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1 Treatment Effect Estimation

To enrich clinical trials with individuals predicted to have an increased response to
treatment, it is helpful to begin with the definition of individual treatment effect (ITE)
according to the Neyman/Rubin Potential Outcome Framework [1]. Let the ITE for
individual i be ⌧i, then

⌧i := Yi(1)� Yi(0) , (1)
where Yi(1) and Yi(0) represent the outcome of individual i when given treatment and
control medications, respectively. The Fundamental Problem of Causal Inference [2] states
that the ITE is unobservable because only one of the two outcomes is realized in any
given patient, dictated by their treatment allocation. Yi(1) and Yi(0) are therefore termed
potential outcomes or, alternatively, factual (observed) and counterfactual (not observed)
outcomes.

Ground-truth can nonetheless be observed at the group level. The average treatment
effect (ATE) is defined as the expected difference between both potential outcomes:

ATE := E[Y (1)� Y (0)] = E[Y (1)]� E[Y (0)] . (2)

Equation 2 is still in terms of unobservable causal quantities, so additional assumptions
are needed. While a detailed discussion of the underlying assumptions is beyond the
scope of this paper, in specific situations, such as randomized control trials, where the
outcome is independent of treatment allocation, the ATE can identified from the observed
outcome Y as follows

E[Y |T = 1]� E[Y |T = 0] , (3)
where T 2 {0, 1} is the treatment allocation. Broadly speaking, the ATE (sometimes
formulated as a ratio instead of a difference) is what is estimated in clinical trials, but
here we seek to estimate the ATE of a sub-group of patients conditioned on their baseline
characteristics, a d-dimensional feature vector x 2 X ✓ Rd. The conditional average
treatment effect (CATE), denoted ⌧(x), is defined as:

⌧(x) := E[Y (1)|X = x]� E[Y (0)|X = x] , (4)

which can similarly be rewritten in terms of the observed outcome Y in the context of
randomized controlled trials, where {(Y (0), Y (1)) ?? T}|X:

⌧(x) = E[Y |X = x, T = 1]� E[Y |X = x, T = 0] = µ1(x)� µ0(x) . (5)

A CATE estimator, ⌧̂(x) = µ̂1(x)�µ̂0(x), can be parametrized by a neural network trained
on an observational dataset D = {(xi, yi, ti)}ni=1. In this paper, we learn a multi-headed
multilayer perceptron (MLP) in which µ̂1(x) and µ̂0(x) share parameters in the earlier
layers but have distinct parameters in the output heads. We use ⌧̂(xi) as the estimate for
the treatment effect of an individual, ⌧̂i.

26



2 Slope Outcome

We assume that progression is slow over the course of the one to two year duration of a
phase 2 or 3 clinical trial such that the Expanded Disability Status Scale (EDSS) value
at time t following treatment initiation can be modeled as the linear relationship

EDSS = �0 + �1t , (6)

where �0 and �1 are the regression coefficients. Using the method of ordinary least squares
for linear regression, estimates �̂0 and �̂1 are found using all available timepoints t. Each
patient i has a separate slope of disability progression, �̂1,i, found by fitting a linear
regression model to their own EDSS values. This slope is then used as the ground-truth
outcome yi that we train a neural network to predict:

yi = �̂1,i . (7)

To compute the slope, a minimum of two timepoints t must be available for each patient.
We also require that the duration between the first and last timepoints be greater than
24 weeks, given that we are evaluating our model’s performance using 24-week confirmed
disability progression (CDP24). Participants who do not fulfill these two requirements
are excluded from the dataset. The average number of visits used to compute the slopes
was 12.23 (SD 2.86; range 3-24).

Note that the definition of confirmed disability progression (CDP) used in clinical
trials depends on the baseline EDSS of the individual. For a CDP event to occur, a
participant who has a baseline EDSS of 0 requires an increase in EDSS of 1.5, while
a baseline of > 5.5 requires an increase of 0.5. Baseline values in between require an
increase of 1.0. Therefore, in order for our slope outcome to closely resemble the changes
in EDSS that are required to reach CDP, we scaled the EDSS values prior to fitting
the linear regression models, such that the increase necessary for a CDP event to occur
approximately maps to an increase of 1.0 after the scaled transform:

f(EDSS) =

8
><

>:

EDSS
1.5 , if EDSS  1.5

EDSS � 0.5, if 1.5 < EDSS  6.0
EDSS�6.0

0.5 + 5.5, if EDSS > 6.0

(8)

We use the scaled values, f(EDSS) in place of the EDSS when fitting the linear regression
model. f(EDSS) is plotted in Supplementary Fig. 3.

3 Weighted Average Treatment Difference Curve

Following Zhao et al. [3], we define a conditional expectation, AD(c), which reflects the
ATE of a sub-group of patients who are predicted by our model to have a treatment effect
greater than a threshold value c:

AD(c) = E[Y (1)� Y (0) | ⌧̂i � c ] . (9)
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The conditional expectation for Y (1) � Y (0) is estimated using the restricted mean
survival time (RMST) for the time-to-CDP24, truncated at 2 years [4]. By defining the
conditional expectation in terms of the RMST instead of the slope outcome used as the
target for training the neural network, the AD(c) better reflects how well our model can
identify responders using a survival-based metric, which is ultimately what clinical trials
will use.

The AD(c) behaves as a population selector for predictive enrichment, whereby
patients expected to respond with effect size greater than a desirable threshold c can be
enrolled in a clinical trial or recommended the medication in a clinical setting.

If patients are ranked accurately according to their predicted responsiveness to the
active medication, then the resultant AD(c) curve should have a large area under the curve,
ADauc. The ADauc is therefore a useful evaluation metric. We compute the ADauc using
polygon approximation with operating points every 10 percentiles from 0 until the 70th
percentile for better computational efficiency, while we use 1 percentile increments for
reporting test metrics and for visualization purposes in this paper. Following Zhao
et al. [3], we then subtract the effect size of the entire (unenriched) population from the
ADauc to facilitate the comparison of different models. This metric is called the area
between curves, or ADabc, and can be written as

ADabc = ADauc �AD(⌧̂(0)) , (10)

where ⌧̂(0) represents the minimum predicted treatment effect in the evaluation set. We
further weigh the ADabc by multiplying it to a measure of monotonicity to promote a
monotonically increasing AD(c), since monotonicity indicates that the model can rank
response accurately throughout the range of possible responsiveness. To do so, we use
the Spearman’s rank correlation coefficient, ⇢, calculated between the ADabc values and
the thresholds c, as the scaling factor for the ADabc:

ADwabc = ⇢ADabc . (11)
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Supplementary Figures

Supplementary Figure 1: Histogram of CATE estimates for the anti-CD20-Ab test set.
Positive numbers indicate a predicted benefit from anti-CD20-Abs over placebo, 0 indicates
no predicted benefit, and negative numbers indicate predicted harm.
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Supplementary Figure 2: Kaplan-Meyer curves for predicted responders and non-
responders to laquinimod, defined at two thresholds of predicted effect size. These
are compared to the whole group (left). Survival probability is measured in terms of time-
to-CDP24 using the EDSS. p values are calculated using log-rank tests. Kaplan-Meyer
curve 95% confidence intervals are estimated using Greenwood’s Exponential formula.
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Supplementary Figure 3: Expanded Disability Status Scale transformation to account for
the baseline-dependent definition of confirmed disability progression.
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Supplementary Table 1: Feature features and outcomes per treatment arm for the
relapsing-remitting pre-training dataset.

Ocrelizumab IFNb-1a SC IFNb-1a IM Laquinimod Placebo
OPERA I OPERA II OPERA I OPERA II BRAVO BRAVO BRAVO
n=320 n=335 n=295 n=329 n=412 n=407 n=422

Demographics:
Age (years) 37.35 (9.36) 37.44 (8.93) 37.25 (9.54) 37.39 (8.82) 38.02 (9.41) 37.02 (9.19) 37.50 (9.59)
Sex (% male) 35.00 37.01 32.20 31.61 32.28 35.63 28.67
Height (cm) 169.58 (8.91) 169.59 (9.52) 169.40 (9.18) 168.66 (8.81) 168.32 (8.57) 169.12 (8.66) 169.05 (8.64)
Weight (kg) 74.31 (17.42) 76.51 (16.97) 75.25 (17.04) 74.99 (19.00) 69.63 (15.93) 69.50 (15.04) 69.52 (13.66)
Disease duration (years) 6.71 (6.45) 6.58 (5.95) 6.08 (5.79) 6.80 (6.28) 6.93 (5.81) 6.50 (5.80) 6.90 (6.53)
Disability Scores:
EDSS 2.79 (1.22) 2.68 (1.32) 2.60 (1.26) 2.74 (1.40) 2.63 (1.15) 2.65 (1.24) 2.73 (1.18)
FSS-Bowel and Bladder 0.56 (0.73) 0.64 (0.79) 0.60 (0.79) 0.61 (0.81) 0.52 (0.71) 0.57 (0.76) 0.54 (0.71)
FSS-Brainstem 0.59 (0.81) 0.48 (0.76) 0.57 (0.77) 0.50 (0.79) 0.73 (0.78) 0.78 (0.81) 0.83 (0.82)
FSS-Cerebellar 1.15 (1.02) 1.03 (1.01) 1.00 (0.96) 1.04 (1.01) 1.20 (0.96) 1.21 (1.04) 1.25 (0.99)
FSS-Cerebral 0.50 (0.72) 0.60 (0.81) 0.55 (0.77) 0.65 (0.83) 0.64 (0.76) 0.66 (0.74) 0.70 (0.79)
FSS-Pyramidal 1.71 (1.02) 1.65 (1.05) 1.54 (1.01) 1.54 (1.05) 1.79 (0.96) 1.73 (1.00) 1.75 (0.98)
FSS-Sensory 1.17 (1.00) 1.01 (1.00) 1.04 (0.96) 1.10 (1.01) 0.94 (1.02) 1.04 (1.04) 1.02 (0.99)
FSS-Visual 0.67 (0.84) 0.68 (0.89) 0.72 (0.88) 0.69 (0.91) 0.80 (1.09) 0.79 (1.17) 0.85 (1.25)
Mean T25FW (sec) 7.80 (7.56) 8.19 (11.83) 7.04 (7.14) 7.29 (7.64) 6.31 (5.45) 6.00 (2.89) 6.04 (3.05)
Mean 9HPT dominant hand (sec) 24.47 (17.66) 23.80 (9.09) 23.77 (17.37) 24.52 (13.34) 21.73 (5.87) 21.98 (7.18) 22.83 (17.16)
Mean 9HPT non-dominant hand (sec) 26.85 (23.72) 25.26 (13.02) 24.51 (8.09) 26.31 (19.01) 23.13 (6.00) 23.06 (6.86) 23.87 (12.46)
MRI metrics:
Gad count 1.76 (4.49) 1.81 (4.51) 1.74 (4.93) 1.96 (5.16) 1.85 (6.86) 1.84 (5.22) 1.47 (5.88)
T2 Lesion Volume (mL) 10.59 (14.25) 11.28 (15.00) 8.69 (10.13) 10.19 (12.07) 8.86 (10.55) 9.69 (10.38) 7.99 (8.95)
Normalized brain volume (L) 1.50 (0.08) 1.50 (0.09) 1.50 (0.09) 1.50 (0.09) 1.59 (0.08) 1.58 (0.10) 1.59 (0.09)
Outcome:
Slope (EDSS change / yr)∗ -0.01 (0.39) 0.00 (0.58) 0.07 (0.47) 0.09 (0.57) 0.06 (0.72) 0.04 (0.53) 0.14 (0.83)
RMST (at 2 years)† 1.97 1.95 1.93 1.92 1.93 1.93 1.90

Values in brackets are standard deviations, unless otherwise specified.
∗ Slope is based on the coefficient of regression from a linear regression model that is fit
on an individual’s EDSS values over time, as described in Section 5.2.
† RMST calculated at 2 years using time to 24-week confirmed disability progression on
the EDSS.
RMST=Restricted mean survival time; IFNb-1a = Interferon beta-1a; IM = intramuscular;
SC = subcutaneous; EDSS = Expanded Disability Status Scale; FSS = Functional Systems
Score; T25FW = timed 25-foot walk; 9HPT = 9-hole peg test; Gad = Gadolinium-
enhancing lesion.
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Supplementary Table 2: Group statistics for predicted responders and non-responders to
laquinimod at the 50th and 70th percentile thresholds.

50th percentile threshold∗ 70th percentile threshold∗

Responders Non-
responders

Effect size
(95% CI)†

p
value‡ Responders Non-

responders
Effect size
(95% CI)†

p
value‡

Trial contribution:
ARPEGGIO 159 159 99 219
Demographics:
Age (years) 45.09 (7.68) 47.90 (5.56) -2.81 (-4.29, -1.33) <0.001 44.80 (8.26) 47.26 (5.95) -2.46 (-4.29, -0.64) 0.009
Sex (% male) 53.46 54.72 0.95 (0.60, 1.51) 0.910 55.56 53.42 1.09 (0.66, 1.81) 0.808
Height (cm) 172.12 (9.12) 171.36 (9.95) 0.76 (-1.35, 2.87) 0.479 173.23 (9.49) 171.07 (9.51) 2.15 (-0.11, 4.42) 0.064
Weight (kg) 74.71 (17.78) 74.10 (13.47) 0.61 (-2.88, 4.09) 0.733 76.00 (18.13) 73.68 (14.53) 2.31 (-1.77, 6.40) 0.267
Disease duration (years) 6.89 (5.18) 8.76 (6.12) -1.87 (-3.12, -0.62) 0.004 6.25 (4.65) 8.54 (6.04) -2.29 (-3.52, -1.07) <0.001
Disability Scores:
EDSS 4.70 (0.94) 4.26 (0.91) 0.44 (0.24, 0.64) <0.001 4.74 (0.89) 4.36 (0.95) 0.38 (0.17, 0.60) <0.001
FSS-Bowel and Bladder 1.40 (0.97) 1.05 (0.84) 0.35 (0.15, 0.55) <0.001 1.38 (0.97) 1.16 (0.89) 0.23 (0.00, 0.45) 0.049
FSS-Brainstem 0.90 (0.90) 1.09 (0.95) -0.19 (-0.40, 0.01) 0.062 0.89 (0.85) 1.05 (0.96) -0.16 (-0.37, 0.05) 0.147
FSS-Cerebellar 2.41 (0.73) 1.80 (0.87) 0.61 (0.43, 0.79) <0.001 2.55 (0.69) 1.90 (0.85) 0.64 (0.46, 0.82) <0.001
FSS-Cerebral 0.92 (0.92) 0.87 (0.87) 0.05 (-0.15, 0.25) 0.619 0.93 (0.91) 0.89 (0.89) 0.04 (-0.17, 0.26) 0.694
FSS-Pyramidal 2.83 (0.67) 2.95 (0.51) -0.12 (-0.25, 0.01) 0.075 2.82 (0.67) 2.92 (0.56) -0.10 (-0.26, 0.05) 0.181
FSS-Sensory 1.76 (1.03) 1.71 (1.02) 0.05 (-0.18, 0.28) 0.664 1.71 (1.08) 1.75 (1.00) -0.04 (-0.29, 0.21) 0.746
FSS-Visual 1.39 (1.40) 0.35 (0.69) 1.04 (0.80, 1.29) <0.001 1.63 (1.53) 0.53 (0.86) 1.10 (0.78, 1.43) <0.001
Mean T25FW (sec) 10.24 (9.75) 9.04 (6.57) 1.21 (-0.63, 3.04) 0.198 10.34 (10.15) 9.32 (7.35) 1.03 (-1.22, 3.27) 0.370
Mean 9HPT dominant (sec) 29.95 (13.32) 26.90 (10.93) 3.04 (0.35, 5.73) 0.027 31.16 (14.55) 27.19 (10.88) 3.98 (0.75, 7.21) 0.017
Mean 9HPT non-dominant (sec) 33.85 (20.63) 27.04 (7.60) 6.81 (3.37, 10.25) <0.001 36.71 (24.30) 27.61 (8.65) 9.10 (4.12, 14.08) <0.001
MRI metrics:
Gad count 0.58 (1.80) 0.11 (0.51) 0.47 (0.18, 0.76) 0.002 0.74 (2.21) 0.17 (0.56) 0.56 (0.12, 1.01) 0.014
T2 Lesion Volume (mL) 7.77 (10.89) 4.03 (5.80) 3.73 (1.81, 5.66) <0.001 8.35 (11.85) 4.79 (6.94) 3.55 (1.02, 6.09) 0.007
Normalized brain volume (L) 1.44 (0.10) 1.47 (0.10) -0.03 (-0.05, -0.01) 0.012 1.44 (0.10) 1.47 (0.10) -0.02 (-0.05, 0.00) 0.063

Values in brackets are standard deviations, unless otherwise specified.
∗Percentile threshold for defining responders. The 50th percentile defines responders as the
top 50% who are predicted to be most responsive, while the 70th percentile defines them
as the top 30%. The non-responders are those who fall below the percentile threshold.
†Effect size is the average difference between responders and non-responders for all
covariates except for “sex” which is an odd’s ratio (OR).
‡p values for continuous and ordinal variables are calculated using a two-sided Welch’s
t-test due to unequal variances/sample sizes. p value for the categorical variable “sex”
is calculated using a two-sided Fisher’s exact test due to unequal and relatively small
sample sizes.
EDSS = Expanded Disability Status Scale; FSS = Functional Systems Score; T25FW =
timed 25-foot walk; 9HPT = 9-hole peg test; Gad = Gadolinium-enhancing lesion.
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