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Abstract 

Type 1 diabetes (T1D) is caused by a T-cell-mediated destruction of insulin-secreting 

pancreatic islet β cells. The T1D-predisposing human leukocyte antigen (HLA) class II 

molecule, DQ8, binds and presents insulin B chain peptides in the thymus producing 

autoreactive CD4+ T cells1–12. Here, we show that this process is driven by negatively-charged 

T cell receptor (TCR) complementarity-determining region 3b (CDR3b) sequences interacting 

with alanine at position 57 of the DQ8 b chain. Since T1D aetiology is linked to gut microbiota 

dysbiosis13–18, we hypothesized that the commensal proteome contains mimics of the primary 

insulin B:9-23 epitope that control TCR selection and tolerance. We identified a large set of 

bacterial proteins with significant similarity to insulin B:9-25, particularly from the transketolase 

(TKT) superfamily. We isolated a CD4+ TCR with a negatively-charged CDR3b from the 

pancreas of a DQ8-positive patient that was cross-reactive with one of these TKT peptides 

and insulin B:9-23. The T1D-protective molecule, DQ6, with the negatively-charged aspartic 

acid (D) at DQb57(12,19), showed strong TKT mimotope binding, supporting a role for TKT-

specific regulatory T cells in resistance to T1D. We propose that in a DQ8+DQ6- child with a 

proinflammatory dysbiotic gut microbiota, cross-reactive TKT-insulin B chain peptide T effector 

cells escape from the thymus and initiate T1D. TKT is a strong candidate because it is highly 

upregulated during weaning, a key period in T1D aetiology, and hence a prominent target for 

an autoimmune-prone immune system. Inhibiting gut dysbiosis and improving immune 

tolerance to TKT and other mimotopes, especially before and during weaning, could be a route 

to primary prevention of T1D and other common diseases. 
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Main 

In type 1 diabetes (T1D) the first autoantibodies to appear are most frequently against insulin, 

with a peak incidence between 9 and 18 months of age, particularly in children carrying the 

predisposing DR4-DQ8 haplotype20. In contrast, the DR15-DQ6 haplotype provides strong 

dominant protection from T1D6,10,11. Many sequence differences exist between these two 

haplotypes, with the strongest single effect at position 57 of the b chain of the DQ molecule, 

with a non-charged amino acid (alanine/A, valine/V, or in the nonobese diabetic [NOD] T1D 

mouse model, serine/S) associated with increased T1D susceptibility and the negatively-

charged aspartic acid (D) conferring T1D protection. DQ8 has a primary role in disease 

initiation through presentation of peptide epitopes to the autoreactive CD4+ T-cell receptors 

(TCR) from the N-terminal region of the insulin B chain, including residues 9-23 and 9-25 (B:9-

23; B:9-25; Methods)1–7. It is already established that TCR repertoire differences from the 

thymus, mediated in part through variable a and b complementarity-determining region 

(CDR3) 3 regions and their interactions with peptide epitopes and amino acids in the peptide-

binding cleft of HLA class II molecules, are determined by HLA class II genotype21–27. 

However, the effect of DQb57 on CDR3 antigen-recognition sequences in humans and in T1D 

is unknown. 

Alterations of the gut microbiota preceding the appearance of anti-islet autoantibodies have 

been hypothesised as a primary causal factor in HLA class II susceptible children developing 

T1D13–18,28,29. This is consistent with associations between HLA class II genotypes and the gut 

microbiota14,30, and is supported by evidence from the NOD mouse model of T1D31. It is 

possible that immune tolerance to bacterial mimotopes, defined as sequences in bacterial 

proteins that are cross-reactive with host proteins, is compromised in an environment of 

microbiota dysbiosis and reduced gut epithelial integrity and functions. Here, we provide 

evidence that such a mechanism exists coupled to HLA-DQ-regulated TCR CDR3b antigen 

recognition. These findings suggest therapeutic opportunities for prevention of the earliest 

pathogenic events in T1D aetiology long before insulin deficiency and diagnosis. 

DQ and T cell receptor CDR3 sequences 

We purified CD4+ T cells (n=349,623) from PBMCs from selected donors (n=48, median 

age=11 years) carrying the lowest (protected), low risk and highest risk HLA-DR-DQ risk 

diplotypes (susceptible; Methods; Supplementary Tables S1-S4). Cells were stimulated and 

loaded into a single-cell platform for preparing paired 5' gene expression and TCR libraries 

(Methods). After sequencing, gene expression data analysis and TCR repertoire assembly, 

we obtained 288,903 cells with both a valid gene expression profile and at least one productive 

TCR chain (Methods). CD4+ T conventional cells (Tconv; n=258,387; TCR clonotypes, 
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255,952), defined as those not belonging to either the CD4+ recent thymic emigrant (RTE; 

18,194; 18,127 clonotypes) or CD4+ Treg (12,322; 12,260 clonotypes)32 clusters (Extended 

Data Fig. 1), we examined which specific differences of CDR3b frequencies could be 

explained by HLA-DR-DQ risk (Methods). For single amino acids (Fig. 1(a)) negatively-

charged residues (D and glutamic acid/E) were more likely to be present in CDR3β chains 

from susceptible donors carrying the hydrophobic amino acid, A, at DQb57. Conversely, in 

protected donors, with a D at b57 of the DQβ chain, there were much fewer D/E CDR3bs, 

which were replaced by amino acids, V, leucine/L and isoleucine/I that have high interaction 

potentials33,34 with the negatively-charged bD57. The 2-mers, AD, GD, EE and EY, were 

increased in CDR3bs from susceptible donors (Fig. 1(b)), and similarly for 3-mers such as 

DTE and EET (Fig. 1(c); 4-mers shown in Extended Data Fig. 2). Moreover, a multilevel 

regression model predicted an increase of D as the T1D OR became higher (Fig. 1(d)), and 

the opposite effect in case of V (Fig. 1(e)). 

We obtained some evidence for the same effects for CD4+ RTEs and Tregs, although the 

support for this was limited owing to the much lower number of cells available for analysis 

compared to Tconvs (Extended Data Fig. 3 (a) RTEs and (b) Tregs). 

For the TCRα chain sequences, we also estimated systematic differences at low local false 

sign rates (LFSR) between DR-DQ protective and susceptible diplotypes (Extended Data Fig. 

4-6). These corresponded to biases in the usage of particular Vα and Jα genes, which are 

carried onto the CDR3α region due to the lower recombination diversity of the TCRa. In 

particular, top estimated differences in k-mers match fragments of SGTYK and GGSYI, which 

is a sequence encoded in the TRAJ40 and TRAJ6 genes whose usage increased in individuals 

carrying susceptible DQ versus protected alleles (Extended Data Fig. 7). A previous study 

analysed TCR Va gene usage by HLA genotypes by bulk sequencing of RNA from blood and 

reported an association between DQb57 and certain Va genes35. We observed the same Va 

genes differed in frequency between susceptible and protective DQ, consistent with the 

reported DQb57 effects (Extended Data Fig. 8). 

Susceptible donors select anti-insulin TCRs 

We then investigated whether these observed repertoire differences correlated with an 

immune response against the primary epitope in T1D, insulin B:9-231,2,7,36. We purified 

activated circulating CD4+ T cells (n=19,969), defined as HLA-DR+CD38+, from five children 

newly diagnosed with T1D carrying susceptible DR-DQ diplotypes (Supplementary Tables S5 

and S6). This activated cell subpopulation is enriched in autoreactive CD4+ T cells in patients 

with coeliac disease and other autoimmune disorders37. We also sourced CD4+ TCR clonotype 

sequences (n=1,428) isolated from the islets of five T1D patients from the Network of 
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Pancreatic Organ Donors (nPOD)38 who carried susceptible DQ (Supplementary Tables S7 

and S8). We compared these TCR sequences against those from individuals with highest 

susceptibility, DQ2/8 (n=23) from our original cohort (Supplementary Table S1). Both CDR3β 

sequences from islets and circulating activated cells had an increased frequency of the D 

residue when compared to non-activated circulating CD4+ T cells from susceptible donors 

(Fig. 2(a)). Note that owing to the low number of cells available from islet-infiltrating cells, we 

cannot rule out a negative fold (90% credible interval (0.974, 1.120)). In case of circulating 

activated cells, where the number of cells sequenced is larger, the posterior estimate only 

includes fold changes above 1 (90% credible interval (1.114, 1.183); Fig. 2(a)). 

We also analysed TCR clonotype sequences (n=159) from nPOD donors (n=5; 

Supplementary Tables S7 and S8) for whom reactivity against preproinsulin (PPI) peptides 

had been tested2. A binomial regression was consistent with insulin-reactive TCRs being 

increased in repertoires proportionally to the presence of negatively-charged CDR3bs 

(posterior probability of a positive effect, p=0.81). Without considering noise in D frequencies, 

the posterior distribution predicted strong positive effects (Fig. 2(b); p=0.97). 

Insulin mimicry and transketolase 

In order to assess the existence of insulin mimotopes in the gut microbiome, we assumed 

bacterial proteins of interest would exhibit a significant degree of similarity to the primary 

epitope B:9-25 (Methods). We measured similarity between B:9-25 and any given protein as 

the maximum pairwise local alignment score between both sequences. We chose B:9-25 

instead of B:9-23 because peptides have to have sufficient length for productive searches and 

the importance of the two C-terminal phenylalanine/F residues is established for T cell 

recognition9. 

Taking block maxima of gapless pairwise alignment scores yields an extreme value 

distribution. This distribution emphasizes tail events and reflects the expected biology of 

mimicry, where only an extreme degree of similarity should be relevant. We estimated a null 

distribution of scores by drawing random permutations from B:9-25 and calculating pairwise 

local alignment scores against every reviewed entry in the human proteome. We then 

calculated a parametric approximation to this empirical distribution (Methods). Finally, we 

aligned B:9-25 to every protein in a gut metagenome reference catalogue which comprised 

millions of common bacterial and archaeal proteins (MGnify39,40). This allowed us to derive 

precise p-values for exceedingly rare events, and also false discovery rates (FDRs) to account 

for the large set of multiple comparisons performed. 

We found 134 microbial proteins to be significantly similar to B:9-25 at FDR < 0.2 (Fig. 3). The 

largest association signal was from proteins with a TKT domain (Fig. 3; Extended Data Table 
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1), although there are significant associations located in other protein families. Both the 

number and the variety of significant associations suggest tolerance to insulin is regulated by 

a large niche of gut commensals. 

T cell cross-reactivity between TKT and B:9-23 peptides 

An important part of our proof for functional cross-reactive bacterial mimotopes is the 

demonstration that certain CD4+ T cells have TCRs that recognise both B:9-25 peptides in the 

canonical B:9-23 register and one or more of our top commensal peptide epitopes.  We 

therefore screened 179 cloned CD4+ TCRs detected in islets from six T1D organ donors 

carrying the DR4-DQ8 haplotype with ten TKT mimotope peptides (Supplementary Table S9) 

and insulin B:9-23 (Methods). We identified three islet CD4+ TCRs, including two previously 

reported TCRs1,41, that were reactive to insulin B:9-23 (Fig. 4(a)), and one new TCR, 

GSE.166H9 (Vα TRAV3, Jα TRAJ21, CDR3α CAVMYNFNKFYF, Vβ TRBV12-3, Jβ TRBJ2-

5, CDR3β CASSLGGRETQYF), from a DQ2/DQ8-heterozygous newly-diagnosed patient 

(nPOD 6533, age < 5 years old, Supplementary Tables S7 and S8) reacted strongly to one of 

the TKT peptides (peptide 8, Supplementary Table S9), GHSVEALYCILADRG, from 

Clostridium leptum (Fig. 4(b); Extended Data Table 1). As expected, the GSE.166H9 TCR 

recognised the TKT peptide 8 and B:9-23 presented by HLA-DQ molecules (Fig. 4(c)). Further 

analysis determined that the TCR responds to both peptides presented by DQ8-trans, 

consisting of DQ2α and DQ8β, most strongly, while the TCR can also recognise the peptides 

presented by DQ8 (Fig. 4(d)). Intensities of responses to the insulin B:9-23 and TKT peptide 

8 presented by DQ8-trans were similar (Fig. 4(e)), whereas GSE.166H9 T cells responded to 

insulin B:9-23 more strongly than TKT peptide 8 when presented by DQ8 (Fig. 4(f)). The most 

potent response was induced by both insulin B:9-23 and TKT peptide 8 presented by DQ2a-

DQ8b-trans, indicating that immune responses by the 166.H9 TCR were initiated by these 

peptide-MHC complexes. 

Transketolase peptide binding to DQ6 

If TKT sequences are functionally mimicking insulin B-chain peptides in vivo then they should 

have similar DQ binding properties as insulin B-chain peptides, which bind strongly to DQ6 

and weakly to DQ85,19. To investigate this we pulsed DQ6- and DQ8-positive B cell lines with 

whole, recombinant Blautia caecimuris TKT, immunoprecipitated the DQ and DR molecules, 

eluted the bound peptides and sequenced them by mass spectrometry (Methods). Two TKT 

peptides bound to DQ6 corresponded to the insulin mimotope sequences, residues, 61-73, 

FVMSKGHSVEALY, and 66-78, GHSVEALYAVLAE (Extended Data Fig. 9; Supplementary 

Table S10). 
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Discussion 

In this study we report associations of HLA-DQ with the amino acid charge and interaction 

potential of CDR3b TCR sequences in anti-insulin autoreactivity and molecular mimicry 

between insulin and the commensal enzyme, TKT.  Protective DQ molecules, with a D residue 

at DQb57 (DQ6 and DQ7/DQB*0301) are associated with reduced frequencies of CDR3b D/E 

residues and, conversely, with increased frequencies of D/E when the A residue is present at 

DQb57 (DQ8 and DQ2). These results are consistent with previous data from coeliac 

disease42 and from the T1D model, the NOD mouse12,27,43,44, in which mutation of  I-Ag7 b 

chain (orthologue of DQb) at position 57 from S to D resulted in T1D protection and reduced 

D and E amino acids in the CDR3 sequences of B:12-20-specific CD4+ T cells27. Furthermore, 

known insulin-reactive clones isolated from human islets contain negative residues within their 

CDR3b2. The same directions of CDR3b effects were observed in Tregs and RTEs (Extended 

Data Fig. 3), suggesting that early DQ-mediated positive and negative selection events in the 

thymus dictate the frequencies of anti-insulin Teffs and Tregs that leave the thymus. 

We also conclude that functional TCR repertoire differences associated with T1D DQ 

diplotypes can influence recognition of mimics of the insulin B:9-23 epitope expressed in the 

microbiome, most notably, but not only (Fig. 3), from the metabolic enzyme superfamily TKT45. 

TKT enzymes are among the most upregulated bacterial genes during infant weaning to help 

metabolise the incoming fibre with the introduction of solid food, prior to the appearance of 

insulin autoantibodies45,46. TKT amino acids occupying highly conserved residues and their 

spacing seem very well suited for evolution to develop insulin mimotopes employing TKT as 

a template. This is facilitated by the lack of conservation in the remaining residues, which can 

be mutated without disrupting enzyme function (Extended Data Fig. 10). Given that insulin 

mimotopes encoded in TKT are present across two bacterial phylums, Firmicutes and 

Actinobacteria, horizontal or lateral gene transfer events are probable. Phylogenetic tree 

reconstruction supports the existence of these events47, as well as some observations derived 

from insect models48. 

Some of these microbial commensals, which harbor sequences more similar to B:9-25 than 

what would be expected by chance, have been previously associated with T1D in a variety of 

longitudinal and cross-sectional studies. Clostridium leptum, encoded a TKT mimotope 

peptide that stimulated a DQ8-restricted TCR from an islet-resident T cell (Fig. 4), was 

diminished in NOD mice that progressed to T1D49. A recent faecal transplant trial in adults 

with active T1D halted the disease in some patients50. Notably, C. leptum abundance changes 

were among the best predictors of response to the transplant50. C. leptum was also the most 

positively associated bacteria with less healthy plant-based food diets, maltose, sucrose, 
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starch and other carbohydrate intake in a large observational study with deeply phenotyped 

individuals51. 

Blautia caecimuris expresses a TKT mimotope peptide that we demonstrated to be bound by 

the protective DQ6 molecule. The Blautia genus is a well-known group of anaerobic bacteria 

that produce short-chain fatty acids (SCFA). The relative overabundance of this genus was 

measured at the prediabetic and progressive stages of T1D in the longitudinal DIABIMMUNE 

cohort52. The same association was also found in other cross-sectional studies53. Acetatifactor 

sp. containing the most significant match to insulin B:9-25, also within the TKT mimotope 

domain (Extended Data Table 1), was found to be higher in NOD mice compared to non-

autoimmune prone ICR mice54. 

Anaerobutyricum (previously Eubacterium) hallii, is an example of a species that contains a 

potential non-TKT mimic. We identified a perfect 9-mer match to one of the preferred insulin 

B:9-23 DQ registers (EALYLVCGE) within an open-reading frame that encoded a protein with 

a CH3/CHASE3 domain55. A. hallii was found to be significantly less abundant in children at 

T1D onset by a recent case-control study56. 

We propose that in a child with microbiota dysbiosis leak of microbial epitopes from the gut 

and inflammatory context of DQ8, TKT presentation at weaning could initiate anti-insulin 

autoimmunity via TCR cross reactivity and negatively-charged CDR3bs.  We predict that 

carriage of DQ8 or DQ6 will alter the composition of the microbiota and the abundance of 

microbial genes such carrying cross-reactive mimotopes. The T1D susceptibility allele at the 

insulin gene decreases insulin expression in the thymus57,58 and consequently increasing 

numbers of circulating anti-insulin CD4+ T cells, which may further control content of the 

microbiome59 in a mimotope-dependent manner. Given cross-reactivity with TKT mimotopes, 

we might expect in DQ8-positive children that the insulin gene polymorphism might also affect 

microbiota composition, in addition to insulin’s susceptibility allele allowing more B:9-23-TKT 

cross-reactive CD4+ T cells to escape from the thymus60. Gut bacteria can be transported into 

the thymus by a subset of dendritic cells thereby altering the T cell repertoire61. In a child with 

high HLA class II risk of T1D delivery of bacterial TKT into the thymus and by DQ8 could lead 

to increased numbers of insulin cross-reactive pathogenic T cells escaping from the thymus 

mediating the increased T1D risk. In contrast, a child carrying DQ6 will delete those cross-

reactive cells in the thymus alongside increased production of insulin-specific Tregs, 

explaining the strong dominant protection against T1D associated with this allotype and its D 

residue at DQb57. This mechanism is supported by our demonstration that TKT mimotope 

peptides from B. caecimuris bind to DQ6 (Extended Data Fig. 9; Supplementary Table S10). 
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Associations between dysbiosis (altered gut microbiota derived context signals), microbial 

taxa composition and T1D in industrialised countries are widely reported13–18,28,29, consistent 

with the increasing incidence of T1D over the past decades and the proposed extinction of 

certain metabolically-beneficial gut bacteria17,18, particularly the efficient metabolisers of 

human milk oligosaccharides (HMO) such as Bifidobacterium longum subsp. infantis (B. 

infantis). Recently, it has been shown that proinflammatory cytokines are present in the gut of 

in exclusively breast-fed babies and that this can be corrected by supplementation with a 

probiotic strain of B. infantis62. Efficient HMO metabolism leads to the production of microbial 

metabolites such as indolelactate and SCFAs63 that promote anti-inflammatory T-cell function 

and gut epithelial integrity62. Hence, in countries with high incidence of T1D and the lowest 

HMO-metabolising capacity gut dysbiosis and inflammation could be a causal factor in the 

development of T1D18.  In industrialised countries a parallel rise in childhood obesity, which 

Mendelian randomisation studies show is a causal factor in T1D, which could be mediated by 

suboptimal dysbiotic metabolism64. We also note that vitamin B1 (thiamine) deficiency is a 

frequent metabolic complication in T1D65 and thiamine is a co-factor of TKT66. Changes in gut 

microbiome taxa abundances and transcribed microbial pathways of T1D patients have been 

shown to precede thiamine deficiency67. 

Our results have mechanistic and potential therapeutic implications for a wide range of 

diseases associated with the same HLA class II genotypes. For example, it is possible that 

the commensal proteome influences the TCR repertoire of other DR15-DQ6 associated 

diseases such as multiple sclerosis68, narcolepsy69, lupus70 and Alzheimer disease71 in which 

this haplotype is predisposing. In Parkinson’s disease the DR4-DQ8 haplotype is protective 

and the prodromal phase of this neurological disorder has been associated with an altered 

microbiota72.  In multiple sclerosis and lupus examples of microbial mimicry have been 

reported68,73. Interactions between a child’s genetic, microbiota and gut health metabolism and 

diet in early life could therefore have profound predisposing or protective effects for a whole 

range of diseases later in life: understanding these mechanisms at the molecular, cellular and 

whole organism levels will be part of future primary prevention efforts for several common 

diseases.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2022. ; https://doi.org/10.1101/2022.05.11.22274678doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.11.22274678
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

Methods 

HLA class II associations with T1D and donor sample selection 

The T1D associations with HLA class II DR and DQ alleles, individually, or in cis haplotypes 

or trans diplotypes, are complex10,11,74–76. Here we used DR-DQ diplotypes and their T1D 

risks10 to investigate a possible TCR repertoire mechanism underlying their associations with 

T1D. A large proportion of susceptibility to, and protection from, T1D has been mapped three 

specific amino acid positions in the b chains of the DR and DQ molecules, DQb57 and DRb13 

and DRb71(11,75). For DQb57 the negatively-charged aspartic acid (D) is associated with 

dominant protection from T1D and neutral amino acids such as alanine (A), or serine (S) in 

the nonobese diabetic (NOD) mouse model of T1D12,27,77, encoding increased risk of the 

disease. The HLA-DQB1 allele, DQB1*0302, encodes the most T1D-predisposing allotype, 

DQ8, with A at b57, in contrast to the D57-positive DQ6 b chain (DQB1*0602), which is the 

most protective HLA class II allotype encoded by the DRB1*1501-DQB1*0602 haplotype. As 

can be seen in the crystal structures of DQ8 with the primary T1D autoantigenic epitope from 

the insulin B chain, B:9-23(4), and with B:11-23 and its TCR5, DQ8 presents the peptide to 

CD4+ T cells in a trimolecular interaction between it, the peptide, and the TCR CDR3b 

contacting the acidic N-terminal amino acids of the peptide, and pocket 9 of DQ8, containing 

A at b57. When the three most T1D susceptible amino acids are all present in DQ and DR 

molecules, as in the DRB1*0401-DQ8 haplotype, the haplotypic risk is at its highest, with 

individuals homozygous for this haplotype at over 32-fold increased risk of T1D10.  Additional 

susceptibility is encoded in a trans interaction between the two main susceptible haplotypes, 

DRB1*0401-DQ8 and DRB1*03-DQB1*02 (DR3-DQ2/DR4-DQ8), where there is a strong 

disease-predisposing synergy, most likely due to the structure and peptide-binding properties 

of the trans-heterodimer of the DQ a chain from the DR3 haplotype, DQA1*0501, and the DQ8 

b chain from the DR4 haplotype (DQ2aDQ8b). Hence, DQ2/DQ8 heterozygous individuals are 

at the highest risk of T1D, at over 63-fold increased risk of T1D10. DQ2 also has A at b57, and 

known to present proinsulin peptides, including B:9-23, and strongly predisposing to T1D1,2,36. 

Previously, we assembled a cohort of T1D families, as part of the JDRF Centre, Diabetes-

Genes, Autoimmunity and Prevention Centre (D-GAP)78, including a collection of peripheral 

blood mononuclear cells (PBMCs) from blood samples from children with T1D and their 

unaffected siblings in order to define the immune system before and during T1D. Using this 

resource, we investigated possible associations between DR-DQ diplotype and the TCR 

repertoire by selecting donors with the most susceptible diplotypes (DQ2/DQ8) to compare 

with those with the protective DQ6 haplotype. In order to assess the role of DQ more 

specifically we also analysed PBMCs from donors who carried the D57-positive DQ7 allotype 

(DQB1*0301), which when present with the most predisposing haplotype, DR4-DQ8, reduces 
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DR4-DQ8 T1D risk by over 6-fold10; DQ7 is not as protective against T1D as DQ6 because it 

often occurs on DR haplotypes where the amino acids at DRb13 and b71 are both highly 

predisposing to T1D.  Nevertheless, the protection encoded by DQ7 is dominant over the 

susceptible DR molecules11,75,76. 

Donors (Supplementary Table S1) were obtained from the JDRF D-GAP cohort which 

comprised T1D cases and unaffected siblings (REC Ref:08/H072025). This cohort provided 

PBMCs and genomic DNA samples. Genomic DNA was prepared from PBMCs or whole blood 

using QiaAmp DNA Blood kit (Qiagen), or phenol/chloroform extraction. 

Initially, we selected two groups with an equal number of donors in the two extremes of the 

T1D susceptibility-protection axis, namely the most protected DR15-DQ6 (Supplementary 

Table S2), the most susceptible, DR3-DQ2/DR4-DQ8 (Supplementary Table S4). This choice 

was performed using data from Taqman genotyping (Applied Biosystems) of four SNPs 

(rs2187668, rs660895, rs9271366 and rs7454108) and RELI SSO (DYNAL Biotech) classical 

HLA typing. HLA class II types were further confirmed with ImmunoArray-24 BeadChip v2.0 

(Infinium) or HumanImmuno BeadChip v1.0 (Illumina) and HLA imputation79, along with further 

SSP classical HLA class II typing (MC Diagnostics and Oxford Transplant Centre). 

Owing to the limited number of DR15-DQ6 homozygotes, we also included DR15-DQ6 

heterozygotes with a neutral haplotype - a residue other than the susceptible Ala (A) at DQB1 

position 57, either neutral Val (V) or Ser (S). 

In each batch loaded on a single-cell Chromium V(D)J cassette (10x Genomics), wherever 

possible, we matched individuals for age (< 20 years old) and homozygosity for DQb57. For 

example, in each batch all susceptible DR3-DQ2/DR4-DQ8 individuals were homozygotes for 

DQb57 A, and the protected DQ6 were an equal proportion of homozygotes and 

heterozygotes of DQb57 D. We also included two batches of DR4/DQ8 versus DR4/DQ7 or 

lower risk homozygotes, providing a focus on the specific effect of DQb57 (Supplementary 

Table S3). 

PBMC processing 

PBMC isolation, cryopreservation, and thawing were performed as previously described32. 

PBMC isolation was carried out using Lympholyte (CEDARLANE) and were cryopreserved in 

heat-inactivated, filtered human AB serum (Sigma-Aldrich) and 10% DMSO (Hybri-MAX, 

Sigma-Aldrich) at concentration between 2 to 10 × 106/ml and were stored in liquid nitrogen. 

PBMCs were thawed in a 37°C water bath for 2 minutes and then washed by adding 1 ml of 

AB serum to cells dropwise, followed by adding 10 ml of cold (4°C) X-VIVO (Lonza) containing 
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10% AB serum per up to 10 × 106 cells, in a drop-wise fashion. PBMCs were then washed 

again with 10 ml of cold (4°C) X-VIVO containing 1% AB serum per 10 × 106 cells. 

10x single CD4+ TCR sequencing from HLA-DQ selected cohort 

CD4+ T cells were purified from thawed PBMCs using negative selection (EasySep Human 

CD4+ T Cell Enrichment Cocktail, STEMCELL Technologies), and washed with X-VIVO 

medium (Lonza) containing 5% human AB serum and resuspended at the 100,000 cells per 

well (96 well plate) in a final volume of 200 µl X-VIVO medium (Lonza) containing 5% human 

AB serum. Cells were activated with the PMA/Ionomycin (eBioscience) for 2 hours and then 

harvested, washed, resuspended in PBS, counted and 5,000 cells were transferred to the 10x 

Genomics platform for single-cell immune profiling with version 1.1 kit, which provides paired 

gene expression and TCR sequences. 

cDNA library preparation and sequencing (10x Genomics) 

We washed CD4+ T cells in PBS with 0.04% BSA and re-suspended them at a concentration 

of 800-1,200 cells/µl, before capturing single cells in droplets using the Chromium platform 

(10x Genomics). Generation of paired gene expression and TCR libraries was performed 

using the Chromium Single Cell V(D)J Reagent Kits v1 and v1.1b. Quantification of libraries 

was carried out using Qubit dsDNA HS Assay Kit (Life Technologies) and D1000 ScreenTape 

(Agilent). Libraries were sequenced on HiSeq 4000 and NovaSeq 6000 (Illumina) to achieve 

an average of 20,000 reads per cell for gene expression libraries and 5,000 read pairs per cell 

for TCR libraries. 

cDNA library preparation and sequencing (BD Rhapsody) 

Single-cell capture and cDNA library preparation, including TCR libraries, was performed 

using the BD Rhapsody Express Single-cell analysis system (BD Biosciences) using the VDJ 

CDR3 protocol to generate the mRNA, TCR, AbSeq and Sample Tag libraries. The targeted 

mRNA panel used in this assay was based on the pre-designed Human T-cell Expression 

primer panel (BD Biosciences), combined with a custom designed primer panel (containing 

and additional 306 primer pairs), as previously described80. 

cDNA was initially amplified for 11 cycles (PCR1) to amplify the mRNA, TCR, AbSeq and 

Sample Tag products. The resulting PCR1 products were purified by double-sized selection 

using AMPure XP magnetic beads (Beckman Coulter), to separate the shorter AbSeq (~170 

bp) and Sample Tag (~250bp) products from the longer mRNA (350-800bp) and TCR (600-

1,000 bp) products. The purified mRNA (10 cycles) and Sample Tag (10 cycles) and TCR (15 

cycles) PCR1 products were then further amplified using their respective nested PCR primer 

panels (PCR2) on separate reactions. The resulting mRNA, Sample Tag and TCR PCR2 

products were purified by size selection. The concentration, size and integrity of the PCR 
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products was assessed using both Qubit (High Sensitivity dsDNA kit; ThermoFisher Scientific) 

and the Agilent 4200 Tapestation system (High Sensitivity D1000; Agilent). The final products 

were normalised to 2.5 ng/µl (mRNA), 1 ng/µl (Sample Tag & AbSeq) and 0.5 ng/µl (TCR) and 

underwent a final round of amplification (six cycles for mRNA, Sample Tag and AbSeq; seven 

cycles for the TCR libraries) using indexes for Illumina sequencing to prepare the final libraries. 

Final libraries were quantified using Qubit and Agilent Tapestation and pooled (~25/14/57/4% 

mRNA/TCR/AbSeq/Sample Tag ratio) to achieve a final concentration of 5 nM. Final pooled 

libraries were spiked with 15% PhiX control DNA to increase sequence complexity and 

sequenced (75 × 225 bp paired-end) on a NovaSeq sequencer (Illumina). 

Cell preparation and fluorescence-activated cell sorting (FACS) 

Fresh whole-blood samples (Supplementary Table S5 and S6; Fig. 2) from newly diagnosed 

with T1D patients were shipped overnight. From each donor, CD4+ T cells were isolated from 

10 ml of blood using RosetteSep (STEMCELL Technologies) according to the manufacturers’ 

instructions.  Negatively selected CD4+ T cells were washed with PBS + 2% FBS and 

incubated with the following fluorochrome conjugated antibodies: CD38-BV421 (Biolegend), 

HLA-DR-AF700 (Biolegend), CD3-BV510 (BD Biosciences) and CD4-BUV395 (BD 

Biosciences) in Brilliant Stain Buffer (BD Biosciences). Following incubation for 30 minutes at 

4ºC, cells were washed two times and resuspended in PBS + 1% FBS for cell sorting at 4ºC 

in a BD FACSAria Fusion sorter (BD Biosciences). CD3+CD4+ HLA-DR+CD38+ and control 

pools of CD3+CD4+ HLA-DR- and CD3+CD4+ HLA-DR+CD38- were FACS-purified (between 

20,000 and 35,000 cells per donor), washed and processed for BD Rhapsody Express Single-

cell analysis (BD Biosciences). FACS-sorted cells were incubated with a different oligo-

conjugated sample barcoding antibody (sample multiplexing kit; BD Biosciences) for 20 min 

on ice. Barcoded cells from each batch of donors (total 3 batches) were then pooled together 

a 5 ml FACS tube (Falcon) and washed in cold PBS + 2% FBS. Cell pools were then incubated 

for 5 min at 4ºC with Human Fc block (BD Biosciences) and then immediately incubated with 

a mastermix of 62 oligo-conjugated AbSeq antibodies (BD Biosciences)80,81 for 45 minutes on 

ice. Following AbSeq incubation, cells were washed three times in cold BD Sample Buffer (BD 

Biosciences) to remove any residual unbound antibody, filtered and resuspended in 620 µl of 

cold BD Sample Buffer for cell capture. Each of the three patient pools was loaded on a BD 

Rhapsody cartridge (BD Biosciences), and we aimed to retrieve approximately 20,000 cells 

from each pool. 

Single-cell data processing 

We preprocessed all single-cell RNA and TCR sequence libraries separately using Cell 

Ranger v4.0.0 (10x Genomics) to obtain gene counts and receptor assemblies for each donor. 
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These were then merged into a single gene expression matrix and a single TCR database, 

which mapped gene counts or TCR chains to cells and donors. 

Subsequently, we called cells from read counts with a minimum of 300 genes expressed. We 

also removed genes not present in at least 50 cells to keep the expression matrix tractable. 

Furthermore, we applied batch-dependent cutoffs to remove outliers suspected to be cell 

doublets or multiplets. We also filtered cells with more than 15% of mitochondrial expression 

to discard those undergoing apoptosis. After data cleanup, we normalized all expression 

values to 10,000 reads per cell and applied a logarithmic transformation. Next, we discarded 

all but the top 5,000 most variable genes and regressed out differences due to sequencing 

depth and mitochondrial gene expression. 

Lastly, we aligned cells from each sample using batch-balanced nearest neighbors82, reduced 

the dimensionality83, called clusters84, and performed a multivariate differential expression85 to 

find population markers. The initial run yielded two low-frequency clusters with non-CD4+ 

contaminants. We discarded cells mapping to these, reran all data processing steps, found 

another cluster with contaminants, and iterated through the same process one last time to 

remove another non-CD4+ cluster. This led to 12 different cell subpopulations with distinct 

RTE and Treg clusters (Extended Data Fig. 1). 

We filtered TCRs called by Cell Ranger to retain consensus assemblies with productive 

rearrangements only. Finally, we performed an inner join between gene expression and 

receptor assembly data using cell barcodes to obtain TCR chains paired with gene expression 

cluster information. 

T-cell stimulation assay 

TCR sequences were identified from CD4 T cells in the islets or pancreas slices of T1D organ 

donors having the DR4-DQ8 haplotype distributed from the nPOD program (nPOD 69, 6323, 

6342, 6367, 6472, 6533; Supplementary Tables S7 and S8) as described previously86. The 

total of 171 TCRs were expressed in 5KC T-hybridoma cells that are devoid of endogenous 

TCR expression and have been engineered with a ZsGreen-1 reporter gene preceded by the 

nuclear factor activated T cells (NFAT) binding sequences87,88. TCR-expressing 5KC cells 

(20,000 cells per well) were cultured with 75 µM or designated concentrations of peptides in 

the presence of antigen presenting cells, Epstein-Barr virus-transformed autologous B cells 

(100,000 cells per well) or K562 cells transduced with each designated HLA molecule86 

(50,000 cells per well) in round-bottom 96-well plate for 16-22 hours as described in figure 

legends. Peptides at >95% purity were purchased from Genemed Synthesis, and peptide 

sequences are included in Supplementary Table 9. Cultures with and without anti-CD3ε 

antibody at 5 µg/ml (Clone 125-2C11) were included in each assay as positive and negative 
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control, respectively. To determine HLA molecules presenting antigen to T cells, anti-HLA-DR 

(clone L243/G46-6), anti-HLA-DQ (clone REA303), or anti-DP (B7/21) antibodies were added 

at 12.5 µg/ml. 

Peptide elution from DQ molecules 

Cell culture and pulsing89,90 

Recombinant TKT protein was made by Centre for Medicines Discovery (CMD) University of 

Oxford, UK. Recombinant transketolase from Blautia caecimuris (IGC91 entry 

MH0370_GL0036213) was produced in Escherichia coli (BL21(DE3)-pRARE2) and purified 

by nickel affinity chromatography and size exclusion chromatography with endotoxin removal. 

Among all our hits in MGnify, Blautia caecimuris was the first entry in IGC, a large cohort 

assembly with estimated abundances, present in more than 10% of the individuals. IGC91 entry 

MH0370_GL0036213 corresponds to MGnify entry MGYG000164756_00723, with the latter 

lacking a nine amino acid sequence in the N-terminus probably arising due to an alternative 

transcription start site prediction. EBV cells were grown to a total cell count of 1×108 in 

complete RPMI (R10). Spent R10 was removed, and cells were incubated with 500 µg TKT or 

insulin in 5 ml of R10 for 2 hours at 37°C. R10 was added to full plate volume (15 ml) and cells 

further incubated at 37°C for 18 hours. Cells were collected, pelleted (400 × g, 5 min) and 

washed with PBS. Washed cells were pelleted again and frozen at -20°C for further use. 

Immunoprecipitation and HPLC 

Harvested pellets were washed in PBS then lysed by mixing for 30 minutes with 2 ml of lysis 

buffer (0.5% (v/v) IGEPAL 630, 50 mM Tris pH 8.0, 150 mM NaCl) and one tablet Complete 

Protease Inhibitor Cocktail EDTA-free (Roche) per 10 ml buffer at RT. Lysate was clarified by 

centrifugation at 1,000 × g for 10 minutes followed by a 20,000 × g spin step for 45 mins at 

4°C. Two mg of anti-HLA-DQ SPVL3 antibody-PAS was incubated with lysate overnight with 

gentle rotation at 4°C. Resin was collected by gravity flow and flow-through lysate was 

collected for sequential incubation with IVA12-PAS. Antibody-resin-HLA complexes were 

sequentially washed (15 ml of 0.005% IGEPAL, 50 mM Tris pH 8.0, 150 mM NaCl, 5 mM 

EDTA, 15 ml of 50 mM Tris pH 8.0, 150 mM NaCl, 15 ml of 50 mM Tris pH 8.0, 450 mM NaCl, 

and 15 ml of 50 mM Tris pH 8.0), and 5 ml of 10% acetic acid was use to elute bound HLA-

DQ complexes from the PAS-antibody resin. Elutions were vacuum centrifuged for drying, 

dissolved in loading buffer (0.1% v/v trifluoroacetic acid (TFA), 1% v/v acetonitrile in water), 

and injected by an Ultimate 3000 HPLC system (ThermoFisher Scientific) and separated 

across a 4.6 mm × 50 mm ProSwift RP-1S column (ThermoFisher Scientific). Peptides were 

eluted using a 1 ml/min gradient over 5 min from 1-35% Acetonitrile in 0.1% TFA and fractions 

were collected every 30 s for 18 fractions. Peptide fractions 1-12 were combined into odd and 

even fractions, then dried. 
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Mass Spectrometry 

HPLC fractions were dissolved in loading buffer and analysed by an Ultimate 3000 HPLC 

system coupled to a high field Q-Exactive (HFX) Orbitrap mass spectrometer (ThermoFisher 

Scientific). Peptides were initially trapped in loading buffer, before RP separation with a 60 min 

linear acetonitrile in water gradient of 2-35% across a 75 μm × 50 cm PepMap RSLC C18 

EasySpray column (ThermoFisher Scientific) at a flow rate of 250 nl/min. An EasySpray 

source was used to ionise peptides at 2000 V, and peptide ions were introduced to the MS at 

an on-transfer tube temperature of 305°C. Ions were analysed by data-dependent acquisition. 

Initially a full-MS1 scan (120,000 resolution, 60 ms accumulation time, AGC 3×106) was 

followed by 20 data-dependent MS2 scans (60,000 resolution, 120 ms accumulation time, 

AGC 5×105), with an isolation width of 1.6 m/z and normalized HCD energy of 25%. Charge 

states of 2–4 were selected for fragmentation. 

LC-MS data analysis 

Raw data files were analysed with PEAKS X (Bioinformatic Solutions) using a protein 

sequence database containing 20,606 reviewed human UniProt entries, supplemented with 

the sequence for Blautia caecimuris protein. No enzyme specificity was set, peptide mass 

error tolerances were set at 5 ppm for precursors and 0.03 Da for MS2 fragments. Additionally, 

post translational modifications were identified utilizing the PEAKS PTM inbuilt de novo-led 

search for 303 common modifications. FDR was calculated using the decoy database search 

built into PEAKS. 

Estimation of TCR repertoire differences 

We excluded an N-terminal prefix and a C-terminal suffix from each CDR3 to avoid the HLA 

class II binding bias that constrains gene usage35,92. 

Regression of TCR repertoire differences 

We used a large hierarchical or multi-level model (Supplementary Algorithm S1) to regress all 

observed k-mers using the log-transformed T1D OR due to HLA class II diplotypes10 as an 

explanatory variable (Fig. 1). This model was instantiated for each combination of CDR3 chain 

(α or β) and k ∈ [1,3]. Joint estimation of all k-mers for a given chain and k-mer length has the 

advantage of providing better moderated predictions by partial pooling93. 

We assumed k-mer counts to be binomially distributed. We modelled the relationship between 

the explanatory variable and each observed k-mer count as a linear function with normally-

distributed random effects, composed with a logit link function, also known as a binomial-

normal model. We used weakly informative hierarchical hyperpriors. Mean of slopes and 

intercepts was assumed to be distributed as Normal(μ=0, σ=5). Standard deviations for 

slopes, intercepts and random effects were set to a Cauchy(μ=0, σ=2.5) truncated at 0. For 
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additional regularization, we assumed a weak correlation between slopes and intercepts, 

modelled as a Lewandowski-Kurowicka-Joe(η=2)94. 

We reported fold changes and absolute differences derived from estimated regressions. 

These were calculated as the difference or the ratio between predicted rates for the maximum 

and the minimum OR in our cohort, respectively. Here, the minimum OR served as reference, 

i.e. was the second term in the subtraction or the denominator in the quotient. We reported 

LFSRs as the probability of the slope having a sign different than the median one. 

Estimation of aspartic acid/D proportions 

We used a beta-binomial model (Supplementary Algorithm S2) to estimate the proportion of 

D in each of the three susceptible repertoire types (Fig. 2(a)): peripheral blood, islet infiltrating 

and activated peripheral blood. The peripheral blood group consisted of all DQ2/8 donors 

(n=23, Supplementary Table S1). The islet infiltrating group consisted of available donors with 

evidence of active disease, i.e. nPOD 6323, 6342, 6414, 6533 and 6536 (Supplementary 

Tables S7 and S8). The activated peripheral blood was formed by all recently diagnosed 

patients we had recruited (Supplementary Tables S5 and S6). Our prior belief, derived from 

our previous inference on whole repertoires, was modelled with an informative prior 

Beta(α=50, β=1000). Observations were modelled as binomial variables k ~ Binomial(n, p), 

where k was the number of aspartic acid residues in a given donor out of a total n CDR3β 

amino acids counted, after postprocessing TCRs as indicated previously. We reported the 

mean and standard deviation for the posterior distribution of p. 

Regression of PPI reactivity 

We used a linear model (Supplementary Algorithm S3) with a logit link function to regress the 

dependence between aspartic acid frequency and PPI reactivity (Fig. 2(b)). To this end, we 

used all donors with available PPI information (Supplementary Table S8) except nPOD 69, 

whose repertoire had just six productive CDR3β chains and was therefore excluded from 

further consideration. The slope and intercept were assigned weakly informative priors 

Normal(μ=0, σ=100) and Normal(μ=0, σ=1000), respectively. Observations were modelled as 

binomial variables k ~ Binomial(n, p), where k was the number of PPI reactive clonotypes in a 

given donor out of a total n infiltrating clonotypes measured. The latent probability p was 

generated by a linear model with D residue counts as an explanatory variable. We reported 

the posterior probability of the regression slope being greater than zero. 

Markov-chain Monte Carlo inference 

Since all density functions were differentiable, posterior distributions were estimated by 

running four independent traces with a No-U-Turn Hamiltonian Monte Carlo sampler for 1,000 

iterations, with half of them used as warmup and standard control parameters95,96. We verified 
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the validity of inference by visual inspection of traces to ensure adequate mixing, checked 

diagnostic metrics (r̂, ESS and MCSE) and performed posterior predictive checks. 

Proteome-wide similarity with a given epitope 

We assumed potential mimotopes to be a subset of those proteins that are more similar to a 

given epitope of interest than what would be expected by random chance. We measured 

similarity as the maximum local pairwise alignment score between two protein sequences. We 

used a linear or affine alignment cost model defined by infinite gap penalties and a BLOSUM 

80 substitution matrix97. 

We estimated the null distribution of uninteresting or non-sufficiently similar scores by drawing 

105 random permutations of the epitope of interest and aligning these with a Smith-Waterman 

algorithm against all 20,375 reviewed canonical isoforms from Homo sapiens stored in the 

UniProt database. This yielded an empirical null distribution with more than 2×109 scores. 

We obtained a parametric approximation to the empirical null by fitting a generalized extreme 

value (GEV) distribution using a maximum likelihood approach (Supplementary Equation S1) 

and employing an interior point search filter algorithm98 to estimate the three parameters in 

GEV(μ, σ, ξ). With this approximation, we derived a p-value for each alignment score of the 

actual query epitope against a large gut microbiome protein assembly (MGnify39), with protein 

similarity reduced by clustering at 95% of similarity and 95% of mutual coverage and selecting 

one protein representative per cluster (Fig. 3). Subsequently, we estimated the proportion of 

discoveries and FDRs using an empirical Bayes procedure99,100. 

To speed up convergence and to obtain a more conservative approximation, we added an 

additional constraint requiring the score of a perfect alignment to the query epitope to be 

included in the support of the GEV distribution. In case of insulin B:9-25, this value is 145. The 

resulting GEV shape parameter estimate was ξ=-0.042015 with a 95% confidence interval of 

(-0.042012, -0.042017), estimated using a set of 1,000 bootstrap samples. Without this 

constraint, the estimate ξ=-0.070.	

A negative ξ parameter is important because it indicates the GEV distribution falls within the 

reverse Weibull family, also known as type III domain of attraction. This family has finite 

support, i.e. scores beyond certain value have probability zero. This agrees with the biology of 

epitopes and local alignments. Scores larger than a perfect match should be impossible and scores 

of identical matches should have non-zero probability. However, the widely used Basic Local 

Alignment Search Tool (BLAST101) and its implementation variants use a null approximated by a 

GEV from the Gumbel family or type II102,103, which has a shape parameter ξ=0 and therefore 

support for infinite scores. 
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We have previously identified many of the same insulin mimotopes using a different generative 

model-based method28. Other approaches to the same problem have relied on human-curated 

results from BLAST searches performed on fully assembled genomes from cultured 

species29,104. Consequently, prioritized peptides lack statistical significance or come from 

organisms that do not have humans as a host and therefore do not have any clinical interest. 

For instance, the antigen presented in by Huang et al29, RILVELLYLVCSEYL, is far from 

significance according to our local alignments model (FDR=1) when using B:9-23 (score=68) 

or B:9-25 (score=68) as query epitope. In comparison, many of the bacterial sequences we 

have prioritized surpass insulin-like growth factor II (IGF2; score=81) and one surpasses 

insulin-like growth factor I (IGF1; score=90) in their similarity to insulin B:9-25. If the number 

of identities is used as a statistic, RILVELLYLVCSEYL again yields a non-significant result 

when using either B:9-23 (score=9) or B:9-25 (score=9) as a query epitope. 
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Fig. 1: Estimates of CDR3β k-mer fold changes across HLA class II risk extremes.
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(c)

HLA class II risk extremes are DQ6 (negatively-charged D at DQβ57, used as baseline) versus DQ2/8
(DQβ with non-charged A at position 57 which includes the DQ2α/DQ8β trans HLA class heterodimer).
90% credible intervals and median predicted local false sign rates (LFSR) are shown for (a) k=1 or single
amino acid counts, where amino acids are sorted by decreasing average interaction potential,33 (b) k=2
and (c) k=3 CD4+ T conventional cells (Tconv). Amino acids with low average interaction potential and
negatively-charged side chains are enriched in the presence of DQ2/8, whereas amino acids of high
interaction potential are enriched in DQ6, as evidenced by multilevel regression for (d) aspartic acid/D
and (e) valine/V. Regression lines represent 100 random draws from the posterior distribution. Each point
in (d) and (e) denotes a single donor.
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Fig. 2: CDR3β aspartic acid/D frequency association with CD4+ T cell repertoire

type on susceptible HLA class II donors.
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(a) Bayesian posterior CDR3β aspartic acid/D mean estimates in cells from peripheral blood, infiltrating
islets and activated circulating cells. (b) Pre-proinsulin-reactive (PPI) clone proportion measured in islets as
a function of aspartic acid repertoire frequency.
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Fig. 3: Gut microbial proteome-wide similarity with insulin B:9–25.

Log-transformed p-values denote the significance of similarity scores for each of the ~1×107 predicted
proteins in a reference gut metagenome assembly. Data points are labelled with false discovery rate (FDR)
and predicted bacterial species. The top association signals are present in proteins with a transketolase
(TKT) domain. Other protein superfamilies and domains include late competence operon (ComE), hydroxy-
acylglutathione hydrolase (GloB), glycosyl hydrolase family 25 (GH25), cyclases/histidine kinases associated
sensory extracellular domain 3 (CH3) and yqeN DNA replication protein (YqeN).
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Fig. 4: Cross-reactivity to insulin B:9-23 and TKT peptides.

(a)

(b)

(c)

5KC T-hybridoma reporter cells expressing TCRs identified from CD4+ T cells in the islets of T1D organ
donors were generated to test for the response to antigen stimulation, and activation of 5KC cells was
assessed by evaluating expression of ZsGreen-1, which is driven via NFAT signaling upon stimulation.
5KC cells expressing GSE.6H9, GSE.20D11, or GSE.166H9 were cultured with the insulin B:9–23 peptide
(a) and TKT peptides (b) at 100 mM in the presence of Epstein-Barr virus (EBV)-transformed autologous
B cells. Cultures without peptide and with anti-CD3 antibody were included as negative and positive
control, respectively. ZsGreen-1 expression was assessed by flow cytometry. (c) 5KC cells expressing the
GSE.166H9 TCR and EBV-transformed autologous B cells were co-cultured with the insulin B:9–23 peptide
and the TKT peptide 8 (100 mM) in the presence or absence of anti-DR, DQ, or DP antibodies, followed by
evaluation of ZsGreen-1 expression by flow cytometry.
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(d)

(e)

(f)

(d) 5KC cells expressing the GSE.166H9 TCR were cultured with the peptides (100 mM) in the presence of
K562 myeloma cells expressing DQ8, DQ8-trans, DQ2, or DQ2-trans molecules, followed by evaluation of
ZsGreen-1 expression. (e) and (f) 5KC cells expressing the GSE.166H9 TCR were cultured with different
concentrations of the insulin B:9–23 peptide and the TKT peptide 8 in the presence of K562 myeloma cells
expressing DQ8-trans (e) or DQ8 (f), followed by evaluation of ZsGreen-1 expression. Screening experiment
results shown in panels (b) and (c) were performed once. Experiments in panels (a), (d), (e), and (f) were
repeated two (a), three (d), or four times (e and f), and mean values ± standard error of the mean are
shown. ns: not significant, *P < 0.05 and **P < 0.01 (calculated by a two-tailed paired t-test).
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Extended Data Fig. 1: Single-cell subpopulations in the D-GAP cohort.

Gene marker rank

1 2 3 4 5

0 CD40LG NFKBID SLA H3F3B PRNP
1 AC083862* AL590652* AP001160* HSD17B1 LINC00926
2 FOS DNA1B1 TSC22D3 JUN DUSP1
3 TXNIP CXCL3 TMSB10 CCL4 SH2D1B
4 IL13 IFNG TNF CCL5 IL2
5 C17orf100 CYTOR CNTLN AG01000058* CLDND1
6 RPS2 RPS27 RGCC PIM3 DUSP2
7 CXCL3 CXCL8 CXCL2 CLDN1 CCR4
8 FOXP3 CTLA4 TNFRSF9 IKZF2 TIGIT
9 MALAT1 SRGN CD69 IL7R HLA-B

10 CRTAM XCL2 XCL1 KLRK1 CSF2
11 CLPTM1L CRBN ZNF519 AKNA SAMD10

Gene markers for single CD4+ T cell clusters 0±11, depicted in UMAP projection. Cluster 7 corresponds to
recent thymic emigrants (RTEs) and cluster 8 to regulatory T cells (Tregs). * indicates no standard gene
name is currently assigned, and the identifier of the corresponding genomic region has been used as a
placeholder.
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Extended Data Fig. 2: Estimates of CDR3β 4-mer fold changes across HLA

class II risk extremes for Tconv cells.
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CDR3β 4-mer fold change and local false sign rate (LFSR) estimates for CD4+ T conventional (Tconv) cells
across HLA class II risk extremes, DQ6 (baseline) vs. DQ2/8.
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Extended Data Fig. 3: Estimates of CDR3β k-mer fold changes across HLA

class II risk extremes for RTE and Treg cells.
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(b)

CDR3β k-mer fold change and local false sign rate (LFSR) estimates for CD4+ (a) recent thymic emigrants
(RTEs) and (b) regulatory T cells (Tregs), DQ6 (baseline) vs. DQ2/8. Error bars represent the posterior
median and a 90% credible interval.
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Extended Data Fig. 4: Estimates of CDR3α k-mer fold changes across HLA

class II risk extremes for Tconv cells.
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(b)

CDR3α k-mer fold change and local false sign rate (LFSR) estimates for CD4+ T conventional (Tconv)
cells (a) k=1 and (b) k=2, DQ6 (baseline) vs. DQ2/8. Error bars represent the posterior median and a 90%
credible interval.
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Extended Data Fig. 5: Estimates of CDR3α 3-mer fold changes across HLA

class II risk extremes for Tconv cells.
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CDR3α 3-mer fold change and local false sign rate (LFSR) estimates for CD4+ T conventional (Tconv) cells
across HLA class II risk extremes, DQ6 (baseline) vs. DQ2/8.
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Extended Data Fig. 6: Estimates of CDR3α 4-mer fold changes across HLA

class II risk extremes for Tconv cells.
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CDR3α 4-mer fold change and local false sign rate (LFSR) estimates for CD4+ T conventional (Tconv) cells
across HLA class II risk extremes, DQ6 (baseline) vs. DQ2/8. 4-mers on the y axis boundary have an
estimated LFSR ≈ 0.
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Extended Data Fig. 7: Differentially used TCR α chain joining genes.
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Results filtered at FDR < 5%. Error bars represent a 95% confidence interval for the mean frequency. This
comparison was made using a simpler two-group design, with nine DQ6 (Protected) and 16 DQ2/DQ8
donors (Susceptible).
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Extended Data Fig. 8: Differentially used TCR α chain variable genes.
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Results filtered at FDR < 5%. Error bars represent a 95% confidence interval for the mean frequency. This
comparison was made using a simpler two-group design, with nine DQ6 (Protected) and 16 DQ2/DQ8
donors (Susceptible).
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Extended Data Table 1: Top scoring local alignments to insulin B:9±25 in

proteins from the gut microbiome.

Species Sequence Protein Score FDR

Acetatifactor sp. HCVDALYMVLGEKGFF TKT 98 0.001
Blautia caecimuris HSVEALYAVLAEKGFF TKT 88 0.041

Succinivibrio sp. HSVEALYAVLAEKGFF TKT 88 0.041
Acutalibacter sp. HSVEALYAVLADRGFF TKT 88 0.041

Pygmaiobacter sp. HAVEALYSVLADRGFF TKT 88 0.041
Oscillospiraceae sp. HSVEALYAVLADRGFF TKT 88 0.041
Lachnospiraceae sp. HSVEALYAVLAEKGFF TKT 88 0.041

Borkfalkia sp. VEPIYLVCGEDAFF YqeN 87 0.045
Mitsuokella multacida HCVEALYAILADRGFF TKT 86 0.045

Christensenella sp. HAAPALYAVLGERGFF TKT 86 0.045
Mobilibacterium sp. HAVPALYAALGERGFF TKT 86 0.045
Clostridium leptum HSVEALYCILADRGFF TKT 85 0.048

Eisenbergiella sp. HCVDALYMVLGDLGFF TKT 85 0.048
Lachnospiraceae sp. HCVDALYMVLGDLGFF TKT 85 0.048

Faec. prausnitzii SHLEEVLYLLCGEK GloB 85 0.048
...

...
...

...
...

Ruminococcus sp. YIVCGERGF Ð 78 0.129
Faec. prausnitzii DAIYLLCGERGL GH25 77 0.132

Ruminococcus sp. YLTCGENGFF ComE 75 0.200
Anaerobutyricum hallii EALYLVCGE CH3 75 0.200

Insulin B:9±25 SHLVEALYLVCGERGFF 145

Results filtered at FDR ≤ 0.2. Protein domains and superfamilies listed include transketolase (TKT), yqeN
DNA replication protein (YqeN), hydroxyacylglutathione hydrolase (GloB), glycosyl hydrolase family 25
(GH25), late competence operon (ComE) and cyclases/histidine kinases associated sensory extracellular
domain 3 (CH3).
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Extended Data Fig. 9: Immunopeptidomic protein map.

Peptides identified from Blautia caecimuris transketolase (TKT) in HLA-DQ peptide elution mass spectrome-
try experiments. Using an anti-DQ antibody (SPVL3), peptides presented by EBV B-cell lines were identified
from elution experiments with either DQ6-expressing cells (blue) or DQ8-expressing cells (red). The initial
protein sequence of nine amino acids (MKKRKERMK) at the beginning of the protein sequence originates from
the IGC protein assembly91. MGnify39 predicts the start of the protein at the third methionine within the
primary sequence of B. caecimuris TKT, and this is depicted as position 1.
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Extended Data Fig. 10: Transketolase superfamily motif for all domains of life

in the region of insulin mimicry.
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Most conserved residues in transketolase (TKT) are similar or identical to those from the corresponding
insulin B:9±25 (SHLVEALYLVCGERGFF) position. This may facilitate the evolution of insulin B:9±25 mimotopes
using TKT as a template.
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Supplementary information

Haplotype 1 Haplotype 2

n DQA1 DQB1 DQA1 DQB1 DQB157 OR Group

23 03:01 03:02 05:01 02:01 AA 1.80 Susceptible
8 03:01 03:02 03:01 03:02 AA 1.51 Susceptible
1 03:02 02:02 03:02 03:01 AD 0.59 Low risk
1 03:01 03:01 06:01 03:01 DD 0.59 Low risk
4 03:02 03:01 03:02 03:01 DD 0.58 Low risk
1 03:03 03:01 05:05 03:01 DD 0.09 Low risk
1 03:01 03:01 05:05 03:01 DD 0.09 Low risk
2 01:02 06:02 05:05 03:01 DD -0.89 Protected
2 01:02 06:02 01:02 06:02 DD -0.96 Protected
2 01:02 06:02 05:05 06:03 DD -1.30 Protected
2 01:02 06:02 01:02 05:02 DS -1.30 Protected
1 01:02 06:02 01:02 06:04 DV -1.30 Protected

Table S1: D-GAP sample selection and HLA class II diplotype interactions.
T1D odds ratios (OR) for DR-DQ haplotype combinations correspond to
log10-transformed estimates from UK Biobank.10
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Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

15:01 01:02 06:02 11:04 05:05 03:01 DRA DSR [20, 25) M
15:01 01:02 06:02 11:04 05:05 06:03 DRA DSR [15, 20) M
15:01 01:02 06:02 11:04 05:05 06:03 DRA DSR [15, 20) F
15:01 01:02 06:02 12:01 05:05 03:01 DRA DGR [15, 20) F
15:01 01:02 06:02 13:02 01:02 06:04 DRA VSE [15, 20) F
15:01 01:02 06:02 15:01 01:02 06:02 DRA DRA [5, 10) M
15:01 01:02 06:02 15:01 01:02 06:02 DRA DRA [5, 10) M
15:01 01:02 06:02 16:01 01:02 05:02 DRA SRR [10, 15) M
15:01 01:02 06:02 16:01 01:02 05:02 DRA SRR [15, 20) F

Table S2: D-GAP genetically protected group. AA1 and AA2 encode amino
acids at HLA DQB1 57, DRB1 13 and 71.11

Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

04:01 03:01 03:01 11:03 05:05 03:01 DHK DSE [20, 25) M
04:01 03:01 03:01 12:02 06:01 03:01 DHK DGR [15, 20) F
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK [10, 15) M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK [5, 10) M
04:01 03:02 03:01 04:01 03:02 03:01 DHK DHK [5, 10) M
04:07 03:03 03:01 01:03 05:05 03:01 DHR DFE [10, 15) M
04:08 03:02 03:01 04:07 03:02 03:01 DHR DHR [5, 10) M
09:01 03:02 02:02 04:01 03:02 03:01 AFR DHK [5, 10) F

Table S3: D-GAP low genetic risk group. AA1 and AA2 encode amino acids
at HLA DQB1 57, DRB1 13 and 71.11 The DQA1*03:02 allele is unresolved
to 03:02 or 03:03.
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Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 AA1 AA2 Age Sex

04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [10, 15) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [15, 20) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [15, 20) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [15, 20) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [15, 20) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [20, 25) M
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [5, 10) F
04:01 03:01 03:02 03:01 05:01 02:01 AHK ASK [5, 10) F
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK [10, 15) M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK [10, 15) M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK [10, 15) F
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK [15, 20) M
04:01 03:01 03:02 04:01 03:01 03:02 AHK AHK [5, 10) F
04:02 03:01 03:02 03:01 05:01 02:01 AHE ASK [10, 15) M
04:03 03:01 03:02 03:01 05:01 02:01 AHR ASK [10, 15) M
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK [10, 15) F
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK [10, 15) M
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK [5, 10) F
04:04 03:01 03:02 03:01 05:01 02:01 AHR ASK [5, 10) F
04:04 03:01 03:02 04:01 03:01 03:02 AHR AHK [15, 20) M
04:04 03:01 03:02 04:04 03:01 03:02 AHR AHR [10, 15) M
04:04 03:01 03:02 04:04 03:01 03:02 AHR AHR [5, 10) M

Table S4: D-GAP genetically susceptible group. AA1 and AA2 encode amino
acids at HLA DQB1 57, DRB1 13 and 71.11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 14, 2022. ; https://doi.org/10.1101/2022.05.11.22274678doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.11.22274678
http://creativecommons.org/licenses/by-nc-nd/4.0/


Haplotype 1 Haplotype 2

DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 Age Sex

11 04:01 03:01 03:02 04:02 03:01 03:02 [5, 10) M
13 03:01 05:01 02:01 03:01 05:05 02:02 [10, 15) M
14 04:01 03:01 03:02 04:01 03:01 03:02 [5, 10) F
16 03:01 05:01 02:01 03:01 05:05 02:02 [10, 15) M
18 04:01 02:01 02:02 07:01 03:01 03:02 [5, 10) F

Table S5: DILmech donor HLA DR±DQ diplotypes.

IAA GADA

Status U/ml Status U/ml ICA

11 Negative 0.80 Positive 15.9 Positive
13 Negative 0.80 Positive 91.9 Positive
14 Positive 6.34 Positive 86.3 Positive
16 Positive 8.44 Positive 88.2 Positive
18 Positive 6.14 Positive 71.8 Positive

Table S6: DILmech donor autoantibody status at the time of diagnosis and
sample collection.

Haplotype 1 Haplotype 2

RRID DRB1 DQA1 DQB1 DRB1 DQA1 DQB1 Age Sex

69 SAMN15879056 04:01 03:01 03:02 07:01 02:01 02:02 [5, 10) F
6323 SAMN15879377 03:01 05:01 02:01 04:02 03:01 03:02 [20, 25) F
6342 SAMN15879396 01:01 01:01 05:01 04:01 03:01 03:02 [10, 15) F
6367 SAMN15879420 04:01 03:01 03:02 07:01 02:01 02:02 [20, 25) M
6414 SAMN15879467 03:01 05:01 02:01 09:01 03:03 02:02 [20, 25) M
6472 SAMN15879525 03:01 05:01 02:01 04:04 03:01 03:02 [10, 15) F
6533 SAMN18242777 03:01 05:01 02:01 04:01 03:01 03:02 [0, 5) F
6536 SAMN18242780 DR4 DQ8 DQ8 DR17 DQ2 DQ2 [20, 25) F

Table S7: nPOD donor HLA DR±DQ diplotypes.
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PPI-reactive

IAA IA2A GADA ZnT8A Positive Tested Diag.

69 Ð Ð Ð Ð 0 7 3
6323 Negative Positive Positive Negative 4 52 6
6342 Positive Positive Negative Negative 5 34 2
6367 Negative Negative Negative Negative 0 9 2
6414 Positive Negative Positive Positive 4 34 ½
6472 Positive Negative Negative Negative 1 30 4
6533 Positive Positive Negative Positive Ð Ð 0
6536 Negative Negative Positive Negative Ð Ð 4

Table S8: nPOD donor autoantibody status, number of preproinsulin-
reactive (PPI) CD4+ T cell clones isolated and years since diagnosis at
the time of death.

Sequence Species

1 GHSVEALYAVLAEKG Blautia caecimuris
2 HSVEALYAVLAEKGF Blautia caecimuris
3 SVEALYAVLAEKGFF Blautia caecimuris
4 GHCVEALYVTLEAKG Phocaeicola dorei
5 HCVEALYVTLEAKGF Phocaeicola dorei
6 CVEALYVTLEAKGFI Phocaeicola dorei
7 GHTVEALYAVLCQKG Eubacterium siraeum
8 GHSVEALYCILADRG Clostridium leptum
9 GHIAEALYVTLAKRG Coprobacillus sp.

10 GHCVEALYVTLESKG Phocaeicola dorei

Table S9: Peptides employed for CD4+ T cell stimulation assay.

Sample Peptide -10 log(P) FDR Source

DQ6 KDVINMIRSGKAGHIG 49.23 2.9 PEAKS DB
DQ6 IEEVIDTFSKFGSK 42.79 2.9 PEAKS DB
DQ6 FVMSKGHSVEALY 47.21 2.9 PEAKS DB
DQ6 GHSVEALYAVLAE 35.34 2.9 PEAKS PTM
DQ6 CVGMALAGK 27.34 2.9 PEAKS PTM
DQ6 GKPTVLIANTVKGCGSSVMENK 57.60 2.9 PEAKS PTM

DQ8 VTLYFKQMNISPEN 49.95 2.5 PEAKS PTM
DQ8 NSIEELDAAFEEAKT 24.84 2.5 PEAKS DB
DQ8 LDAAFEEAKTVKGKPTVL 43.62 2.5 PEAKS DB

Table S10: Eluted peptides from Blautia caecimuris transketolase that were
measured to be bound by DQ molecules using mass spectrometry.
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1: µi ∼ Normal(µ=0, σ=5)
2: σi, ζ ∼ HalfCauchy(µ=0, σ=2.5)
3: ρ ∼ LKJ(η=2)
4: for i ∈ {1, . . . , K} do

5: ξi ∼ MultiNormal(µ=[µ1, µ2], σ=[σ1, σ2], ρ=ρ)
6: for j ∈ {1, . . . , N} do

7: ϵij ∼ Normal(µ=0, σ=ζ)

8: kij ∼ Binomial(n=nj, p=logit−1(ξi1 + ξi2 orj + ϵij))
9: end for

10: end for

Algorithm S1: Hierarchical mixed HLA effects model.

1: p ∼ Beta(α=50, β=1000)
2: for i ∈ {1, . . . , N} do

3: ki ∼ Binomial(n=ni, p=p)
4: end for

Algorithm S2: Beta-binomial aspartic acid proportion model.

1: α ∼ Normal(µ=0, σ=100)
2: β ∼ Normal(µ=0, σ=1000)
3: for i ∈ {1, . . . , N} do

4: pi ∼ Beta(α=50, β=1000)
5: li ∼ Binomial(n=mi, p=pi)
6: ki ∼ Binomial(n=ni, p=logit−1(α + β pi))
7: end for

Algorithm S3: Binomial preproinsulin-reactivity regression model.
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Equation S1: Generalized extreme value (GEV) log-likelihood

ℓ(µ, σ, ξ) =− m log(σ)− (1 + 1/ξ)
m

∑
i=1

log

(

1 + ξ

(

zi − µ

σ

))

−
m

∑
i=1

(

1 + ξ

(

zi − µ

σ

))−1/ξ

subject to

1 + ξ

(

zi − µ

σ

)

> 0, ∀i ∈ [1, m]

If ξ = 0, we require separate treatment using the Gumbel limit

ℓ(µ, σ) = −m log(σ) −
m

∑
i=1

(

zi − µ

σ

)

−
m

∑
i=1

exp

{

−

(

zi − µ

σ

)}
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