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Estimation of undetected cases

Data preprocessing

Demographic and mortality data are available from the Italian Institute of Statistics’
(ISTAT) website [1, 2]. ISTAT collects mortality data from the Italian National
register office for the resident population (ANPR). Daily deaths from 2015 to 2019
are available stratified by gender and age. For 2020, data are available up to April
15 listing 6866 municipalities and covering 86% of the Italian population. For each
region, the municipalities list include those for which the death data set is complete
and we, accordingly, extracted demographic data for these municipalities. Here, we
considered seven age groups: 0-20, 21-40, 41-50, 51-60, 61-70, 71-80 and 81+. For
each region and for each age range, we counted the daily deaths for the period
January to April 15" 2015-2020. For each region, we then summed up daily deaths
of municipalities by age groups. Similarly, from the demographic data we calculated
the population size of each age group. Due to the unavailability of demographic
data for 2020, we used 2019 data as a proxy of 2020. To calculate the Infection
Fatality Rate (IFR) for Italy, we considered mortality and demographic data of

municipalities across all regions for which data are complete and followed the same

procedure.
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Figure S1 Excess Deaths. Weekly deaths for the period of January 1%t to April 15t for
2015-2020 of different regions in Italy. Data are acquired from ISTAT and include 6866
municipalities, covering 86% of ltalian population. Light blue points: all-cause deaths in
2015-2019; blue line with grey shaded area: spline fit of 2015-2019 deaths; black line: all-cause
deaths in 2020.

Bayesian estimation of COVID-19 IFR

To estimate IFR, we implemented maximum likelihood estimation for the binomial
distribution of the mortality rate under a Bayesian framework. Our model is adopted
from [3] and modified accordingly. The model assumes that the observed number
of deaths in the COVID-19 period (February 20" to April 15™") of each year is
binomially distributed according to:
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Da,y ~ Binomial(a, Vay) for y € [2015,2019)]
D,y ~ Binomial(d, + 5§°Vid -0, Na2019) for y = 2020

where a denotes the seven age groups, mentioned in the previous section and y
denotes the year. D,y and N,y denote total death and population of age a in year
1y, respectively. 0, is the baseline death rate of age a and is heterogeneous across
age groups. To model deaths in 2020, in addition to d,, we considered a COVID-
19 death rate, 6C°¥d multiplied with the exposed fraction, . 6°¥id is the IFR
of age a and it is assumed to be absent in the previous years. 6°Vid is sampled
from a uniform distribution with range between 0 and 0.2. IFR is less than the
Case fatality rate (CFR) if and only if the detected cases are more likely to lead to
death than undetected cases, which is indeed the case for COVID-19. For COVID-
19, the reported CFR is within the range of 5% to 15% and several estimation
methods resulted IFR well below 20% including the 70+ age group [4, 5, 6, 7, 8, 9].
Therefore the upper bound for IFR has been chosen to 0.2. § is the infection rate
(IR) or attack rate and denotes the fraction of the population that is exposed.
As supported by a recent seroprevalence study [10] it is assumed to be constant
across all age groups. Moreover, seroprevalence studies indicate that population-
wide immunity is, in general, less than 50% [11, 10, 12], thus we sampled € from a
beta distribution for which the density peaks between 20% and 40%. In a nutshell,

Covid
as 5a o s and

we are estimating fifteen parameters (considering seven age groups), J
0 from the observation of death data of previous years (2015-2020) classified by
age groups (42 data points) given the age distribution of population (2015-2020, 42
values).

We used the following priors to estimate the d,, §$°V'9 and 6:

da ~ Uniform(0,0.1)
69°vid  Uniform(0, 0.2)
6 ~ Beta(3,5)

For each region, the model was evaluated using the Markov Chain Monte Carlo
(MCMC) sampling method. We used 30 independent chains; each drew 50,000 sam-
ples from the joint posterior distribution. We discarded the first 5000 as burn-in
periods from each chain. We merged the results of all 30 independent chains and
calculated the 95% credible interval by using the 95" quantile of the posterior
distribution. Posterior distribution of parameters are shown in Fig. S3. The total
number of infections for each region was calculated from the definition of IFR, which
is death over total infection. Here we considered the number of deaths as the excess
deaths of February 20" to April 15*" with respect to the average of the previous
years (2015-2019). Simulation results are reproducible and were carried out using
R version 3.6.2 [13, 14, 15, 16].
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Figure S2 Age-specific IFR. Boxplot of estimated IFR across the age ranges and of overall
IFR, for Italy and different regions. IFR is estimated by Bayesian MCMC framework (see
Methods). IFR is significantly higher in the 814 age group.
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Figure S3 MCMC results. Posterior distribution of baseline lethality rates (d,), IFR (6$°V14)
for seven age groups, and Infection Rate (6) of 30 independent MCMC chains. To estimate da,
§Covid 19 we used following priors: Uniform(0,0.1), Uniform(0,0.2), Beta(3,5).
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Estimation of regionwise infection fatality rate (IFR)

The severity of an epidemic can be characterized by the case fatality rate (CFR),
defined as the percentage of deaths among the total number of diagnosed infections,
and has been of high interest since the very beginning of the COVID-19 outbreak
[17, 18]. On the other hand, infection fatality rate (IFR) is defined as the percentage
of deaths among all infections, including the undiagnosed infections. For COVID-
19, the true number of cases is unknown as a substantial portion of the infections
are either asymptomatic or mildly symptomatic and remained undetected [19, 20].
At the beginning of the pandemic, testing was limited only to the symptomatic
patients due to clinical findings suggesting that symptomatic cases are the major
source of disease spreading [21, 22, 23, 24, 25]. It is, therefore, very difficult to get
a reliable estimate of the true number of infections. A few methods have already
been proposed to quantify the true number of infections and, hence, a realistic IFR
[4, 26, 5].

To estimate undetected infections amid the COVID-19 pandemic, we analyzed
the mortality rate of previous years and deaths in the year 2020. Demographic and
death data of the Italian regions have been collected from the Italian Institute of
Statistics (ISTAT). According to the report published by ISTAT, from the first
COVID-19 death in Ttaly (February 20" 2020) to March 31%* 2020, excess death
in 2020 was 25,354 (total 90,946) compared to the previous five years (65,592 as
average of 2015-2019). 54% of the additional deaths were diagnosed as COVID-
19 positive [27]. In Fig. S1 we show region-wise, weekly deaths from January 1°* to
April 15*" 2020. For the Italian regions where the pandemic started, like Lombardia,
Veneto, Piemonte, the observed mortality of this year was substantially higher than
previous years. For these regions, we estimated the total infection and associated
IFR by implementing a Bayesian framework by adapting a standard binomial model
(see previous section and [3]).

After the first identification of a COVID-19 case on February 20" 2020 in Codogno
Hospital, near Lodi, Lombardia [28], the number of reported positive cases increased
to 36 in the next 24 hours and, interestingly, the new cases were not linked to the
first case, suggesting that the virus was circulating before its first identification.
This is reflected in our estimation of undetected cases (Table 2). High increase in
death over this year was observed in some cities, like Bergamo (568%), Cremona
(391%), Lodi (371%), Brescia (291%), Piacenza (264%), Parma (208%) [27]. In the
northern regions of Italy, especially where the initial outbreak occurred, for example
in Emilia Romagna, Piemonte and Veneto, undetected infections were nearly 10 fold
higher than the reported cases; and in Lombardia more than 21 fold. We observed
substantial heterogeneity of the IFR across different age groups. For the age ranges
below 60, it was determined as low as 0.05%. IFR was substantially higher in the 814
age group (9.5% to 20%, Fig. S2). Despite Italy having the highest COVID-19 deaths
in Europe, estimated infection rates (IR) were relatively low (highest in Lombardia
~ 13%) across all regions, and hence the population was far from reaching the
herd immunity threshold (~ 70%, assuming no previous immune memory). Our
estimated total infections (detected + undetected) are close to the numbers reported
in [29)].
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Correlation between undetected cases and test frequency

Despite being hit hardest by COVID-19, some of the Italian regions handled this cri-
sis situation better and managed to contain the virus. For instance, in Veneto, CFR
was 6.4%, 3 fold lower when compared to Lombardia at 18.3%. This is also reflected
in the IR, 2.61% in Veneto while in Lombardia it was 13% despite their geographical
proximity. The testing strategy implemented by these two regions was completely
different. Most regions, like Lombardia and Piemonte, followed the World Health
Organization (WHO) and central health authority indications by mainly testing the
symptomatic cases, while Veneto implemented a much more extensive population
testing. Toscana followed a testing strategy very similar to Veneto by ramping up
its testing capacity quickly. To determine whether implementing different testing
strategies succeeded in keeping the undetected and the overall infection amount
under control, we investigated the association between the rate of tests performed
by regions and total infections (Table 2) in the early phase of the pandemic. We
measured the Kendall and Distance correlation between the total infections (up
to April 15" and including undetected infections) normalized by the population
size and the total tests performed (up to April 15'") per reported infection. This
yielded a significant correlation with a coefficient of -0.67 and 0.81 for Kendall and
Distance correlation (Fig. 2). Moreover, the number of tests per infection was found
strongly correlated with the CFR/IFR ratio (Fig. S4), which exceeds 1 when unde-
tected cases are present. Larger deviation from 1 in CFR/IFR ratio indicates higher

amount of undetected cases.
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Figure S4 Impact of the testing frequency on the regional epidemics. Kendall and
Distance correlation between the number of tests performed per infection and CFR to IFR ratio.
Data are considered up to April 15™. Light blue line: linear regression fit; gray shaded area:
standard error; black dots: region-specific values; R: correlation coefficient; p: significance.
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SECIRD Models

Reference model

The implemented SECIRD ( Susceptible-Exposed-Carrier-Infected-Recovered-Dead)
model is a deterministic ODE model with the features of SARS-CoV-2 viral infec-
tions. It distinguishes healthy individuals without immune memory of COVID-19
(susceptible, S), infected individuals without symptoms but not yet infectious (ex-
posed, F) and infected individuals without symptoms who are infectious (carrier, Cr,
CRr). The carriers are distinguished into asymptomatic (Cr) and pre-symptomatic
infected (Ci), determined as o and (1 — «) portion of the exposed, respectively.
The pre-symptomatic infected are categorized into detected symptomatic (I and
Ir) and undetected mild-symptomatic (Ix), determined as p and (1 — p) portion of
the carrier (Cf). Out of the Cf, p fraction required hospitalization (1) and (1 — p)
fraction are symptomatic but recover without hospitalization (Ig). Further, com-
partments for hospitalization (H) and intensive care units (U) were introduced to
monitor the load on the healthcare system. Similarly, ¢ and (1 — 4) represent the
fraction of H that requires ICU (Hy) or recovered from hospital (Hg), respectively.
§ and (1 — J) represent the fraction of ICU who subsequently die (Up) or recover
(Ur). The recovered compartment (R) consists of recovered patients from different
states of the infection. The model is summarized in Fig. 1A and details of parameter

ranges used to evaluate the regional outbreak is in Table 1.
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Reference model equations: Equations of the Reference model used to fit the
data (Fig. 4A and Fig. S7) and to evaluate R (Fig. 4B and Fig. S8). The description

of parameters is available in Table 1. Note, pu = %

ds (Cr+Cr+Ix +B(Ig + Ir))
-~ t
i R (t) N S
dE I 1 I

dE :Rl(t)(CIJFORJr x +B8Uu + R))SiRQE
dt N

d

% — (1—a)R,E — RsCy

e

TtR = OzRQE - RQCR

dl

ch = up(t)RsC — Rely

dl

75 =p(1—=p@) R3Cr — Rulg

dlx

i (1 —p) R3Cr — Rylx ”

% — 9(t)ReIs — ReHy
LZ%R = (1-9(t)) Rely — RsHRr
% =94(t)R7Hy — R10Up
R — (1- 6()) ReHy — Rl
M2 — Ruln+ Ryt RsUn
d‘:% = R9gCr + Rulx

D o UD

dt
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Testing model equations: Equations of the Testing model used to quantify
the impact of the undetected reduction on the hospitalized and dead compartments
(Fig. 5A,B) and on the R(t) curve (Fig. S10). It includes an additional compartment
(Ixp) with respect to the basic Reference Model which represents the additional
Detected Infected with infectivity power reduced to 3. Note, pu = %, wi(t) =

M/ftfﬁ and po(t) = ﬁ%/(t) , such that gy (¢) + po(t) =1 —p .

[e3 —

% _ —Rl(t)(CI +Cr + Ix +£(IH +1Ir+Ixp)) ¢
d£ _ Rl(t)(C]+CR+IX Jrﬂ(IH +IR+IXD))S*R2E
dt N
d
ﬁ = (1 - OZ)R2E* R3C1
dt
dc
TtR = OéRQE - RQCR
dI
d—f = up(t)RsCy — Rely
dI
7? =pu(1=p(t)) RsCr — Rylg
dI
d—f = 1 (t)R3Cr — Rulx
dI
C;D = ua(t)R3Cr — Ralxp (2)
dH
GT:U = 9(t)Rely — R7Hy
dH
TtR =(1-9(t) Rely — RsHpg
d
% = 5(t)R7HU — R1oUp
d
R = (1-8(0) ReHy — RsUn
dR
dTZ = Rylxp + Ralp+ RsHp+ RsUg
d
dhx _ RoCr + Rulx
dt
dD
= Rio(t)Up

dt
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Capacity model equations: Equations of the Capacity model used to simu-
late the infection dynamics with limited hospital and ICU capacity (Fig. 6A and
Fig. S11) and estimate its impact on the death toll (Fig. 6B). fyim and fuiim
functions are included in the equations to drive away the flux toward the dead com-
partment, from infected or hospitalized respectively, when hospital or ICU limits
g

are reached. Note, p = ==

10
exp(HU + Hg — Hlim)lo =1 when Hy;m<Hgr+Hu
leim = 10
=0 when Hy;m>Hr+Hy

14+ eXp(HU + HR — Hlim)
Futim = exp(Up + Ur — Upim)*° 10‘—1 when Uyin <Up+Ur
utim 1+ eXp(UD +Ugr — Ulim)lo

=0 when U;j, >Up+Ugr

ds (Cr+Cr+1Ix+ Iy +Ir+1p))

i t
7 Ry (t) N o
I I In+Ip+1
dE _ p Ot Crtlx 4 bUut+1rt1p) g o o
dt N
11— a)RE - Ry
dt
dc
Tf =alE — RyCp
dly
— = () BsCr = Rel (1= fratim) = Roln frrtim
I
d—f’ = p (1= p(t) RsCr — Rulg
dI
7: = (1 —pu) R3Cr — RyIx
dH
ditU =9(t)Relu(1 — friim) — RrHy @
dH
TtR = (1= 9(t)Relu(1 — friim) — RsHr
dU
dTD = 0(t)R7Hu (1 — fuiim) — RioUp
dU
Tf =(1-6(t)R7Hu(1 — fuiim) — RsUr
dI
ditD = RGIHleim — R7Ip
dR
th =Rylp+ RsHr+ RsUg
dRx
_ I
i R90R+ R4 X
dD

o= R1o(t)Up + R7 X7 futim + R7Ip
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TestCap equations: To understand the combined effect of enhanced testing and
extended infrastructure upon death toll (Fig. 6), we introduced Ixp compartment
into the Capacity Model. We sequentially drop the undetected fraction (f) starting
from its original value (Table 2) to 60% considering early (starting from one week
before lockdown) and late (starting from one week post lockdown) testing strategy.
Here we have used elevated hospital and ICU capacity to represent no bottleneck
situation of health care system. Note, u = }:—57 pi(t) = ”/1(1% and pa(t) =
ﬁ%/ogt) , such that pi(t) + pe(t) =1—p .

as (Cr+Cr+Ix +BUg+Ir+1Ip+Ixp))
@ :Rl(t)(CI+CR+IX+6(IH+IR+ID+IXD))S—R2E
dt N

d

% — (1—a)RyE — RyCy

dC

TtR = OLRQE - RQCR

dl g

T pp(t)R3Cr — Relg (1 — fraiim) — Relm fH1im

dl

7: =pu(1=p(t)) RsCr — Rylg

dl

Tf = p1(t)R3Cr — Rylx

dIxp

= w2 (t)R3Cr — Ralxp
dt (5)

dH,
TtU =9(t)ReIr (1 — friim) — RrHy
dH
dTR = (1= 9(t))ReIu(1 = friim) — RsHp
dU
TtD = 5(t)R7HU(1 - fUlim) — RiwoUp
du
dTR = (1-6(t))ReHy(1 — forim) — RsUr
dRz
W = R4IXD =+ R4IR + RSHR + RSUR
dRx
anx I

i RgCR"‘ R4 X

dD

E = Rl()(t)UD + R7HUfUlim + R7ID
dIp

-, — I im 1
7 Rely fr R;Ip
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R calculation
The basic reproduction number Ry is defined as the expected number of secondary
cases produced by a single infection in a completely susceptible population.

A common approach to derive this quantity for compartment models with multiple
infected species is through the use of the next generation matrix method. The
method was proposed by Diekmann et al. [30] and further elaborated by van den
Driessche and Watmough [31]. Here we give an outline of the method for our model,
but the proofs and further details can be found in [31] and [32].

First, the whole population is divided into n compartments in which there are
m < n infected compartments which contribute to new infections. In our case,
n = 14 and m = 6, with the infected compartments constituted by the exposed indi-
viduals (E), carriers who develop symptoms later (Cy), carriers who recover asymp-
tomatically (Cr), undetected symptomatic people (Ix ), identified symptomatic pa-
tients requiring hospitalization eventually (Iz) and identified infected individuals
who recover without any hospitalization (Ig). Let z;, i =1,2,3,..., m be the num-
bers of infected individuals in the i-th infected compartment at time ¢. In general,

we can rewrite the model equations in the form:

Wi = fia@) + o (@) o7 (@), (©
where the time variation of infected people in the i-th compartment (dz;/dt) is
given by the rate of appearance of new infections in the compartment (f;), plus the
rate of transfer of infected individuals into the compartment (v;"), minus the rate
of transfer of infected individuals out of the compartment (v; ). We now define the
quantities F' and V as the Jacobian matrices of f; and v; — v

)

respectively. We
evaluate these matrices at the Disease Free Equilibrium (DFE), the point at which
there are no infected individuals. In our system, the F' and V matrix have the form:

0 Risg Risp Riso R1805 ]%150/8
0 0 0 0 0 0
P 0 0 0 0 0 0 (7)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Ro 0 0 0 0 0
~(1- )R Ry 0 0 0 0
v — —aRs 0 Ry O 0 0 (8)
0 7(1 - ,[L)Rg 0 Ry O 0
0 7,LL,DR3 0 0 R6 0
0 —u(l—p)Rs 0 0 0 Ry

where sg = Sp/Ng, with Sy and Ny being the initial number of susceptible and
total individuals, respectively, and the other parameters have been introduced in
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the main text. The DFE point is assumed to be close to the start of the epidemics
and evaluating F and V there allows to analyze a linearization of the epidemic
dynamics when the population is almost all susceptible. Once the F' and V matrices

are calculated, we define the next generation matrix G as
G=FVvH (9)

that is, given by the product of the matrix describing the generation of new infected
individuals times the inverse of the matrix describing the net transfer of individuals
across the infected compartments. We can think of the elements g;; of G as the ex-
pected number of secondary infections of compartment ¢ caused by a single infected
individual of compartment j. The basic reproduction number is then obtained by
calculating the spectral radius of G, i.e. its dominant eigenvalue. For our system,
this quantity reads:

_ a l-a (I-o)1-p) BA-c)d-—pp Bl—a)pp
Ro = R1sg Rng s + s + e + e .

(10)

We can arrive to the same conclusion by using the formal definition of the basic
reproduction number. Indeed, the chance of transmission of the disease between
two individuals is directly proportional to the contact frequency (X), i.e. how many
close contacts a person makes on an average per day. If we assume that the virus
has an intrinsic transmission probability of v during each of these close contacts,
the parameter R; depicts the overall chance of transmission per day due to close
contacts and is given by R; = Av. To calculate Ry, we also need to consider the
duration for which an individual remains infectious.

At the start of a new epidemic, it is fair to assume that nobody in the population
is immune to the disease and hence, the number of susceptible population Sy at the
beginning is same as Ny. Hence, the fraction of individuals who can catch infection
initially is one with respect to the overall population. As the disease progresses,
some people get immune to the disease following their recovery and some of them
die due to the infection. This impacts the ratio of susceptible population and the
overall population as both face a reduction due to recovery and death, respectively.
Moreover, due to various political measures and people’s responsiveness to them,
the contact frequency () also decreases thereby impacting R;. Hence, effectively
the reproduction number becomes a time varying number mainly dependent on
S(t)/N(t) and Ry(t). If the infectivity period of an exposed person is I, it would
mean

S(t)

Ri = Rl(t)mfp, (11)

Let’s now investigate what the infectivity period is for the group of individuals of
different compartments of our model. The asymptomatic carriers (Cr) who consist

of « fraction of the exposed population, are capable of infecting others before they
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recover, i.e. for 1/Rg days on an average. The pre-symptomatic carriers (Cf), rep-
resenting (1 — «) fraction of the exposed population can infect others for an average
duration of 1/R3 days. All the undetected symptomatic cases (Iyy), i.e., the fraction
of (1 — a)(1 — p) among the exposed remain infectious for a period of 1/R4 days
following the onset of their symptoms. Similarly, the symptomatic individuals who
eventually get detected but don’t require hospitalization (Ig), i.e., the fraction of
(1 — a)(1 — p)p among the exposed persons remain infectious for 1/R4 days. On
the other hand, the detected symptomatic persons eventually requiring hospital-
ization (Iy) who represents the fraction (1 — «)pp among the exposed people can
spread the infection for 1/Rg days on average following their symptoms onset and
before getting admitted to hospital. We assume that once somebody is admitted
in a hospital cannot infect others because of suitable measures, proper isolation
and protective equipment given to healthcare workers. Once somebody is detected
to have an infection but still at home quarantine can still pose some risk to the
susceptible population depending on how strict regulation the person follows while

in home quarantine. This risk factor is represented by .

Hence, on an average, the infectivity period of the disease is given by the sum-
mation of fractions of exposed present in a particular compartment multiplied by
its average infectivity period. For the detected symptomatic cases, we also need to
take into account the risk factor to spread the infection while in home quarantine.

This would give an average infectivity period of

o l1-a (Q-0)d-p LA-x)-p
Ry = Rs R, Ry Rg

for an exposed person in the population. This would mean that an exposed person

would cause new R; infections in the population, where

R |
(13)

Ste) [ 11—«

R(ty) = Rl(tk)N(tk) R79+ R

1) Bl plta) S+ Brp(t)

where p(t)) denotes the hospitalized fraction of identified symptomatic cases in the
k-th time window.
This is basically our formula for the effective reproduction rate R previously

derived using the next generation matrix method. Similarly, for the Testing model,

we find
0 Riso Risg RisoB Riso8 Risg Risof
0 0 0 0 0 0 0
r_ 0 0 0 0 0 0 0 (14)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Ry 0 o 0 0 0 o0
—(1-a)R, Ry 0 0 0 0 0
_OZRQ 0 Rg 0 0 0 0
V= 0 —upRs3 0 R¢ 0 0 O (15)
0 —u(l - p)R3 0 0 Ry 0 0
0 —/J,le 0 0 0 R4 0
0 —M2R3 0 0 0 0 R4
Following a similar procedure, Rt of Testing Model can be derived as below:
S(te) [1—« l—-a «
R(tx) = R1(t P—— t =
(tr) = Ra( k)N(tk) 7 + Bup(te) 7 TRt
1—« -« 1—«
1-— — )
+ Bu(1 — p(tr)) i + Bpa(t) i + pa (tr) R

Identifiability analysis

Identifiability is an important property of a mechanistic model that needs to be
addressed to make a reliable prediction. Due to the practical limitations, e.g. insuf-
ficient data, measurement noise, unavailability of specific antibodies, etc., all model
state variables are not observable, which limits estimation of model parameters un-
ambiguously. Therefore, in a non-identifiable model, different sets of parameters (or
states) can fit the data equally well but their prediction could be different. This
has enormous implications in the context of COVID-19, especially in terms of wide
variations in model predictions [33]. Structural non-identifiability [34, 35] arises
due to the insufficient mapping of model states to the observables, which allows
ambiguous parameters to vary without changing the observables, hence keeping
x2(0) (sum of squared residuals) on a constant value. Therefore Structural non-
identifiability is linked to the model structure and independent of the accuracy
of available experimental data. A structurally identifiable parameter may still be
practically non-identifiable and is commonly arises due to the lack of information,
quality, and quantity of the considered data-sets.

To check whether our reference model is identifiable, we implemented two different
strategies. We address a) structural identifiability by using synthetic outbreak data
and b) practical identifiability in the setting of the current parameter estimation
protocol with real data (Italy Data on Coronavirus 2020 [36]). In the synthetic
outbreak method, we first randomly assign initial condition of state variables and
parameter values by sampling within its range specified in Table 1. We simulate a
synthetic outbreak by using this parameter set. We then use the outcome of the
synthetic outbreak as model observables (dynamics of all model state variables) and
asked the model to fit the data starting from randomly assigned different parameter
values. This is to check whether the system reaches the same unique solution, which
has been used to generate the synthetic outbreak starting from a different position
in the parameter landscape. Further, structural identifiability is tested around the
optimum by using the Data2Dynamics framework [37] which checks whether any
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directionality exists in the parameter set without sacrificing the quality of fit [38, 39].
We repeated the same procedure by using 100 different synthetic outbreak data and
a typical identifiability plot is represented in Fig. S5.

9% (pointwise) _ _

oz oo Gaa oo 05857 D95 DoviE 0 SR O 0% e s omw  om
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Figure S5 Structural identifiability test. Assessing structural identifiability of Reference
model parameters by using synthetic outbreak data. For an identifiable parameter 6, profile
likelihood X%L (6) shapes like a parabola indicating a good approximation within the interval
shown in each panel. Black lines indicate profile likelihood x%; (6) of parameter 6 and red dot
indicates the minimum value. Red lines display the threshold utilized to asses likelihood-based
confidence regions [39]. A unique minimum in x% (6) (or absence of a flat region) with respect
to 0 in every panel ensure that the model parameters are structurally identifiable.

To check the practical identifiability in the context of current parameter estima-
tion setting, we first fixed all physiological parameters (see Parameterization section
in Methods in the main text) and considered nationwide Italy data for the period
February 24" to May 23", 2020. We estimated behavioral parameters (p, 4, d, Ry,
Ryp) by fitting the active cases, hospitalised, ICU and death data. We considered
a moving time windows of 7 days and therefore checked practical identifiability of
these parameters in each time window. We found that the parameters are iden-
tifiable for more than 75% of the cases. A typical result when all parameters are
identifiable are represented in Fig. S6.
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Figure S6 Practical identifiability. Assessing practical identifiability in the context of current
parameter estimation method. Active infections, hospitalised, ICU, and death data were used as
model observables to find an unique solution in Ri, R10, p, ¥, and § by keeping physiological
parameters fixed. Black lines indicate profile likelihood x%L(O) of parameter 6 and red dot
indicates the minimum value. Red lines display the threshold utilized to asses likelihood-based
confidence regions. Presence of a unique minimum in XQPL(G) with respect to 6 in every panel
ensure that the model parameters are identifiable.

Page 17 of 26



Bandyopadhyay® and Schips” et al.

\l
- —

Abruzzo Basilicata Bolzano Calabria
2000 339 1500 800
1500- N 600 N
N 150 1000, / N\
1000- N\ 100 400 7 \
S 500 /
500- / - 200 /

Campania

Puglia

3000
2000

1000

Sicilia

Legend
= Active Infection

Toscana

s,

7

200(

Umbria

2000
1500
1000

500

5 0k DD Db AL
vV v Vv V Vv
SRS RIS DS

simulation results.

A\

800 S,
1500 600 <&@
1000- 400

500- 200

5 Aok DD Db A A
PR 2> 2R O P A A
AV SRS

DOk e D A LAL
P OFEP PN PN
W s

/F‘\

=y

U
SRS

= icu
~ Dead

PO DD D A LA
AN AN
((@@@@@?Q?g@@;\}ﬁ@ SR

Figure S7 Fit up to July 2379 Active infections, hospitalized, ICU and death data were fitted
in a sliding one week time window. We present other regions that are not included in the Main
text (Fig. 4A). Parameter ranges from Table 1 were used and the behavioural parameters (R,
Rio0, p, ¥, &) were varied in each time window (see Methods); dots: data; continuous lines:
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Figure S8 R curves. Boxplot of R¢ results from the fit of Reference (red) and Asymptomatic
(blue) models. We present other regions that are not included in the Main text (Fig. 3B).
Statistics performed on the Rt values obtained by fitting the data with 100 perturbed parameter
sets (see Methods). Vertical lines correspond to the Lockdown imposition (red) and release
(green). Black dotted horizontal line represents Ry = 1.
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Figure S9 R sensitivity. Sensitivity of R is performed by perturbing each parameter 20% of
its reference value and by simulating the Reference model up to three months. Boxplot represents
the variation in R¢ from its reference point. Ry is highly sensitive to Ry and fi.
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Figure S12 Impact of 5 times more tests. Simulation results from the TestCap model.
Hospital and ICU capacities were set to its maximum value from the beginning and the
undetected fraction (f2) is reduced starting one week before the lockdown (Early, green) or one
week post lockdown (Late, light blue), resembling ~ 5 fold more testing than the average tests
performed per day. Hospitalized is the sum of hospital and ICU patients. The reduction in dead
number with respect to the data (black dots) has been reported as percentage. The black
horizontal line is the capacity (hospital + ICU) before the pandemic.
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