‘‘on’’ when there are 400 ICU cases in a week and ‘‘off’’ when weekly cases halve to 50 cases VS mitigated
8 Government response mitigation under Ro 2.7
9 Government response mitigation under Ro 1.6
10 Government response mitigation under Ro 3.9
11 All GDP reduction due to response
12 No routine pre-endoscopy virus test; use of surgical masks, goggles, gloves and apron for all procedures
13 No routine pre-endoscopy virus test; additional use of FFP-2 and water-resistant gowns for all procedures
14 Decentralized POC antigen test; use of surgical masks, goggles, gloves, and apron for all procedures
15 Decentralized POC antigen test; additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result
16 Centralized laboratory-based rapid PCR test; use of surgical masks, goggles, gloves, and apron for all procedures
17 Centralized laboratory-based rapid PCR test; additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result
18 Centralized laboratory-based standard PCR test; use of surgical masks, goggles, gloves, and apron for all procedures
19 Centralized laboratory-based standard PCR test additional use of FFP-2 and water-resistant gowns for all procedures irrespective of test result

prevented over 60 days. Costs too would vary widely depending on behavioral assumptions. Even under the most pessimistic behavioral assumptions, the incremental cost per death averted (3.3 € million) would remain below the most stringent recommended benchmark value of a statistical life (4.2 € million).
Online Supplementary Appendix 1. Search Terms and Strategy

Database: Ovid MEDLINE(R) ALL <1946 to April 22, 2021>

Search Strategy:

1. Economics/ (27312)
2. "costs and cost analysis"/ (49453)
4. Cost-benefit analysis/ (84093)
5. Cost control/ (21571)
6. Cost savings/ (12170)
7. Cost of illness/ (28590)
8. Cost sharing/ (2590)
9. "deductibles and coinsurance"/ (1780)
10. Medical savings accounts/ (540)
11. Health care costs/ (41105)
12. Direct service costs/ (1203)
13. Drug costs/ (16530)
14. Employer health costs/ (1094)
15. Hospital costs/ (11434)
16. Health expenditures/ (21201)
18. Value of life/ (5745)
19. exp economics, hospital/ (25059)
20. exp economics, medical/ (14256)
21. Economics, nursing/ (4002)
22. Economics, pharmaceutical/ (2982)
23. exp "fees and charges"/ (30654)
24. (low adj cost).mp. (64981)
25. (high adj cost).mp. (15874)
27. (fiscal or funding or financial or finance).tw. (158630)
28. (cost adj estimate$).mp. (2411)
29. (cost adj variable).mp. (46)
30. (unit adj cost$).mp. (2677)
31. (economic$ or pharmacoeconomic$ or price$ or pricing).tw. (327155)
32 Economic evaluation.mp. (10756)
33 (Cost?effectiveness analysis or CEA).mp. (24032)
34 (Cost?utility analysis or CUA).mp. (1284)
35 (Cost?benefit analysis or CBA).mp. (27076)
36 (Cost?consequence analysis or CCA).mp. (9017)
37 (Cost?minimization analysis or CMA).mp. (4218)
38 (cost?outcome or marginal analysis).mp. (225)
39 exp Cost benefit analysis/ or exp budgets/ (97196)
40 investment$.mp. or investments/ (45688)
41 or/1-40 (873724)
42 exp Coronavirus/ (68433)
43 exp Coronavirus Infections/ (82961)
44 (Coronavirus or nCov or covid or covid-19 or Middle East Respiratory Syndrome or MERS or Severe Acute Respiratory Syndrome or SARS).ti,ab,kf. (145090)
45 42 or 43 or 44 (152400)
46 41 and 45 (8520)
47 limit 46 to yr="2020-Current" (7555)
48 limit 47 to english language (7380)

Database: Embase <1974 to 2021 April 22>

Search Strategy:

1 Socioeconomics/ (143956)
2 Cost benefit analysis/ (86950)
3 Cost effectiveness analysis/ (158695)
4 Cost of illness/ (19775)
5 Cost control/ (70213)
6 Economic aspect/ (116407)
7 Financial management/ (115358)
8 Health care cost/ (195273)
9 Health care financing/ (13885)
10 Health economics/ (33536)
11 Hospital cost/ (22362)
12 (fiscal or financial or finance or funding).tw. (222499)
13 Cost minimization analysis/ (3660)
14 (cost adj estimate$).mp. (3676)
15 (cost adj variables$).mp. (221)
16 (unit adj cost$).mp. (4828)
17 investment$.mp. or investments/ (57568)
18 or/1-17 (1008351)
19 exp coronavirus/ (34348)
20 exp coronavirus infections/ (116308)
21 (Coronavir* or nCov or covid or Middle East Respiratory Syndrome or MERS or Severe Acute Respiratory Syndrome or SARS).ti,ab,tw. (144234)
22 19 or 20 or 21 (156925)
23 18 and 22 (6304)
24 limit 23 to yr="2020-Current" (5439)
25 limit 24 to english language (5348)

Online Supplementary Appendix 2. Quality appraisal of the economic evaluation studies for estimating COVID-19 infection and strategies for preventing/mitigating COVID-19
2. ECDC. COVID-19 situation update worldwide, as of week 17, updated 5 May 2022. 2022
3. ECDC. Covid Statistic Measures 2021