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Methods 

Study Population 

The IDEFICS/I.Family cohort 
1, 2

 is a European cohort study initiated with the overall aims to identify and 

prevent dietary and lifestyle induced health effects in infants, children and adolescents. The baseline survey 

(B) was conducted from September 2007 to May 2008 in eight European countries (Belgium, Cyprus, 

Estonia, Germany, Hungary, Italy, Spain and Sweden) with 16,229 participating children (2 to 9.9 years 

old). Two years (±1 month) later, 13,596 children were included in the first follow-up examinations (FU1, 

from September 2009 to June 2010). The second follow-up examination (FU2) was conducted from January 

2013 to June 2014, in which 7,105 children participated who already participated at B or FU1. The 

examinations covered a spectrum of parameters following a detailed and standardised study protocol. 

Parents filled in all questionnaires during B, FU1 and in FU2 if their child was less than 12 years old. Teens 

aged 12 years or more reported for themselves in FU2. Ethical approval was obtained from the responsible 

ethics committees in each country. All children and their parents provided oral and written informed 

consent, respectively, before examinations and/or the collection of samples, subsequent analysis and storage 

of personal data and collected samples. Teens older than 12 years were asked to provide their written 

consent using a simplified version of the consent form. Study subjects and their parents could opt out of each 

single study component. Information on early life factors was obtained from records of routine visits as well 

as from parental reports. Pregnancy-related questions were posed to biological mothers only.  

Information on consumption frequencies was obtained from a food frequency questionnaire (FFQ) with 44 

food items (B, FU1) and 59 food items (FU2) from 14 food groups 
3
. Daily family meals was further 

included as binary indicator for healthy food choices and family cohesion 
4
. The variables sleep duration and 

well-being were included as they can indicate a child’s stress levels. Total sleep in hours was assessed by 

self-reports in FU1 and FU2. The average nocturnal sleep (hours/night) was calculated as the weighted 

average of reported usual weekday and weekend sleeping times. At baseline, total sleep was derived based 

on 24-h dietary recall data where the parents were asked ‘What time did your child go to bed?’ and ‘What 



time did your child get up?’. The homeostatic model assessment (HOMA-IR, short HOMA) index 
5
 served 

as a marker for insulin resistance. Different stages of pubertal status of teens were estimated in FU2 by a 

self-administered questionnaire based on the development of voice (boys) and menarche (girls) 
6, 7

. 

Unhealthy substance use at FU2 was measured by ever alcohol drinking and ever tobacco smoking. The 

family’s socioeconomic position was assessed by educational level using the International Standard 

Classification of Education (ISCED)
8
 and household income (net income after taxes and deductions), which 

were harmonised between countries 
9
. See Ahrens, Bammann 

1, 
Ahrens, Siani 

2
 for more details. 

Graph characteristics 

Adjacent, neighbour, path: Two nodes are said to be adjacent, if they are connected by an edge. Such nodes 

are also referred to as neighbours. A path is an alternating sequence of distinct adjacent nodes and edges as 

for example 𝑣0 − 𝑣1 → ⋯ − 𝑣𝑙. A directed path proceeds from 𝑣0 to 𝑣𝑙 along directed edges that point all 

into the same direction.  

Distance, diameter and average path length: The distance between nodes in a graph is commonly defined 

as the length of the shortest path(s) between these nodes. The distance is infinity when no path exists. The 

diameter of a graph is defined as the longest path in the graph, which is the maximal distance of any pair of 

nodes. The average path length of a graph is defined as the average distance between all pairs of nodes. The 

path length is an indicator for the connectivity of the graph. 

Hamming distance and structural Hamming distance: The Hamming distance 
10

 outputs the minimum 

number of edge insertions or deletions that are necessary to transform one graph into another graph, where 

edge directions are not taken into account. Whereas the structural Hamming distance 
11

 considers edge 

directions and additionally counts the number of required edge flips that are necessary for a full 

transformation.  

Root mean squared edge uncertainty (RMSEU): The root mean squared edge uncertainty (RMSEU) is a 

descriptive measure to assess the uncertainty of an undirected graphical model 
12

. It reduces the 

multidimensionality of a graphical model by making use of the edge frequencies of graphs selected from 



multiple datasets with the same variables. Calculation of this measure was based on 100 bootstrap 

replications. The boostrap graph BOOT35 includes edges that were selected in more than 35% of the 

respective bootstrap graphs, i.e. edges with a frequency around 0.35% have the highest uncertainty to be 

selected into the graph or not. An RMSEU of 26.7% (cf. Table 3), for instance, can be obtained for an 

arbitrary graph with 51 nodes where each edge was either selected in 82.6% or 9.4% of the reruns. 

Background on causal graphs and causal inference 

Causal effects: A causal effect is defined as the effect of a hypothetical intervention, do(X=x), on an 

exposure X, setting it to x versus x’, on the distribution of an outcome Y. In the present paper we use the 

difference in expectation of the outcome as the effect contrast, E(Y | do(X=x)) – E(Y | do(X=x’)). In a causal 

linear main effects model, x and x’ are taken to be one unit apart and the average effect is assumed constant, 

and equals the slope (no effect modification by included covariates). 

Causal response curve: When the exposure is not binary, or when linearity is not appropriate we may want 

to compare the expected value of a (continuous) outcome Y across different interventional values of X, i.e. 

we want to estimate E(Y | do(X=x)) as a function of the continuous or multi-valued X. We denote the 

function E(Y | do(X=x)) as causal response curve (aka ‘expected outcome under hypothetical interventions 

(EOHI)’).  

Key structural assumptions: The estimation of causal effects or causal response curves typically relies on 

the following key assumptions: (1) causal consistency, meaning that an intervention on the exposure must 

be well defined such that what we actually observed would have been observed if the exposure value had be 

set to its value by the intervention; (2) there is no unobserved confounding so that the covariates included in 

the analysis are sufficient to adjust for any confounding; (3) positivity, meaning that each individual could 

have in principle be subject to any other exposure value (within the range being compared) by a 

corresponding intervention. 

Causal DAG: A causal directed acyclic graph (causal DAG) consists of nodes representing the variables 

and directed edges representing direct causal relations; it has no cycles. More precisely, it is the absence of 



edges that imply the absence of direct causal effects, and consequently the absence of any directed path from 

X to Y implies the absence of a total (overall) causal effect of X on Y. Probabilistically, a causal DAG implies 

conditional independencies between variables (the causal Markov properties) which can be read off using 

d-separation 
13

.  

CPDAG: A completed partially directed acyclic graph represents the equivalence class of DAGs, i.e. the set 

of DAGs that encode the same conditional independencies but not necessarily the same causal relations. For 

instance X  Y  Z implies the same conditional independence as X  Y  Z, even though the causal 

meaning is very different; the corresponding CPDAG is X – Y – Z. An undirected edge in a CPDAG means 

that the equivalence class contains at least one DAGs where the edge is directed in one direction and at least 

one other DAGs where it is directed in the reverse direction. Causal discovery methods that solely rely on 

conditional independencies found in the data cannot distinguish between different DAGs contained in a 

CPDAG, i.e. without any external information (or randomization or parametric assumptions) we cannot 

distinguish X  Y  Z from X  Y  Z; thus the only information that the CPDAG X – Y – Z carries is that 

there is no direct causal relation between X and Z and that X  Y  Z can be excluded. The DAGs contained 

in a CPDAG can be obtained by finding all possible edge orientations for the undirected edges such that no 

cycles and no new V-structures (X  Y  Z) are created. Asymptotically, the PC-algorithm outputs a 

CPDAG, but for finite-samples this cannot be guaranteed. 

MPDAG: A maximally oriented partially directed acyclic graph is a subset of an equivalence class of 

DAGs, i.e. a subset of the DAGs contained by a CPDAG; the subset is obtained by adding background 

knowledge on absence of presence of edges to the conditional independencies. For example, if we knew that 

X is in time before Z (in addition to X and Z being conditionally independent given Y) then we obtain that 

either X  Y  Z or X  Y  Z must hold, which are summarized in the MPDAG X – Y  Z. 

Faithfulness: The assumption that every conditional independence in the data corresponds to the absence of 

some edge (and thus to some d-separation) in the underlying causal DAG is known as faithfulness. It can be 



violated if, for instance, a positive and a negative effect along different pathways cancel out each other 

exactly. 

Causal sufficiency: The assumption that the observed variables can be represented in a causal DAG without 

additional latent variables (nodes) being common causes of two or more observed nodes is known as causal 

sufficiency. This is a strong assumption, but while approaches exist to relax causal sufficiency, these are 

more time-consuming, much more difficult to interpret and have not yet been generalized for time-ordered 

data. The output of the PC-algorithm can still be interpreted in terms of conditional independencies even in 

the absence of causal sufficiency. The absence of edges can then still be interpreted as the absence of direct 

causal relations (under the assumption of faithfulness). 

PC-algorithm: The PC-algorithm is named after Peter Spirtes and Clark Gylmour; it proceeds by 

determining conditional independencies in the data and then finding a CPDAG that is compatible with the 

independencies. With perfect conditional independence information, the PC-algorithm is valid (sound and 

complete) under the assumptions of faithfulness and causal sufficiency. Under additional assumptions on 

the underlying data generating mechanism it is also consistent 
14-16

  

tPC: The tPC-algorithm 
17, 18

 is a variant of the PC-algorithm and uses additional prior-knowledge on a 

partial temporal ordering of the variables (nodes) to exclude certain edge directions. Its output is an 

MPDAG (which cannot be guaranteed for finite samples). A recent tutorial 
19

 describes how to apply tPC for 

causal discovery on cohort data with missing data.  

MICD: Multiple imputation causal discovery is described in Foraita, Friemel 
20

 and Witte, Foraita 
18

 and 

provided as R-package 
21

. It proceeds by first creating multiply imputed data sets. Conditional independence 

tests are then performed separately on and then pooled across the multiple datasets. The resulting test 

decisions are entered into the (t)PC-algorithm resulting in an MPDAG. 

Multiset of causal effects: An equivalence class of DAGs or MPDAG contains possibly many different 

causal DAGs. For example, X – Z  Y contains (i) X  Z  Y and (ii) X  Z  Y; in (i) the effect of X on Y 



could be non-zero, in (ii) it would be zero. Also, in (i) we would not adjust for Z when estimating the effect 

of X on Y as it is a mediator, while in (ii) we should adjust for Z as it is a confounder of the X – Y relation (this 

would only be relevant if there are further paths from X to Y in the graph). This example shows that based on 

an MPDAG we may find different causal effects and different adjustment sets for the same 

exposure-outcome pair as we need to allow for the different causal DAGs that cannot be distinguished. 

Thus, instead of estimating a single causal effect, we estimate a multiset of causal effects, one value for each 

DAG contained in the MPDAG. 

IDA: The Intervention calculus when the DAG is Absent algorithm provides a general principle to identify 

from an MPDAG the different adjustment sets for a given exposure-outcome pair. These can be 

characterized graphically 
22, 23

. We selected for the analysis local adjustment sets, which tend to be more 

robust to possible errors in the graph structure, and optimal adjustment sets, which optimise precision of 

effect estimates given that the graph was correctly recovered. The original IDA then proceeds by assuming 

a linear main effects causal model and uses a linear regression of the outcome on exposure and adjustment 

set to estimate the causal effect. However, this can be generalized to the non-linear case 
24

 as the graphical 

argument underlying the adjustment set does not require linearity.  

Double robustness (DR): Doubly-robust estimation of causal effects combines a weighting approach using 

the estimated propensity score with adjustment for confounding in an outcome regression (augmented 

inverse probability weighting). The double robustness property means that the estimator is consistent if 

either the model for the propensity score or the outcome model is correctly specified. 

Double machine learning: The principle of DR estimation can be extended so as to employ a machine 

learning approach to select the propensity score model and the outcome model nonparametrically. In the 

main paper, for continuous exposures, we apply the kernel smoothing approach of Kennedy et al. 
25

, where 

an ensemble learner combining the Lasso, random forests, generalized linear models, and weighted mean 

prediction is used to determine the weights. 
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Results 

Table S1: Characteristics of children in the IDEFICS/I.Family cohort participating in all three surveys from 2007 to 

2014 in 10 datasets imputed by chained equations using random forest 

Time-invariant variables N = 51,120
1 

   
  

Region        

Central (Belgium, Germany, Hungary)    27 %      

North (Estonia, Sweden) 29 %      

South (Cyprus, Italy, Spain) 44 %      

Female  49 %      

Migration background  6.5 %      

Completed weeks of pregnancy  39.24 (1.60)      

Tobacco smoking during pregnancy        

never  89 %      

rarely  3.4 %      

several occasions a week  3.0 %      

daily  4.5 %      

Mother's age at birth  29.8 (4.9)      

Birthweight [g]  3,344 (571)      

Total breastfeeding [months] 6.7 (6.3)      

Was fed with formula milk  52 %      

Fully integrated into household's diet 

[month]  
14.4 (6.3)    

  

     

Time-varying variables  
Baseline  

N = 51,120
1
 

FU1  
N = 51,120

1
 

FU2  
N = 51,120

1
 

  

Age   5.89 (1.78) 7.87 (1.79) 11.69 (1.81)   

School        

kindergarten   52 % 23 % -   

school   47 % 77 % -   

neither   0.8 % 0.2 % -   

BMI z-score   0.32 (1.17) 0.43 (1.17) 0.55 (1.11)   

Well-being [%]   84 (9)  82 (10)  82 (10)    

Audiovisual media consumption [h/day]   1.57 (0.87)  1.89 (0.92)  2.93 (1.78)    

Physical activity [h/week]   18 (10)  18 (10)  17 (9)    

Total sleep [h/day]   10.20 (0.89)  10.00 (0.86)  9.28 (1.00)    

Youth healthy eating index [%]   63 (11)  63 (11)  57 (10)    

Daily family meals   75 % 78 % 69 %   

Homa index z-score   0.05 (1.07)  0.42 (0.94)  0.09 (1.19)    

Pubertal   - - 41 %   

Ever alcohol drinking   - - 26 %   

Ever tobacco smoking   - - 6.2 %   

Mother's BMI   23.7 (4.2)  24.0 (4.2)  24.9 (4.9)    

Household's income        

low   37 % 31 % 28 %   

middle   26 % 25 % 36 %   

high   37 % 43 % 36 %   

ISCED        



low   5.0 % 4.6 % 4.9 %   

middle   42 % 42 % 42 %   

high   53 % 54 % 53 % 
1
 %; Mean (SD) 



Table S2: Characteristics of the discovered graph without singletons 

Characteristics Main MI-0.1 TWD EM BG35 BG75 

Longest path 9
1
 8

2
 7

3
 7

4
 10

5
 5

6
 

Avg. path length 2.8 2.7 2.4 2.4 2.7 1.5 

Number of selected edges 104 113 139 150 119 44 

Number of undirected edges 12 13 14 0 9 0 

Max. number of neighbors 8
7
 9

8
 13

9
 25

10
 11

11
 5

12
 

Avg. number of neighbors 4.3 4.4 5.5 5.9 4.7 1.7 

Hamming distance
10

 - 19 205 114 67 68 

Structural Hamming distance
11

 - 34 214 125 82 87 

Root mean squared edge 

uncertainty
12

 
- - - - 19.4 4.5 

1
Age (FU1) > School (FU1) > Daily family meals (FU1) > YHEI (FU1) > Well-being (FU1) > AVM (FU1) > 

HOMA (FU1) > HOMA (FU2) > zBMI (FU2)  
2
Age (FU1) > School (FU1) > Daily family meals (FU1) > YHEI (FU1) > AVM (FU1) > HOMA (FU1) > 

HOMA (FU2) > zBMI (FU2) 
3
Weeks of pregnancy > Daily family meals > Sleep > AVM > Well-being > HOMA > zBMI (FU2)  

4
Smoking during pregnancy> Weeks of pregnancy > Birthweight > Mother`s BMI > AVM > Well-being > 

Well-being (FU1)  
5
Weeks of pregnancy > Birthweight > Mother`s BMI > Daily family meals > YHEI > Well-being > 

Well-being (FU1) > Well-being (FU2) > Smoking (FU2) > Alcohol (FU2)  
6
Age > School > Well-being > Well-being (FU1) > Well-being (FU2)  

7
Region, AVM (FU1), Well-being 

8
AVM (FU1), Well-being 

9
Migrant 

10
Region 

11
School 

12
School, Sex 

BG35: Summarized bootstrap graph with edges that occurred at least 35 times in 100 bootstrap replications; EM: 

structural EM algorithm; Main: multiple imputation with nominal level of 0.05; MI-0.1: multiple imputation with 

nominal level of 0.1; TWD: test-wise deletion 

 



Table S3: Selected edges in the main graph and their selection frequency in the bootstrap graphs. 

Edges    Edges   

from  to  %  from  to  % 

Region  Income  100.0   Sleep.FU1  Sleep.FU2  84.0    

Region ISCED  100.0   Sex  Birthweight  82.0    

Migrant  Income  100.0   Birthweight  Mothers_BMI  78.0    

HOMA  HOMA.FU1  100.0   School  Well-being  78.0    

Age.FU1  School.FU1  100.0   PA  PA.FU2  73.0    

Age.FU2  Puberty.FU2  100.0   Region  Breastfeeding  70.0    

Age  School  99.0   AVM  AVM.FU2  68.0    

Age.FU2  Alcohol.FU2  99.0   Income  Income.FU1  67.0    

PA  PA.FU1  98.0   Weeks_of_pregnancy  Birthweight  66.0    

Mothers_BMI  BMI  97.0   Age.FU1  Sleep.FU1  66.0    

YHEI  YHEI.FU1  97.0   Age.FU2  AVM.FU2  66.0    

HOMA.FU1  HOMA.FU2  97.0   BMI.FU2  Puberty.FU2  66.0    

Sex  AVM.FU1  95.0   Formula_milk  Breastfeeding  65.5    

Sex  PA.FU2  95.0   ISCED  Income  64.5    

Familymeal  Familymeal.FU1  95.0   BMI.FU1  HOMA.FU1  64.0    

Income.FU1  Income.FU2  95.0   HOMA.FU1  Puberty.FU2  63.0    

ISCED.FU1  ISCED.FU2  95.0   Alcohol.FU2  Smoking.FU2  63.0    

Well-being.FU1  Well-being.FU2  95.0   Age_at_birth  Mothers_BMI  60.0    

YHEI.FU1  YHEI.FU2  95.0   Mothers_BMI.FU2  BMI.FU2  58.0    

Sex  AVM.FU2  94.0   Region Formula_milk  56.0    

AVM.FU1  AVM.FU2  94.0   Age_at_birth  HH_Diet  56.0    

YHEI  YHEI.FU2  93.0   BMI.FU2  HOMA.FU2  54.0    

Age.FU2  Sleep.FU2  93.0   Age.FU2  YHEI.FU2  53.0    

AVM  AVM.FU1  92.0   Region HH_Diet  52.0    

Well-being  Well-being.FU1  92.0   PA.FU1  Well-being.FU1  52.0    

School.FU1  Familymeal.FU1  92.0   Region Birthweight  50.0    

Age.FU2  Smoking.FU2  91.0   ISCED  ISCED.FU1  49.0    

Birthweight  BMI  90.0   YHEI.FU1  Familymeal.FU1  48.0    

Age  AVM  88.0   Sleep  Sleep.FU2  47.0    

School  AVM.FU2  88.0   YHEI  Familymeal  47.0    

PA.FU1  PA.FU2  88.0   HH_Diet  Breastfeeding  46.5    

School  Sleep  86.0   PA  YHEI  45.5    

Sleep  Sleep.FU1  86.0   Familymeal.FU1  YHEI.FU1  45.0    

Sex  AVM  85.0   HOMA.FU2  BMI.FU2  45.0    

Weeks_of_pregnancy  Formula_milk  85.0   Well-being  YHEI  44.0    

School  Sleep.FU2  84.0   Age  PA  42.0    



Edges    Edges   

from  to  %  from  to  % 

Age.FU2  Well-being.FU2  40.0   YHEI.FU1  PA.FU1  13.0    

Income  PA  39.0   Well-being.FU2  YHEI.FU2  13.0    

Well-being.FU1  PA.FU1  38.0   Age  Sleep.FU2  11.0    

PA.FU1  YHEI.FU1  37.0   AVM.FU1  HOMA.FU1  10.0    

Smoking.FU2  Alcohol.FU2  37.0   ISCED  BMI  8.0    

YHEI.FU1  Well-being.FU1  36.5   Age_at_birth  YHEI.FU2  5.0    

Income  ISCED  35.5   Sleep.FU2  Well-being.FU2  4.5    

Income.FU1  ISCED.FU1  35.0   YHEI.FU2  Well-being.FU2  2.0    

AVM.FU2  YHEI.FU2  34.5        

HOMA.FU1  BMI.FU1  34.0        

Sex  Well-being  33.0        

BMI  HOMA  33.0        

YHEI  AVM.FU1  33.0        

AVM.FU2  Sleep.FU2  33.0        

Formula_milk  Sleep  32.0        

Well-being.FU1  YHEI.FU1  31.5        

Migrant  Well-being  31.0        

AVM  YHEI  30.5        

AVM.FU1  Well-being.FU1  30.5        

Mothers_BMI  BMI.FU2  30.0        

HOMA.FU1  AVM.FU1  30.0        

Well-being  Well-being.FU2  28.0        

Migrant  HH_Diet  26.0        

AVM.FU1  YHEI.FU1  24.5        

ISCED  Breastfeeding  24.0        

Age  BMI  24.0        

Well-being.FU1  Sleep.FU1  24.0        

PA  Well-being  23.5        

Region BMI  23.0        

ISCED.FU1  Income.FU1  23.0        

AVM.FU1  Sleep.FU1  21.0        

Region AVM  18.0        

Age_at_birth  Well-being  17.0        

Sleep  Well-being.FU1  16.0        

Sleep  HOMA.FU1  15.0        

Well-being.FU1  AVM.FU1  14.5        



 

Figure S1: Missing values in the cohort dataset where black cells indicate a missing observation. 

  



 



 



 

Figure S2: Diagnostic plots (kernel density estimates and boxplots for continuous and barplots for discrete 

variables) of the observed data (blue) and the multiply imputed data (red) with m=10. 

  



 

Figure S3: Causal graph of childhood obesity based on N = 5,112 European children and adolescents born 

between 1997 and 2006 estimated by the time-ordered pc-algorithm using test-wise deletion. Nodes are 

coloured with respect to their appearance in the life course. Edges without arrowheads could not be 

orientated by the algorithm.   



 

Figure S4: Causal graph of childhood obesity based on N = 5,112 European children and adolescents born 

between 1997 and 2006 estimated by the time-ordered pc-algorithm using multiple imputation with 

𝒂 =  𝟎. 𝟏. Nodes are coloured with respect to their appearance in the life course. Edges without arrowheads 

could not be orientated by the algorithm. 

  



 

 

Figure S5: Causal graph of childhood obesity based on N = 5,112 European children and adolescents born 

between 1997 and 2006 estimated by the Structural EM algorithm. Nodes are coloured with respect to their 

appearance in the life course. Edges without arrowheads could not be orientated by the algorithm.   



  

Figure S6: Cumulated causal graphs of childhood obesity based on N = 5,112 European children and adolescents born between 1997 and 2006 estimated by 

the time-ordered pc-algorithm based on 10 multiple imputed datasets for each of 100 independent bootstrap samples. The left and right graphs represent 

edges that appeared in more than 35 % and 75 %, respectively, of the “bootstrap graphs”. Nodes are coloured with respect to their appearance in the life 

course. Edges without arrowheads could not be orientated by the algorithm. 



 

Figure S7: Estimated average response curves for physical activity at baseline on BMI z-scores (FU2) 



 

Figure S8: Estimated average response curves for audio-visual media consumption (AVM) at baseline on BMI z-scores (FU2) 



 

Figure S9: Estimated average response curves for total sleep at baseline on BMI z-scores (FU2) 



 

Figure S10: Estimated average response curves for well-being at baseline on BMI z-scores (FU2) 


