Title: Asymptomatic SARS-CoV-2 infection by age: A systematic review and meta-analysis

Running Title: Review of asymptomatic SARS-CoV-2 infection

Author names and affiliations:
Bing Wang PhD1,2*, Prabha Andraweera PhD1,2, Salenna Elliott PhD1,2, Hassen Mohammed PhD1,2, Zohra Lassi PhD1,2, Ashley Twigger MBBS3, Chloe Borgas MBBS3, Shehani Gunasekera MBBS3, Shamez Ladhani PhD4, Helen Siobhan Marshall MD1,2

1. Vaccinology and Immunology Research Trials Unit, Women’s and Children’s Health Network, Adelaide, South Australia, Australia
2. Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
3. SA Health, South Australia, Australia
4. Immunisation Division, UK Health Security Agency, London, UK; Paediatric Infectious Diseases Research Group, St George's University of London, London, UK.

* Correspondence: bing.wang@adelaide.edu.au; Tel.: +61 8 8161 8117; Address: Women's and Children's Hospital, North Adelaide, 5006, South Australia, Australia

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:

Objectives: This systematic review and meta-analysis aimed to estimate the age-specific proportion of asymptomatic SARS-CoV-2 infected persons by year of age.

Methods: We searched PubMed, Embase, medRxiv and Google Scholar on 10 September 2020 and 1 March 2021. We included studies conducted during January to October 2020, prior to routine vaccination against COVID-19. Since we expected the relationship between the asymptomatic proportion and age to be non-linear, multilevel mixed-effects logistic regression (QR decomposition) with a restricted cubic spline was used to model asymptomatic proportions as a function of age.

Results: A total of 38 studies were included in the meta-analysis. In total, 6556 out of 14850 cases were reported as asymptomatic. The overall estimate of the proportion of people who became infected with SARS-CoV-2 and remained asymptomatic throughout infection was 44.1% (6556/14850, 95%CI 43.3%-45.0%). The asymptomatic proportion peaked in adolescents (36.2%, 95%CI 26.0%-46.5%) at 13.5 years, gradually decreased by age and was lowest at 90.5 years of age (8.1%, 95%CI 3.4%-12.7%).

Conclusions: Given the high rates of asymptomatic carriage in adolescents and young adults and their active role in virus transmission in the community, heightened vigilance and public health strategies are needed among these individuals to prevent disease transmission.

Keywords: asymptomatic proportion, SARS-CoV-2 infection, systematic review, meta-analysis
1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic causing coronavirus disease 2019 (COVID-19) has had a profound impact on public health, our daily life, and economies around the world. Asymptomatic infections have raised concerns about public health policies for managing epidemics because they are a potential source of transmission of the virus and a challenge for controlling the pandemic.\(^1\)\(^2\) A few systematic reviews have been conducted to determine the contribution of asymptomatic infection to SARS-CoV-2 transmission.\(^1\)\(^3\)\(^9\) Previous researchers attempted to synthesize the best available evidence in different age groups such as children, adults, and elderly.\(^5\)\(^7\)\(^11\)\(^13\)\(^16\) None, however, have investigated the proportion of asymptomatic SARS-CoV-2 infections throughout the course of infection by age. This review, therefore, aims to 1) identify, assess, and synthesize the evidence on the proportion of people infected with SARS-CoV-2 who were asymptomatic throughout the course of infection, and 2) to estimate asymptomatic proportion by age.

2. Methods

2.1. Study Design

We conducted this systematic review and meta-analysis based on the statement of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines\(^20\) (Figure 1). The study protocol was registered in the International Prospective Register for Systematic Reviews (PROSPERO, registration number: CRD42020209419).

The following study characteristics were considered when estimating the proportion of asymptomatic infections: study period, study population, country, SARS-CoV-2 infection definition, asymptomatic case definition and follow-up period.

2.2. Search Strategy

We searched PubMed, Embase, medRxiv and Google Scholar on 10 September 2020 and 1 March 2021 using keywords COVID-19, SARS-CoV-2, 2019-nCoV, coronavirus disease 2019 AND asymptomatic. We only included studies conducted during January to December 2020, prior to routine vaccination against COVID-19 and the emergence of the alpha, delta or omicron variants. Additionally, this review did not identify or include any studies from regions with the beta variant, which was first detected in South Africa in September 2020. Specific search terms suitable to the individual databases were developed. These search terms included combinations of Medical Subject Headings (MeSH)/Emtree and text words contained in the title and abstract.

2.3. Selection Criteria

The article selection process occurred in two phases: 1) title and abstract screen: titles and abstracts of articles identified from the electronic databases and from Internet searches were reviewed; 2) full text review: the full text of articles selected at the title and abstract screen were obtained and reviewed for eligibility. The screening process was completed according to a predefined protocol (Supplementary Document 1). We included all studies reporting

- Proportion of asymptomatic persons among all SARS-CoV-2 infected persons. The numerator includes all SARS-CoV-2 positive persons who were asymptomatic. The denominator includes all SARS-CoV-2 positive persons who tested positive.

- Prevalence of asymptomatic SARS-CoV-2 positive persons among the defined general population. The numerator includes all SARS-CoV-2 positive persons who were asymptomatic. The denominator is the defined study population who were tested for SARS-CoV-2 (e.g., general population in the local community, healthcare workers, patients on hospital admission, nursing home residents).

- Asymptomatic infection: a person with confirmed SARS-CoV-2 infection, who has no symptoms at the time of screening (including the first clinical assessment or laboratory test) and had no symptoms throughout the follow-up period.
We excluded

- Studies published in languages other than English.
- Comments, letters, editorials, case reports, consensus reports and reviews.
- Studies that did not report any age information (e.g., mean or median age) for asymptomatic infections.
- Studies that clearly stated that the SARS-CoV-2 infected persons were included without any follow up and did not distinguish between asymptomatic and pre-symptomatic infections.
- Studies that only tested and enrolled asymptomatic persons and/or mild cases.
- Case studies, case reports and case series with fewer than 20 SARS-CoV-2 infected persons.
- Case studies, case reports and case series that identified SARS-CoV-2 positive persons through contact tracing where only symptomatic persons were tested.
- Serology studies that did not check history of symptoms compatible with SARS-CoV-2 infection and enrolled cases confirmed with SARS-CoV-2 infection by use of IgM only.

2.4. Data Extraction

We did not assess study quality because the critical appraisal tools which we planned to use are research design-specific, preclude comparison of the quality of different study designs, and cannot reflect heterogeneity of studies reporting proportions with asymptomatic infections. We did, however, consider several methodological factors in the inclusion/exclusion criteria such as the follow-up period and case identification method. Eight authors (BW, PA, SE, HM, ZL, AT, CB, SG) used an online form in Covidence or a Microsoft Excel spreadsheet to extract the following information: study design, setting, study period, study population (sample size, mean or median age, case definition, etc.), country, follow-up duration, and outcomes (number of people sampled/tested, total number of SARS-CoV-2 positive persons, number of asymptomatic SARS-CoV-2 positive persons).

2.5. Statistical Analysis

Most studies reporting prevalence of asymptomatic persons among the tested population were cross-sectional community screening studies without regularly follow-up of SARS-CoV-2 positive persons. We excluded screening studies which clearly stated in the Methods or Discussion sections that they did not follow up any cases or could not distinguish between asymptomatic and pre-symptomatic cases. The number of screening studies, which were eligible and included in our review, was small (n=3). Therefore, the percentage of asymptomatic cases among the tested population was not assessed in the meta-analysis. We only assessed percentage of asymptomatic infections among the confirmed population with laboratory confirmed/clinically diagnosed SARS-CoV-2 infections based on history of exposure to SARS-CoV-2 infection and/or suggestive clinical symptoms of pneumonia (Figure 1).

We used a published method to assess the effect of age on proportion of asymptomatic SARS-CoV-2 positive persons.21,22 We anticipated the relationship between the asymptomatic proportion and age in years to be non-linear based on previous reviews.21,22 A multilevel mixed-effects logistic regression (QR decomposition) model with a restricted cubic spline was performed to model the asymptomatic proportion as a function of years. The restricted cubic spline with five knots placed at the ages of 1.4, 13.5, 33.3, 54.5 and 80.4 years was applied, based on Harrell’s recommended percentiles.23 Studies were nested within region/country as nested random effects. The model allows for multi-levels of nested clusters of random effects on the assumption that observations within the same cluster are correlated. The outcome measure was the number of asymptomatic persons observed in the study population recorded in binomial form, with the number of SARS-CoV-2 positive persons in the study population as the denominator. When the mean age was not available, we estimated the mean age for each age group using the midpoint of the age band. Any studies reporting the proportion of
asymptomatic infections using an age band wider than 20 years were excluded from the meta-analysis. Additional efforts were made to contact the first authors for more information where needed. All analyses were performed using Stata 16.1.24

Figure 1. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram for article inclusion and exclusion

- Records identified through database searching – up to **1 Mar 2021** (n=3849):
 - PubMed=2482; EMBASE=1119;
 - medRxiv=48 out of 752; Google Scholar=200
- Duplicates removed (n=113)
- Records screened (n=3736)
- Records excluded by title/abstract (n=2959)
- Full-text articles assessed for eligibility (n=777)
 - Full-text articles excluded, with reasons (n=674):
 - 412 No age information for asymptomatic cases
 - 74 Enrolled < 20 cases
 - 53 Commentary/Editorial/News/Letter
 - 41 Inconsistent outcomes/study design
 - 33 Ineligible patient population
 - 29 No asymptomatic infection
 - 15 No follow-up
 - 15 Review
 - 1 Duplicates
 - 1 Not published in English
- Studies included in systematic review (n=103)
- Full-text articles excluded from meta-analysis, with reasons (n=65):
 - No age bands or wide age bands
- Studies reporting asymptomatic rates by age included in quantitative synthesis (meta-analysis) (n=38)
3. Results

There were 114 eligible studies. Since a few narrative review and subgroup analyses by age group (e.g., children, adults) have previously been published,5,7,11,13,16 only the results of the meta-analysis are discussed here (Figure 1).

3.1. Study Characteristics

A total of 38 studies involving 14850 persons were included in the meta-analysis (Table 1) including 13 paediatric studies (n=2729), 8 studies with adults only (n=1156), and 17 studies with children and adults (n=10965), with an age range of 0 to 100 years. Gender was reported in 37 studies including 8931 (61.2\%) males and 5574 (38.4\%) females. Of 14850 SARS-CoV-2 positive persons included in the meta-analysis, 5498 were from China, 3643 from India, 1519 from Saudi Arabia, 1255 from Bangladesh, 539 from the US, 417 from Kuwait, 230 from Croatia, 220 from Nepal, 213 from Italy, 203 from Greece, 1113 from the rest of the world. Study settings ranged from community screening to hospital treatment/isolation. In 27 studies, SARS-CoV-2 positive patients were enrolled and followed up in the hospital setting.25-51 Only three community/international traveler/repatriation screening studies52-54 were included as those studies reported follow-up outcomes. In addition, seven disease surveillance studies were included with follow-up outcomes presented in the publication55-59 or correspondence with authors.30,59 In total, 14 studies including a retrospective online survey29,34,36,38,39,43,50,51,55,58-62 which did not clearly state the follow-up period but presented follow-up outcomes, were included in the meta-analysis. The remaining studies followed up patients during the defined follow-up period or during hospital admission. Most SARS-CoV-2 infections were confirmed by RT-PCR. The proportion with asymptomatic infection ranged from 0 to 91.0\% with an overall proportion of 44.1\%.
Table 1 Characteristics of the studies in the meta-analysis

<p>	Paper	Country	Data collection period	Study population	Study setting	Age range (years)	Male	Female	No. all SARS-CoV-2 infected persons	SARS-CoV-2 infection definition	No. persons with asymptomatic SARS-CoV-2 infection	Proportion of asymptomatic cases	Asymptomatic case definition	Follow-up period
Sun 2020[^a]	China	January 28 - March 3, 2020	Children (<15 years) infected with SARS-CoV-2 and admitted to a single children's hospital	Hospital admission (clusters)	0-15	38	36	74	PCR confirmed	22	29.73%	No symptoms or CT evidence of lesions	During hospital admission	
Xu 2020[^b]	China	January 24 - February 12, 2020	Children (<18 years) infected with SARS-CoV-2 and admitted to several local hospitals in three provinces	Hospital treatment/isolation	0-18	17	15	32	PCR confirmed	6	18.75%	No clinical symptoms or abnormal chest imaging findings	Two weeks after discharge in the local hospital	
Yan 2020[^c]	China	January 21 - June 27, 2020	All patients infected with SARS-CoV-2 and admitted to three tertiary hospitals	Hospital treatment/isolation	0-80+	122	96	218	PCR confirmed	24	11.01%	NR	During hospital admission	
Alsofayan 2020[^d]	Saudi Arabia	March 1 - March 31, 2020	All patients presenting to health care facilities	Disease surveillance	0-66+	825	694	1519	PCR confirmed	142	9.35%	Asymptomatic based on their reporting of their clinical symptoms	NR	
Dong 2020[^e]	China	January 16 - February 8, 2020	Children (<18 years) infected with SARS-CoV-2	Disease surveillance	0-18	418	310	728	PCR confirmed	94	12.91%	No clinical symptoms and signs, and the chest imaging results normal	Assumed disease severity was classified based on clinical outcomes Followed up to March 6 2020 & during course of admission	
Song 2020[^f]	China	January 16 - January 29, 2020	Clusters of three large and one small families.	Hospital admission (family clusters)	0-86	8	14	22	PCR confirmed	0	0.00%	No clinical symptoms and signs, and the chest imaging results normal	During course of admission	
Bhandari 2020[^g]	India	March 22 - April 30, 2020	All patients infected with SARS-CoV-2 and admitted in a tertiary care hospital in North India	Hospital admission	2-85	14	7	21	PCR confirmed	7	33.33%	NR	During course of admission	
Lavezzo 2020[^h]	Italy	21-29 February and 7 March 2020	Resident population of Vo, Italy	Community screening	11-81+	48	33	81	PCR confirmed	34	41.98%	No symptoms at the time of swab testing and did not develop symptoms afterwards	14 days	
Liu 2020[^i]	China	30 January - 15 February, 2020	All patients infected with SARS-CoV-2 and consecutively admitted to the East Hospital of People’s Hospital of Wuhan University	Hospital admission	20-100	NR	NR	303	PCR confirmed	13	4.29%	No clinical symptoms	NR	</p>
<table>
<thead>
<tr>
<th>Paper</th>
<th>Country</th>
<th>Data collection period</th>
<th>Study population</th>
<th>Study setting</th>
<th>Age range (years)</th>
<th>Male</th>
<th>Female</th>
<th>No. all SARS-CoV-2 infected persons</th>
<th>SARS-CoV-2 infection definition</th>
<th>No. persons with asymptomatic SARS-CoV-2 infection</th>
<th>Proportion of asymptomatic cases</th>
<th>Asymptomatic case definition</th>
<th>Follow-up period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu 2020<sup>77</sup></td>
<td>China</td>
<td>December 31, 2019 - March 7, 2020</td>
<td>Pregnant patients infected with SARS-CoV-2</td>
<td>Hospital admission</td>
<td>21-37</td>
<td>0</td>
<td>23</td>
<td>23</td>
<td>PCR confirmed or clinically diagnosed</td>
<td>15</td>
<td>65.22%</td>
<td>No clinical symptoms</td>
<td>During course of admission</td>
</tr>
<tr>
<td>Ren 2021<sup>14</sup></td>
<td>China</td>
<td>April 16 - October 25, 2020</td>
<td>International entrants infected with SARS-CoV-2</td>
<td>International travellers screening</td>
<td>0-50+</td>
<td>2343</td>
<td>760</td>
<td>3103</td>
<td>PCR confirmed</td>
<td>1612</td>
<td>51.95%</td>
<td>No symptoms throughout the 14-day quarantine</td>
<td>13 days of follow-up</td>
</tr>
<tr>
<td>Martini 2020<sup>27</sup></td>
<td>Italy</td>
<td>February 1 - April 30, 2020</td>
<td>Cancer patients infected with SARS-CoV-2</td>
<td>Cancer patient screening</td>
<td>40-93</td>
<td>11</td>
<td>21</td>
<td>32</td>
<td>CT scan suspected and/or PCR confirmed</td>
<td>11</td>
<td>34.38%</td>
<td>No symptoms</td>
<td>Median follow time 27 days</td>
</tr>
<tr>
<td>Liu 2021<sup>13</sup></td>
<td>China</td>
<td>January 28 - March 12, 2020</td>
<td>Children (<16 years) infected with SARS-CoV-2</td>
<td>Hospital admission</td>
<td>0-15</td>
<td>186</td>
<td>118</td>
<td>248</td>
<td>PCR confirmed</td>
<td>92</td>
<td>37.10%</td>
<td>No symptoms</td>
<td>During hospital admission</td>
</tr>
<tr>
<td>Parri 2020<sup>46</sup></td>
<td>Italy</td>
<td>March 3 - May 2, 2020</td>
<td>Paediatric cases in 17 Italian paediatric EDs</td>
<td>Hospital admission</td>
<td>0-18</td>
<td>NR</td>
<td>NR</td>
<td>100</td>
<td>PCR confirmed</td>
<td>21</td>
<td>21.00%</td>
<td>Absence of leading signs symptoms</td>
<td>Outcomes were checked before report completion (May 5)</td>
</tr>
<tr>
<td>Chua 2020<sup>39</sup></td>
<td>China/S Korea/HK</td>
<td>During the first wave in Korea, HK SAR, and Wuhan by admission date (21/01-30/05 2020)</td>
<td>Children (<19 years) from Korea, HK SAR, and Wuhan infected with SARS-CoV-2</td>
<td>Hospital admission</td>
<td>0-18</td>
<td>254</td>
<td>169</td>
<td>423</td>
<td>PCR confirmed</td>
<td>111</td>
<td>26.24%</td>
<td>NR</td>
<td>Followed up until asymptomatic with two negative PCR at least 24 hours apart.</td>
</tr>
<tr>
<td>Maltezou 2020<sup>28</sup></td>
<td>Greece</td>
<td>26 February - 30 June, 2020</td>
<td>Children (<19 years) infected with SARS-CoV-2</td>
<td>Disease surveillance</td>
<td>0-18</td>
<td>106</td>
<td>97</td>
<td>203</td>
<td>PCR confirmed</td>
<td>111</td>
<td>54.68%</td>
<td>Absence of symptoms</td>
<td>NR</td>
</tr>
<tr>
<td>Sahu 2021<sup>43</sup></td>
<td>India</td>
<td>31 March - 25 May 25, 2020</td>
<td>All patients infected with SARS-CoV-2 and admitted to a super-speciality hospital in India</td>
<td>Hospital admission</td>
<td>18-81</td>
<td>140</td>
<td>78</td>
<td>218</td>
<td>PCR confirmed</td>
<td>61</td>
<td>27.98%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Alshukry 2020<sup>25</sup></td>
<td>Kuwait</td>
<td>February 24 - May 24, 2020</td>
<td>All patients infected with SARS-CoV-2 and admitted to Al- Ahmad Hospital in Kuwait</td>
<td>Hospital admission</td>
<td>0-90</td>
<td>262</td>
<td>155</td>
<td>417</td>
<td>PCR confirmed</td>
<td>164</td>
<td>39.33%</td>
<td>Patients with absolutely no symptoms</td>
<td>Discharged from the hospital when two negative PCR test results were obtained, 48 hours apart</td>
</tr>
<tr>
<td>Meyts 2021<sup>34</sup></td>
<td>Global</td>
<td>March 16 - June 30, 2020</td>
<td>Patients with rare inborn errors of immunity (IEI) diagnosed with SARS-CoV-2 infection</td>
<td>Disease survey in patients with inborn errors of immunity (IEI)</td>
<td>0-75+</td>
<td>60</td>
<td>33</td>
<td>94</td>
<td>PCR/serology confirmed</td>
<td>10</td>
<td>10.64%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Pongpipul 2020<sup>42</sup></td>
<td>Thailand</td>
<td>January 8 - April 16, 2020</td>
<td>All patients infected with SARS-CoV-2 and admitted to a super-speciality hospital in Thailand</td>
<td>Hospital admission</td>
<td>0-79</td>
<td>113</td>
<td>80</td>
<td>193</td>
<td>PCR confirmed</td>
<td>10</td>
<td>5.18%</td>
<td>No symptoms or signs throughout the course of infection</td>
<td>FU until recovery (discharge) or death</td>
</tr>
</tbody>
</table>

^{Page 8 of 18}
Paper	Country	Data collection period	Study population	Study setting	Age range (years)	Male	Female	No. all SARS-CoV-2 infected persons	SARS-CoV-2 infection definition	No. persons with asymptomatic SARS-CoV-2 infection	Proportion of asymptomatic cases	Asymptomatic case definition	Follow-up period	
Li 20202	Singapore	January 2 - May 9, 2020	All children infected with SARS-CoV-2	Hospital admission	0-16	23	16	39	PCR confirmed	15	38.46%	No clinical signs or symptoms throughout the course of their infection	Discharged from hospital when Negative SARS-CoV-2 PCR results on 2 consecutive days	
Mannan 202155	Bangladesh	April 1 - June 30, 2020	Patients infected with SARS-CoV-2 and admitted to six different hospitals and recovered	Hospital isolation/treatment	0-60+	764	256	1021	PCR confirmed	111	10.87%	NR	4 weeks after two consecutive negative RT-PCR 24 hours apart	
Marcus 202096	Israel	Mid-February to mid-September, 2020	All patients with primary immunodeficiency (PID) and tested positive for SARS-CoV-2 infection	Disease surveillance in patients with primary immunodeficiency	0-60	12	8	20	PCR confirmed/clinically diagnosed	6	30.00%	NR	NR	
Temel 202044	Turkey	March 22 - May 1, 2020	Paediatric patients infected with SARS-CoV-2	Hospital admission	1-16	40	41	81	PCR confirmed	21	25.93%	Without any symptoms	FU until discharge with clinical improvement	
Yayla 202170	Turkey	March 11 - May 23, 2020	Paediatric patients infected with SARS-CoV-2	Hospital admission	0-17	35	42	77	PCR confirmed	19	24.68%	Without any clinical or radiological findings	NR	
Zhang 202041	China	31 December 2019 to 18 April 2020	HCWs infected with SARS-CoV-2 in two hospitals	Disease surveillance in healthcare workers	0-50+	145	279	424	PCR/serology confirmed	148	34.91%	NR	NR	
Hurst 202177	USA	April 7 - July 16, 2020	Paediatric patients (<21 years) infected with SARS-CoV-2	Disease surveillance in children/adolescents exposed with COVID cases	0-21	135	158	293	PCR confirmed	87	29.69%	No symptoms (with follow-up)	7 days after enrolment; for ongoing symptoms - day 14, day 28 or until symptom resolution	
Bailie 202152	Australia	April 01, 2020	Adults repatriated from a cruise ship in setting of COVID-19 outbreak	Repatriation screening/quarantine	36-81	29	16	45	PCR/serology confirmed	19	42.22%	No symptoms	Participants with an initial PCR-positive respiratory swab swabbed every 1–2 days until they returned two consecutive negative swabs, or reached end of their isolation/quarantine period, whichever occurred sooner.	
Paper	Country	Data collection period	Study population	Study setting	Age range (years)	Male	Female	No. all SARS-CoV-2 infected persons	SARS-CoV-2 infection definition	No. persons with asymptomatic SARS-CoV-2 infection	Proportion of asymptomatic cases	Asymptomatic case definition	Follow-up period	
-----------------------	-------------	------------------------	---	---	-------------------	------	--------	---------------------------------	----------------------------------	--------------------------------	---------------------------------	-----------------------------	-----------------------------	-----------------------------
Grechukhina 202029	USA	March 3 - May 11, 2020	Pregnant and post-partum women infected with SARS-CoV-2	Hospital admission	<25-40+	0	141	141	PCR confirmed		31.21%	No symptoms	NR	
Kumar 202131	India	March 8 - May 31, 2020	All reported cases of SARS-CoV-2 infection in the Karnataka state	Disease surveillance	16-65	2095	1309	3404	PCR confirmed		90.95%	Absence of symptoms	NR	
Krajcar 202031	Croatia	March 12-May 12 (first wave) and June 19-July 19, 2020 (second wave)	Children and adolescents (0-19 years) infected with SARS-CoV-2 in Croatia	Hospital isolation/treatment	0-19	99	131	230	PCR confirmed		41.30%	No symptoms before and up to four weeks after testing	Up to four weeks after testing	
Peng 202141	China	January 15 - March 20, 2020	Paediatric patients with SARS-CoV-2 infection	Hospital isolation/treatment	0-15	118	83	201	PCR confirmed		32.34%	No clinical symptoms with or without abnormal findings on chest CT or abnormal laboratory tests	15 days	
Chaudhary 202027	Nepal	June 15 to July 15, 2020	Adult patients (aged ≥ 18 years) admitted to the 5 COVID-19 hospitals in Nepal	Hospital isolation/treatment	0-18	181	39	220	PCR confirmed		72.27%	No symptom throughout follow-up	Up to discharge, death or referral	
Panagiotakopoulos 202035	USA	March 1–May 30,2020	Pregnant women infected with SARS-CoV-2 and admitted to hospital for treatment of COVID-19 and/or obstetric reason	Disease surveillance/lung CT or abnormal laborotory tests	17-54	0	105	105	PCR confirmed/clinically diagnosed	50	47.62%	NR	NR	
Hasan 202050	Bangladesh	April 27 to May 26, 2020	Adult patients (aged ≥ 18 years) infected with SARS-CoV-2	Online-based cross-sectional survey	<20-60+	173	64	237	PCR confirmed		13.08%	NR	NR	
Mattar 202050	Colombia	April 9 - May 16, 2020	SARS-CoV-2 infected patients	Disease surveillance	1-95	16	18	35	PCR confirmed		48.57%	NR	NR	
Son 202052	Korea	January 16 - March 24, 2020	SARS-CoV-2 infected patients	Disease surveillance	0-70+	49	59	108	PCR confirmed		3.70%	Completely no symptoms during the follow up period	NR	
Khan 202070	China (mainland)	February 4 - March 17, 2020	Patients infected with SARS-CoV-2 and admitted to the Fenceng hospital	Hospital admission/isolation	11-72	52	70	122	PCR confirmed		6.56%	NR	Followed up until discharge/death (February 4 - March 17, 2020)	
3.2. Meta-Analysis
In total, 6556 out of 14850 persons (44.1%, 95% CI 43.3%–45.0%) were reported as asymptomatic throughout the course of infection. The asymptomatic proportion peaked (36.2%, 95% CI: 26.0%–46.5%) at 13.5 years of age, then gradually decreased, levelling out in adults aged 40-50 years, before dropping to 8.1% (95% CI: 3.4%–12.7%) by 90.5 years.

Fig 2. Estimates of asymptomatic proportion by age*

*The size of each circle is proportional to the total number of SARS-CoV-2 positive persons reported in each age group in individual studies, with larger circles indicating a larger sample size.

4. Discussion
COVID-19 vaccines are highly effective at preventing severe illness, hospitalizations, and death, and have been critical for control the COVID-19 pandemic to restore normal social and economic life.63 The COVID-19 vaccine rollout has been extended to children from 5 years for age in many countries including the US, Australia and Europe. Children and young people have been frequently infected with the Delta or Omicron variants due to high transmissibility and as they remain an under-vaccinated group. Previous reviews and meta-analyses5,7,11,13,16 have demonstrated that children have the highest proportion of asymptomatic infections, which may jeopardize efforts to prevent transmission within a community. However, these reviews only investigated the proportion with asymptomatic infection across wide age ranges such as adults and children. Our review and meta-analysis is the first to calculate more granular estimates of asymptomatic SARS-CoV-2 infection across the age range.

We found a high proportion of asymptomatic infections in children and young people consistent with previous reviews, which reported the highest proportions in children, and lower in adults, especially older adults.5,7,11,13,16 A recent review estimated the pooled percentage of asymptomatic infection to be 41%,11 which is similar to our study result of 44%. Four other reviews reported that at least one third of SARS-CoV-2 infections were asymptomatic.4,12,15,18 Systematic reviews which were conducted during the early stages of the COVID-19 pandemic,5-7,9,10,17,19 however, found that the proportion with asymptomatic infection was
much lower than our estimates (13–24%), except for one review reporting a pooled percentage of asymptomatic cases of 48%. This review included 16 studies in total and four of them purposefully selected and enrolled asymptomatic SARS-CoV-2 infected persons with 100% of asymptomatic infections. Another review also found that the reported proportion of asymptomatic infections was lower before February 2020 (10%) than after (34%). This may be due to changes in testing practices, mitigation measures, and dynamics of different circulating variants over time.

Although we attempted to use best available evidence, high heterogeneities were observed in studies. The ideal study design would be a longitudinal study of population, randomly selected to ensure sample was representative and true asymptomatic infections were captured with a well-defined follow up period. However, testing and isolation policies, study settings, follow-up period, and definition of SARS-CoV-2 infection and asymptomatic cases varied between studies. The study settings ranged from hospital admission to universal screening. COVID-19 disease control policies varied between countries. In some countries such as China and Korea, the majority of infected individuals were hospitalised for treatment or isolation regardless of being symptomatic or asymptomatic. In most other countries, asymptomatic cases have only been required to isolate at home. In studies involving hospital admission, the case notes of hospitalised patients were retrospectively reviewed and proportions of asymptomatic cases reported. Almost two thirds of studies included in the review were studies involving hospitalised patients. Consequently, the proportion of asymptomatic infections may be underestimated if symptomatic patients were more likely to be admitted to hospital. Only a small number of community screening studies were identified in our review, mainly because they were cross-sectional and did not follow up asymptomatic individuals. In the inpatient/outpatient screening studies, patients were admitted to hospital for non-COVID-19 conditions such as obstetric admission, dialysis, and elective surgery, which may not represent the broader population in terms of infection and transmission risk. Additionally, asymptomatic infection rates may be overestimated in COVID-19 testing clinics and outbreak settings such as passengers of cruise ships and airplanes.

The follow up period varied significantly between studies. Each publication was meticulously scrutinized and studies were excluded where asymptomatic infections could not adequately be distinguished from pre-symptomatic infections. In the hospital admission studies, cases were frequently followed up. Duration of follow-up varied from a predefined period of days after test positivity or until two negative PCR tests at least 24 hours apart. Some studies, however, did not specify the duration of follow-up in the publication.

The definition of SARS-CoV-2 and asymptomatic infections used were inconsistent between studies. At the beginning of the pandemic, only respiratory symptoms were considered, and loss of taste or smell was not recognized. Some studies defined SARS-CoV-2 infections using clinical diagnostic criteria including radiology findings without a positive PCR-serology test. Although the majority of patients included in our meta-analysis were diagnosed on PCR testing, a small number of patients were diagnosed based on history of exposure to SARS-CoV-2 infection and/or suggestive clinical symptoms of pneumonia but without a positive PCR test.

Since the onset of the SARS-CoV-2 pandemic, multiple new variants of concern have emerged, including the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2). In December 2020, the UK was first country to start the COVID-19 vaccine roll-out followed by other countries around the world. The Delta variant first detected in India in October 2020 and became the dominant variant globally until the Omicron variant emerged and spread rapidly across the world in November 2021. The population immunity gained through a combination of infection and vaccination has increased over time. Both variants are transmissible than previously circulating strains and Delta has been shown to cause more severe disease in adults compared to Alpha. It is difficult to determine whether Omicron intrinsically causes milder disease than previous variants of concern. The proportion of asymptomatic infections with Omicron is estimated to be much higher, which may facilitate more rapid transmission in addition to the variant’s ability to invade both natural and vaccine-induced immunity. Our review included studies published before 1 March 2021 and only included from pre-vaccine studies era. The proportion of asymptomatic infections reported in our review does not reflect current epidemiological features of the Delta or Omicron variant. The epidemiology of early variants is different to Omicron.
Mass vaccination against COVID-19 with current available vaccines has been highly effective in preventing severe disease and deaths, and reducing healthcare costs and burden.71-73 One modelling study demonstrated that the benefits of any COVID-19 vaccine, whether highly, moderately, or modestly efficacious by any trial-defined outcome, would depend on how swiftly and broadly it was implemented.74 Given the limited short-term protection provided by current mRNA vaccines against infection nor transmission with the Omicron variant, the priority must be to protect the most vulnerable, especially older adults and those with underlying comorbidities, by ensuring maximum vaccine uptake, boosters as needed and evidence-based mitigations.

Our finding of higher proportion of asymptomatic infections at younger ages suggests that we need to continue to monitor this group closely, especially given that there is currently no vaccine for children under 5 years of age and vaccine uptake is lower in adolescents and children aged 5 years and over compared to adults. An online survey found a higher proportion of parents refused vaccination for their child than the proportion of adults who refused COVID-19 vaccination for themselves.75

Since current mRNA vaccines do not prevent infection or transmission with the Omicron variant, further studies are needed on variant-specific mRNA vaccines and other vaccine platforms. Vaccines with a potential to prevent infection in addition to severe COVID-19 could help reduce community transmission and provide population protection as with the nasal influenza vaccines for children.

Supplementary Materials: Review Protocol.

Author Contributions: Conceptualization, S.L. and H.S.M.; literature search and review, B.W., P.A., S.E., H.M, Z.A., C.B., A.T. and S.G.; data extraction, B.W., P.A., S.E., H.M., Z.A., A.T., and C.B.; data analysis, B.W.; writing—original draft preparation, B.W.; writing—review and editing, B.W., P.A., S.E., H.M, Z.A., C.B., A.T., S.G., S.L., and H.S.M.. All authors have read and agreed to the published version of the manuscript.

Funding: The authors did not receive funding for this project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are accessible on electronic databases (PubMed, GoogleScholar, Scopus, Embase, Medline, Web of Science).

Acknowledgments: H.S.M. is supported by a National Health and Medical Research Council (NHMRC) Practitioner Fellowship. The authors would like to express their appreciation to Ms. Natalie Dempster for her generous support and assistance with the literature search. Authors would also like to thank Professor Chang-Hoon Kim at Busan Center for infectious Disease Control and Prevention, and Dr Guang Han at Hubei Cancer Hospital for kindly providing additional information.

Conflicts of Interest: H.S.M. is an investigator on vaccine trials sponsored by the GSK group of companies, Pfizer, Sanofi, and Merck. H.S.M.’s, B.W.’s, P.A.’s, and H.M.’s institution receives funding for investigator-led studies from industry, including Pfizer and Sanofi Pasteur; H.S.M., B.W., P.A., and H.M. receive no personal payments from industry. Others have no potential conflicts of interest.

References

69. Murray CJL. COVID-19 will continue but the end of the pandemic is near. Lancet. 2022 Jan 29;399(10323):417-9. DOI: 10.1016/S0140-6736(22)00100-3

