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Estimation of undetected cases
Data preprocessing

Demographic and mortality data are available from the Italian Institute of Statistics’

(ISTAT) website [1, 2]. ISTAT collects mortality data from the Italian National

register office for the resident population (ANPR). Daily deaths from 2015 to 2019

are available stratified by gender and age. For 2020, data are available up to April

15th, listing 6866 municipalities and covering 86% of the Italian population. For each

region, the municipalities list include those for which the death data set is complete

and we, accordingly, extracted demographic data for these municipalities. Here, we

considered seven age groups: 0-20, 21-40, 41-50, 51-60, 61-70, 71-80 and 81+. For

each region and for each age range, we counted the daily deaths for the period

January to April 15th 2015-2020. For each region, we then summed up daily deaths

of municipalities by age groups. Similarly, from the demographic data we calculated

the population size of each age group. Due to the unavailability of demographic

data for 2020, we used 2019 data as a proxy of 2020. To calculate the Infection

Fatality Rate (IFR) for Italy, we considered mortality and demographic data of

municipalities across all regions for which data are complete and followed the same

procedure.

Toscana Trento Valle d'Aosta

Lombardia Marche Piemonte

Italy Emilia Romagna Liguria

Jan Feb Mar Jan Feb Mar Jan Feb Mar

400

600

800

1000

1500

2000

1000

1100

1200

1300

1400

1500

1000

1500

2000

400

500

600

700

20

40

60

80

15000

20000

2000

4000

6000

8000

1000

1200

1400

W
ee

kl
y 

D
ea

th
s

2015−2019
2020
mean 2015−2019

Figure S1 Excess Deaths. Weekly deaths for the period of January 1st to April 15th for
2015-2020 of different regions in Italy. Data are acquired from ISTAT and include 6866
municipalities, covering 86% of Italian population. Light blue points: all-cause deaths in
2015-2019; blue line with grey shaded area: spline fit of 2015-2019 deaths; black line: all-cause
deaths in 2020.

Bayesian estimation of COVID-19 IFR

To estimate IFR, we implemented maximum likelihood estimation for the binomial

distribution of the mortality rate under a Bayesian framework. Our model is adopted

from [3] and modified accordingly. The model assumes that the observed number

of deaths in the COVID-19 period (February 20th to April 15th) of each year is

binomially distributed according to:
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Da,y ∼ Binomial(δa, Na,y) for y ∈ [2015, 2019]

Da,y ∼ Binomial(δa + δCovid
a · θ,Na,2019) for y = 2020

where a denotes the seven age groups, mentioned in the previous section and y

denotes the year. Da,y and Na,y denote total death and population of age a in year

y, respectively. δa is the baseline death rate of age a and is heterogeneous across

age groups. To model deaths in 2020, in addition to δa, we considered a COVID-

19 death rate, δCovid
a multiplied with the exposed fraction, θ. δCovid

a is the IFR

of age a and it is assumed to be absent in the previous years. δCovid
a is sampled

from a uniform distribution with range between 0 and 0.2. IFR is less than the

Case fatality rate (CFR) if and only if the detected cases are more likely to lead to

death than undetected cases, which is indeed the case for COVID-19. For COVID-

19, the reported CFR is within the range of 5% to 15% and several estimation

methods resulted IFR well below 20% including the 70+ age group [4, 5, 6, 7, 8, 9].

Therefore the upper bound for IFR has been chosen to 0.2. θ is the infection rate

(IR) or attack rate and denotes the fraction of the population that is exposed.

As supported by a recent seroprevalence study [10] it is assumed to be constant

across all age groups. Moreover, seroprevalence studies indicate that population-

wide immunity is, in general, less than 50% [11, 10, 12], thus we sampled θ from a

beta distribution for which the density peaks between 20% and 40%. In a nutshell,

we are estimating fifteen parameters (considering seven age groups), δa, δCovid
a , and

θ from the observation of death data of previous years (2015-2020) classified by

age groups (42 data points) given the age distribution of population (2015-2020, 42

values).

We used the following priors to estimate the δa, δCovid
a and θ:

δa ∼ Uniform(0, 0.1)

δCovid
a ∼ Uniform(0, 0.2)

θ ∼ Beta(3, 5)

For each region, the model was evaluated using the Markov Chain Monte Carlo

(MCMC) sampling method. We used 30 independent chains; each drew 50,000 sam-

ples from the joint posterior distribution. We discarded the first 5000 as burn-in

periods from each chain. We merged the results of all 30 independent chains and

calculated the 95% credible interval by using the 95th quantile of the posterior

distribution. Posterior distribution of parameters are shown in Fig. S3. The total

number of infections for each region was calculated from the definition of IFR, which

is death over total infection. Here we considered the number of deaths as the excess

deaths of February 20th to April 15th with respect to the average of the previous

years (2015–2019). Simulation results are reproducible and were carried out using

R version 3.6.2 [13, 14, 15, 16].
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Figure S2 Age-specific IFR. Boxplot of estimated IFR across the age ranges and of overall
IFR, for Italy and different regions. IFR is estimated by Bayesian MCMC framework (see
Methods). IFR is significantly higher in the 81+ age group.
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Figure S3 MCMC results. Posterior distribution of baseline lethality rates (δa), IFR (δCovid
a )

for seven age groups, and Infection Rate (θ) of 30 independent MCMC chains. To estimate δa,
δCovid
a , θ, we used following priors: Uniform(0,0.1), Uniform(0,0.2), Beta(3,5).
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Estimation of regionwise infection fatality rate (IFR)

The severity of an epidemic can be characterized by the case fatality rate (CFR),

defined as the percentage of deaths among the total number of diagnosed infections,

and has been of high interest since the very beginning of the COVID-19 outbreak

[17, 18]. On the other hand, infection fatality rate (IFR) is defined as the percentage

of deaths among all infections, including the undiagnosed infections. For COVID-

19, the true number of cases is unknown as a substantial portion of the infections

are either asymptomatic or mildly symptomatic and remained undetected [19, 20].

At the beginning of the pandemic, testing was limited only to the symptomatic

patients due to clinical findings suggesting that symptomatic cases are the major

source of disease spreading [21, 22, 23, 24, 25]. It is, therefore, very difficult to get

a reliable estimate of the true number of infections. A few methods have already

been proposed to quantify the true number of infections and, hence, a realistic IFR

[4, 26, 5].

To estimate undetected infections amid the COVID-19 pandemic, we analyzed

the mortality rate of previous years and deaths in the year 2020. Demographic and

death data of the Italian regions have been collected from the Italian Institute of

Statistics (ISTAT). According to the report published by ISTAT, from the first

COVID-19 death in Italy (February 20th 2020) to March 31st 2020, excess death

in 2020 was 25,354 (total 90,946) compared to the previous five years (65,592 as

average of 2015-2019). 54% of the additional deaths were diagnosed as COVID-

19 positive [27]. In Fig. S1 we show region-wise, weekly deaths from January 1st to

April 15th 2020. For the Italian regions where the pandemic started, like Lombardia,

Veneto, Piemonte, the observed mortality of this year was substantially higher than

previous years. For these regions, we estimated the total infection and associated

IFR by implementing a Bayesian framework by adapting a standard binomial model

(see previous section and [3]).

After the first identification of a COVID-19 case on February 20th 2020 in Codogno

Hospital, near Lodi, Lombardia [28], the number of reported positive cases increased

to 36 in the next 24 hours and, interestingly, the new cases were not linked to the

first case, suggesting that the virus was circulating before its first identification.

This is reflected in our estimation of undetected cases (Table 2). High increase in

death over this year was observed in some cities, like Bergamo (568%), Cremona

(391%), Lodi (371%), Brescia (291%), Piacenza (264%), Parma (208%) [27]. In the

northern regions of Italy, especially where the initial outbreak occurred, for example

in Emilia Romagna, Piemonte and Veneto, undetected infections were nearly 10 fold

higher than the reported cases; and in Lombardia more than 21 fold. We observed

substantial heterogeneity of the IFR across different age groups. For the age ranges

below 60, it was determined as low as 0.05%. IFR was substantially higher in the 81+

age group (9.5% to 20%, Fig. S2). Despite Italy having the highest COVID-19 deaths

in Europe, estimated infection rates (IR) were relatively low (highest in Lombardia

∼ 13%) across all regions, and hence the population was far from reaching the

herd immunity threshold (∼ 70%, assuming no previous immune memory). Our

estimated total infections (detected + undetected) are close to the numbers reported

in [29].
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Correlation between undetected cases and test frequency

Despite being hit hardest by COVID-19, some of the Italian regions handled this cri-

sis situation better and managed to contain the virus. For instance, in Veneto, CFR

was 6.4%, 3 fold lower when compared to Lombardia at 18.3%. This is also reflected

in the IR, 2.61% in Veneto while in Lombardia it was 13% despite their geographical

proximity. The testing strategy implemented by these two regions was completely

different. Most regions, like Lombardia and Piemonte, followed the World Health

Organization (WHO) and central health authority indications by mainly testing the

symptomatic cases, while Veneto implemented a much more extensive population

testing. Toscana followed a testing strategy very similar to Veneto by ramping up

its testing capacity quickly. To determine whether implementing different testing

strategies succeeded in keeping the undetected and the overall infection amount

under control, we investigated the association between the rate of tests performed

by regions and total infections (Table 2) in the early phase of the pandemic. We

measured the Kendall and Distance correlation between the total infections (up

to April 15th and including undetected infections) normalized by the population

size and the total tests performed (up to April 15th) per reported infection. This

yielded a significant correlation with a coefficient of -0.67 and 0.81 for Kendall and

Distance correlation (Fig. 2). Moreover, the number of tests per infection was found

strongly correlated with the CFR/IFR ratio (Fig. S4), which exceeds 1 when unde-

tected cases are present. Larger deviation from 1 in CFR/IFR ratio indicates higher

amount of undetected cases.
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Figure S4 Impact of the testing frequency on the regional epidemics. Kendall and
Distance correlation between the number of tests performed per infection and CFR to IFR ratio.
Data are considered up to April 15th. Light blue line: linear regression fit; gray shaded area:
standard error; black dots: region-specific values; R: correlation coefficient; p: significance.
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SECIRD Models
Reference model

The implemented SECIRD ( Susceptible-Exposed-Carrier-Infected-Recovered-Dead)

model is a deterministic ODE model with the features of SARS-CoV-2 viral infec-

tions. It distinguishes healthy individuals without immune memory of COVID-19

(susceptible, S), infected individuals without symptoms but not yet infectious (ex-

posed, E) and infected individuals without symptoms who are infectious (carrier, CI,

CR). The carriers are distinguished into asymptomatic (CR) and pre-symptomatic

infected (CI), determined as α and (1 − α) portion of the exposed, respectively.

The pre-symptomatic infected are categorized into detected symptomatic (IH and

IR) and undetected mild-symptomatic (IX), determined as µ and (1−µ) portion of

the carrier (CI). Out of the CI, ρ fraction required hospitalization (IH) and (1− ρ)

fraction are symptomatic but recover without hospitalization (IR). Further, com-

partments for hospitalization (H) and intensive care units (U) were introduced to

monitor the load on the healthcare system. Similarly, ϑ and (1 − ϑ) represent the

fraction of H that requires ICU (HU) or recovered from hospital (HR), respectively.

δ and (1 − δ) represent the fraction of ICU who subsequently die (UD) or recover

(UR). The recovered compartment (R) consists of recovered patients from different

states of the infection. The model is summarized in Fig. 1A and details of parameter

ranges used to evaluate the regional outbreak is in Table 1.
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Reference model equations: Equations of the Reference model used to fit the

data (Fig. 4A and Fig. S7) and to evaluateRt (Fig. 4B and Fig. S8). The description

of parameters is available in Table 1. Note, µ = 1−µ̄
1−α .

dS

dt
= −R1(t)

(CI + CR + IX + β(IH + IR))

N
S

dE

dt
= R1(t)

(CI + CR + IX + β(IH + IR))

N
S −R2E

dCI
dt

= (1− α)R2E −R3CI

dCR
dt

= αR2E −R9CR

dIH
dt

= µρ(t)R3CI −R6IH

dIR
dt

= µ (1− ρ(t))R3CI −R4IR

dIX
dt

= (1− µ)R3CI −R4IX

dHU

dt
= ϑ(t)R6IH −R7HU

dHR

dt
= (1− ϑ(t))R6IH −R5HR

dUD
dt

= δ(t)R7HU −R10UD

dUR
dt

= (1− δ(t))R7HU −R8UR

dRZ
dt

= R4IR + R5HR + R8UR

dRX
dt

= R9CR + R4IX

dD

dt
= R10(t)UD

(1)
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Testing model equations: Equations of the Testing model used to quantify

the impact of the undetected reduction on the hospitalized and dead compartments

(Fig. 5A,B) and on theR(t) curve (Fig. S10). It includes an additional compartment

(IXD) with respect to the basic Reference Model which represents the additional

Detected Infected with infectivity power reduced to β. Note, µ = 1−µ̄
1−α , µ1(t) =

µ′(t)−α
1−α and µ2(t) = µ̄−µ′(t)

1−α , such that µ1(t) + µ2(t) = 1− µ .

dS

dt
= −R1(t)

(CI + CR + IX + β(IH + IR + IXD))

N
S

dE

dt
= R1(t)

(CI + CR + IX + β(IH + IR + IXD))

N
S −R2E

dCI
dt

= (1− α)R2E −R3CI

dCR
dt

= αR2E −R9CR

dIH
dt

= µρ(t)R3CI −R6IH

dIR
dt

= µ (1− ρ(t))R3CI −R4IR

dIX
dt

= µ1(t)R3CI −R4IX

dIXD
dt

= µ2(t)R3CI −R4IXD

dHU

dt
= ϑ(t)R6IH −R7HU

dHR

dt
= (1− ϑ(t))R6IH −R5HR

dUD
dt

= δ(t)R7HU −R10UD

dUR
dt

= (1− δ(t))R7HU −R8UR

dRZ
dt

= R4IXD +R4IR + R5HR + R8UR

dRX
dt

= R9CR + R4IX

dD

dt
= R10(t)UD

(2)
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Capacity model equations: Equations of the Capacity model used to simu-

late the infection dynamics with limited hospital and ICU capacity (Fig. 6A and

Fig. S11) and estimate its impact on the death toll (Fig. 6B). fHlim and fUlim

functions are included in the equations to drive away the flux toward the dead com-

partment, from infected or hospitalized respectively, when hospital or ICU limits

are reached. Note, µ = 1−µ̄
1−α .

fHlim =

(
exp(HU +HR −Hlim)10

1 + exp(HU +HR −Hlim)10

)10∣∣∣=1 when Hlim<HR+HU

=0 when Hlim>HR+HU

fUlim =

(
exp(UD + UR − Ulim)10

1 + exp(UD + UR − Ulim)10

)10∣∣∣=1 when Ulim<UD+UR

=0 when Ulim>UD+UR

(3)

dS

dt
= −R1(t)

(CI + CR + IX + β(IH + IR + ID))

N
S

dE

dt
= R1(t)

(CI + CR + IX + β(IH + IR + ID))

N
S −R2E

dCI
dt

= (1− α)R2E −R3CI

dCR
dt

= αR2E −R9CR

dIH
dt

= µρ(t)R3CI −R6IH(1− fHlim)−R6IHfHlim

dIR
dt

= µ (1− ρ(t))R3CI −R4IR

dIX
dt

= (1− µ)R3CI −R4IX

dHU

dt
= ϑ(t)R6IH(1− fHlim)−R7HU

dHR

dt
= (1− ϑ(t))R6IH(1− fHlim)−R5HR

dUD
dt

= δ(t)R7HU (1− fUlim)−R10UD

dUR
dt

= (1− δ(t))R7HU (1− fUlim)−R8UR

dID
dt

= R6IHfHlim −R7ID

dRZ
dt

= R4IR + R5HR + R8UR

dRX
dt

= R9CR + R4IX

dD

dt
= R10(t)UD +R7X7fUlim +R7ID

(4)
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TestCap equations: To understand the combined effect of enhanced testing and

extended infrastructure upon death toll (Fig. 6), we introduced IXD compartment

into the Capacity Model. We sequentially drop the undetected fraction (µ̄) starting

from its original value (Table 2) to 60% considering early (starting from one week

before lockdown) and late (starting from one week post lockdown) testing strategy.

Here we have used elevated hospital and ICU capacity to represent no bottleneck

situation of health care system. Note, µ = 1−µ̄
1−α , µ1(t) = µ′(t)−α

1−α and µ2(t) =
µ̄−µ′(t)

1−α , such that µ1(t) + µ2(t) = 1− µ .

dS

dt
= −R1(t)

(CI + CR + IX + β(IH + IR + ID + IXD))

N
S

dE

dt
= R1(t)

(CI + CR + IX + β(IH + IR + ID + IXD))

N
S −R2E

dCI
dt

= (1− α)R2E −R3CI

dCR
dt

= αR2E −R9CR

dIH
dt

= µρ(t)R3CI −R6IH(1− fHlim)−R6IHfHlim

dIR
dt

= µ (1− ρ(t))R3CI −R4IR

dIX
dt

= µ1(t)R3CI −R4IX

dIXD
dt

= µ2(t)R3CI −R4IXD

dHU

dt
= ϑ(t)R6IH(1− fHlim)−R7HU

dHR

dt
= (1− ϑ(t))R6IH(1− fHlim)−R5HR

dUD
dt

= δ(t)R7HU (1− fUlim)−R10UD

dUR
dt

= (1− δ(t))R7HU (1− fUlim)−R8UR

dRZ
dt

= R4IXD +R4IR + R5HR + R8UR

dRX
dt

= R9CR + R4IX

dD

dt
= R10(t)UD +R7HUfUlim +R7ID

dID
dt

= R6IHfHlim −R7ID

(5)
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Rt calculation
The basic reproduction number R0 is defined as the expected number of secondary

cases produced by a single infection in a completely susceptible population.

A common approach to derive this quantity for compartment models with multiple

infected species is through the use of the next generation matrix method. The

method was proposed by Diekmann et al. [30] and further elaborated by van den

Driessche and Watmough [31]. Here we give an outline of the method for our model,

but the proofs and further details can be found in [31] and [32].

First, the whole population is divided into n compartments in which there are

m < n infected compartments which contribute to new infections. In our case,

n = 14 and m = 6, with the infected compartments constituted by the exposed indi-

viduals (E), carriers who develop symptoms later (CI), carriers who recover asymp-

tomatically (CR), undetected symptomatic people (IX), identified symptomatic pa-

tients requiring hospitalization eventually (IH) and identified infected individuals

who recover without any hospitalization (IR). Let xi, i = 1, 2, 3, . . . ,m be the num-

bers of infected individuals in the i-th infected compartment at time t. In general,

we can rewrite the model equations in the form:

dxi
dt

= fi(x) + v+
i (x)− v−i (x), (6)

where the time variation of infected people in the i-th compartment (dxi/dt) is

given by the rate of appearance of new infections in the compartment (fi), plus the

rate of transfer of infected individuals into the compartment (v+
i ), minus the rate

of transfer of infected individuals out of the compartment (v−i ). We now define the

quantities F and V as the Jacobian matrices of fi and v−i − v
+
i , respectively. We

evaluate these matrices at the Disease Free Equilibrium (DFE), the point at which

there are no infected individuals. In our system, the F and V matrix have the form:

F =



0 R1s0 R1s0 R1s0 R1s0β R1s0β

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(7)

V =



R2 0 0 0 0 0

−(1− α)R2 R3 0 0 0 0

−αR2 0 R9 0 0 0

0 −(1− µ)R3 0 R4 0 0

0 −µρR3 0 0 R6 0

0 −µ(1− ρ)R3 0 0 0 R4


(8)

where s0 = S0/N0, with S0 and N0 being the initial number of susceptible and

total individuals, respectively, and the other parameters have been introduced in
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the main text. The DFE point is assumed to be close to the start of the epidemics

and evaluating F and V there allows to analyze a linearization of the epidemic

dynamics when the population is almost all susceptible. Once the F and V matrices

are calculated, we define the next generation matrix G as

G = FV −1, (9)

that is, given by the product of the matrix describing the generation of new infected

individuals times the inverse of the matrix describing the net transfer of individuals

across the infected compartments. We can think of the elements gij of G as the ex-

pected number of secondary infections of compartment i caused by a single infected

individual of compartment j. The basic reproduction number is then obtained by

calculating the spectral radius of G, i.e. its dominant eigenvalue. For our system,

this quantity reads:

R0 = R1s0

[
α

R9
+

1− α
R3

+
(1− α)(1− µ)

R4
+
β(1− α)(1− ρ)µ

R4
+
β(1− α)ρµ

R6

]
.

(10)

We can arrive to the same conclusion by using the formal definition of the basic

reproduction number. Indeed, the chance of transmission of the disease between

two individuals is directly proportional to the contact frequency (λ), i.e. how many

close contacts a person makes on an average per day. If we assume that the virus

has an intrinsic transmission probability of ν during each of these close contacts,

the parameter R1 depicts the overall chance of transmission per day due to close

contacts and is given by R1 = λν. To calculate R0, we also need to consider the

duration for which an individual remains infectious.

At the start of a new epidemic, it is fair to assume that nobody in the population

is immune to the disease and hence, the number of susceptible population S0 at the

beginning is same as N0. Hence, the fraction of individuals who can catch infection

initially is one with respect to the overall population. As the disease progresses,

some people get immune to the disease following their recovery and some of them

die due to the infection. This impacts the ratio of susceptible population and the

overall population as both face a reduction due to recovery and death, respectively.

Moreover, due to various political measures and people’s responsiveness to them,

the contact frequency (λ) also decreases thereby impacting R1. Hence, effectively

the reproduction number becomes a time varying number mainly dependent on

S(t)/N(t) and R1(t). If the infectivity period of an exposed person is Ip, it would

mean

Rt = R1(t)
S(t)

N(t)
Ip, (11)

Let’s now investigate what the infectivity period is for the group of individuals of

different compartments of our model. The asymptomatic carriers (CR) who consist

of α fraction of the exposed population, are capable of infecting others before they
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recover, i.e. for 1/R9 days on an average. The pre-symptomatic carriers (CI), rep-

resenting (1−α) fraction of the exposed population can infect others for an average

duration of 1/R3 days. All the undetected symptomatic cases (IU ), i.e., the fraction

of (1 − α)(1 − µ) among the exposed remain infectious for a period of 1/R4 days

following the onset of their symptoms. Similarly, the symptomatic individuals who

eventually get detected but don’t require hospitalization (IR), i.e., the fraction of

(1 − α)(1 − ρ)µ among the exposed persons remain infectious for 1/R4 days. On

the other hand, the detected symptomatic persons eventually requiring hospital-

ization (IH) who represents the fraction (1 − α)ρµ among the exposed people can

spread the infection for 1/R6 days on average following their symptoms onset and

before getting admitted to hospital. We assume that once somebody is admitted

in a hospital cannot infect others because of suitable measures, proper isolation

and protective equipment given to healthcare workers. Once somebody is detected

to have an infection but still at home quarantine can still pose some risk to the

susceptible population depending on how strict regulation the person follows while

in home quarantine. This risk factor is represented by β.

Hence, on an average, the infectivity period of the disease is given by the sum-

mation of fractions of exposed present in a particular compartment multiplied by

its average infectivity period. For the detected symptomatic cases, we also need to

take into account the risk factor to spread the infection while in home quarantine.

This would give an average infectivity period of

Ip =
α

R9
+

1− α
R3

+
(1− α)(1− µ)

R4
+
β(1− α)(1− ρ)µ

R4
+
β(1− α)ρµ

R6
, (12)

for an exposed person in the population. This would mean that an exposed person

would cause new Rt infections in the population, where

R(tk) = R1(tk)
S(tk)

N(tk)

[
α

R9
+

1− α
R3

+(1−µ)
1− α
R4

+βµ(1−ρ(tk))
1− α
R4

+βµρ(tk)
1− α
R6

]
,

(13)

where ρ(tk) denotes the hospitalized fraction of identified symptomatic cases in the

k-th time window.

This is basically our formula for the effective reproduction rate Rt previously

derived using the next generation matrix method. Similarly, for the Testing model,

we find

F =



0 R1s0 R1s0 R1s0β R1s0β R1s0 R1s0β

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(14)
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V =



R2 0 0 0 0 0 0

−(1− α)R2 R3 0 0 0 0 0

−αR2 0 R9 0 0 0 0

0 −µρR3 0 R6 0 0 0

0 −µ(1− ρ)R3 0 0 R4 0 0

0 −µ1R3 0 0 0 R4 0

0 −µ2R3 0 0 0 0 R4


(15)

Following a similar procedure, Rt of Testing Model can be derived as below:

R(tk) = R1(tk)
S(tk)

N(tk)

[
1− α
R3

+ βµρ(tk)
1− α
R6

+
α

R9
+

+ βµ(1− ρ(tk))
1− α
R4

+ βµ2(tk)
1− α
R4

+ µ1(tk)
1− α
R4

]
.

Identifiability analysis
Identifiability is an important property of a mechanistic model that needs to be

addressed to make a reliable prediction. Due to the practical limitations, e.g. insuf-

ficient data, measurement noise, unavailability of specific antibodies, etc., all model

state variables are not observable, which limits estimation of model parameters un-

ambiguously. Therefore, in a non-identifiable model, different sets of parameters (or

states) can fit the data equally well but their prediction could be different. This

has enormous implications in the context of COVID-19, especially in terms of wide

variations in model predictions [33]. Structural non-identifiability [34, 35] arises

due to the insufficient mapping of model states to the observables, which allows

ambiguous parameters to vary without changing the observables, hence keeping

χ2(θ) (sum of squared residuals) on a constant value. Therefore Structural non-

identifiability is linked to the model structure and independent of the accuracy

of available experimental data. A structurally identifiable parameter may still be

practically non-identifiable and is commonly arises due to the lack of information,

quality, and quantity of the considered data-sets.

To check whether our reference model is identifiable, we implemented two different

strategies. We address a) structural identifiability by using synthetic outbreak data

and b) practical identifiability in the setting of the current parameter estimation

protocol with real data (Italy Data on Coronavirus 2020 [36]). In the synthetic

outbreak method, we first randomly assign initial condition of state variables and

parameter values by sampling within its range specified in Table 1. We simulate a

synthetic outbreak by using this parameter set. We then use the outcome of the

synthetic outbreak as model observables (dynamics of all model state variables) and

asked the model to fit the data starting from randomly assigned different parameter

values. This is to check whether the system reaches the same unique solution, which

has been used to generate the synthetic outbreak starting from a different position

in the parameter landscape. Further, structural identifiability is tested around the

optimum by using the Data2Dynamics framework [37] which checks whether any
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directionality exists in the parameter set without sacrificing the quality of fit [38, 39].

We repeated the same procedure by using 100 different synthetic outbreak data and

a typical identifiability plot is represented in Fig. S5.

-0.9952 -0.995 -0.9948 -0.9946

log 10 ( )

0

1

2

3

4

2 P
L

95% (point-wise)

-0.9952 -0.995 -0.9948 -0.9946 -0.9952

log 10 ( )
-0.9952 -0.995 -0.9948-0.9946-0.9952 -0.995

log 10 (R 10 )
-0.9952 -0.995 -0.9948 -0.9946

log 10 ( )

-0.9952 -0.995 -0.9948 -0.9946 -0.9952

log 10 ( )

0

1

2

3

4

2 P
L

-0.9952 -0.995 -0.9948

log 10 (R 1 )
-0.9952 -0.995 -0.9948 -0.9946

log 10 (R 3 )
-0.9952 -0.995 -0.9948-0.9946-0.9952 -0.995

log 10 (R 4 )

-0.9952-0.995-0.9948-0.9946-0.9952 -0.995

log 10 (R 5 )

0

1

2

3

4

2 P
L

-0.9952 -0.995 -0.9948 -0.9946 -0.9952

log 10 (R 6 )
-0.9952 -0.995 -0.9948-0.9946-0.9952 -0.995

log 10 (R 7 )
-0.9952 -0.995 -0.9948

log 10 (R 8 )

-0.9952 -0.995 -0.9948 -0.9946 -0.9952

log 10 ( )

0

1

2

3

4

2 P
L

-0.9952 -0.995 -0.9948 -0.9946 -0.9952

log 10 ( )
-0.9952 -0.995 -0.9948 -0.9946

log 10 ( )

Figure S5 Structural identifiability test. Assessing structural identifiability of Reference
model parameters by using synthetic outbreak data. For an identifiable parameter θ, profile
likelihood χ2

PL(θ) shapes like a parabola indicating a good approximation within the interval

shown in each panel. Black lines indicate profile likelihood χ2
PL(θ) of parameter θ and red dot

indicates the minimum value. Red lines display the threshold utilized to asses likelihood-based
confidence regions [39]. A unique minimum in χ2

PL(θ) (or absence of a flat region) with respect
to θ in every panel ensure that the model parameters are structurally identifiable.

To check the practical identifiability in the context of current parameter estima-

tion setting, we first fixed all physiological parameters (see Parameterization section

in Methods in the main text) and considered nationwide Italy data for the period

February 24th to May 23rd, 2020. We estimated behavioral parameters (ρ, ϑ, δ, R1,

R10) by fitting the active cases, hospitalised, ICU and death data. We considered

a moving time windows of 7 days and therefore checked practical identifiability of

these parameters in each time window. We found that the parameters are iden-

tifiable for more than 75% of the cases. A typical result when all parameters are

identifiable are represented in Fig. S6.
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Figure S6 Practical identifiability. Assessing practical identifiability in the context of current
parameter estimation method. Active infections, hospitalised, ICU, and death data were used as
model observables to find an unique solution in R1, R10, ρ, ϑ, and δ by keeping physiological
parameters fixed. Black lines indicate profile likelihood χ2

PL(θ) of parameter θ and red dot
indicates the minimum value. Red lines display the threshold utilized to asses likelihood-based
confidence regions. Presence of a unique minimum in χ2

PL(θ) with respect to θ in every panel
ensure that the model parameters are identifiable.
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Figure S7 Fit up to July 23rd Active infections, hospitalized, ICU and death data were fitted
in a sliding one week time window. We present other regions that are not included in the Main
text (Fig. 4A). Parameter ranges from Table 1 were used and the behavioural parameters (R1,
R10, ρ, ϑ, δ) were varied in each time window (see Methods); dots: data; continuous lines:
simulation results.
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Figure S8 Rt curves. Boxplot of Rt results from the fit of Reference (red) and Asymptomatic
(blue) models. We present other regions that are not included in the Main text (Fig. 3B).
Statistics performed on the Rt values obtained by fitting the data with 100 perturbed parameter
sets (see Methods). Vertical lines correspond to the Lockdown imposition (red) and release
(green). Black dotted horizontal line represents Rt = 1.
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Figure S9 Rt sensitivity. Sensitivity of Rt is performed by perturbing each parameter 20% of
its reference value and by simulating the Reference model up to three months. Boxplot represents
the variation in Rt from its reference point. Rt is highly sensitive to R1 and µ̄.
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Figure S10 Impact of testing upon Rt evolution. Rt curves resulting from the Testing
Model in two evaluated scenarios: sequential decrease of undetected percentage up to 60%
starting from one week before the lockdown (red) and one week post lockdown (green). Rt of
Reference Model is shown in blue.
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Figure S11 Capacity model fit. Fit of active infection (not shown), hospitalized (red), ICU (iris
blue) and death data (not shown) for Italian regions (except those presented in the Main text).
Continuous lines: simulation results; round dots: data; Baseline capacity and linear increase in
hospital (red) and ICU (iris blue) capacity (Table 3) are represented as line with respective color.
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Figure S12 Impact of 5 times more tests. Simulation results from the TestCap model.
Hospital and ICU capacities were set to its maximum value from the beginning and the
undetected fraction (µ̄) is reduced starting one week before the lockdown (Early, green) or one
week post lockdown (Late, light blue), resembling ∼ 5 fold more testing than the average tests
performed per day. Hospitalized is the sum of hospital and ICU patients. The reduction in dead
number with respect to the data (black dots) has been reported as percentage. The black
horizontal line is the capacity (hospital + ICU) before the pandemic.
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