Effect of SARS-CoV-2 digital droplet RT-PCR assay sensitivity on COVID-19 wastewater
 based epidemiology - Supporting Information

3

Sooyeol Kim¹, Marlene K. Wolfe², Craig S. Criddle¹, Dorothea H. Duong³, Vikram Chan-Herur³,
Bradley J. White³, Alexandria B. Boehm^{1*}

6

7 1. Dept of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United

- 8 States of America
- 9 2. Rollins School of Public Health, Emory University, Atlanta, GA, 30329, United States of
- 10 America
- 11 3. Verily Life Sciences, South San Francisco, CA, 94080, United States of America
- 12
- 13 * Corresponding author: <u>aboehm@stanford.edu</u>
- 14
- 15 This supporting information consists of 8 pages including 8 tables and 3 figures.
- 16

17 Brief description of experimental methods

18

19 Solids were dewatered and then a small mass was suspended in DNA/RNA Shield (Zymo

20 Research, California) spiked with a known concentration of bovine coronavirus vaccine (BCoV,

21 PBS Animal Health, Ohio, Calf-Guard Cattle Vaccine). The process of diluting the solid in the

- solution serves to alleviate inhibition¹. The solution was then homogenized and then
- centrifuged. Subsequently, 10 replicate aliquots of the supernatant were subjected to nucleic
- 24 acid extraction and inhibitor removal using commercial kits. The nucleic acids were used as a
- template in ddRT-PCR to measure the N gene of SARS-CoV-2, with each extraction replicate in
- its own well, consisting of a total of ten replicate wells for each sample. A 1:100 dilution of RNA
 extract was used as a template to measure BCoV, the spiked-in internal recovery control, and
- 28 PMMoV, a fecal strength indicator and an endogenous internal recovery control, also run in 10
- replicate wells. Extraction negative controls, extraction positive controls, no-template controls
- 30 (NTC), and PCR positive controls were run on each plate. PCR positive controls consisted of
- 31 quide RNA (gRNA) of N gene of SARS-CoV-2 (ATCC VR-1986D) and double-stranded DNA
- 32 gene blocks for BCoV and PMMoV (Integrated DNA Technologies, Iowa).

33

34 Details on COVID-19 epidemiology data

- 35
- 36 Earliest of reported symptom onset, laboratory result, or case record create dates for each
- 37 sewershed was obtained from local or state sources. Case counts were georeferenced with
- 38 residential addresses within the POTW service area. Incidence rate was calculated using the
- 39 estimated population served by each POTW and a 7-day centered moving average was used in
- 40 subsequent analysis.
- 41
- 42

- 43 Table S1. Details on publicly owned treatment work (POTW) and their sampling procedures:
- 44 average daily inflow in million gallons per day (MGD), population served by the sewershed, and
- 45 solid collection sampling point is shown.

POTW	Average Daily Inflow (MGD)	Population Served	Solid Collection
Dav	7.5	66 600	Primary Clarifier
Gil	8.5	110 300	Settled solids collected from 24 hour composite raw influent using an Imhoff cone ²
Ocean	43	250 000	Primary Clarifier
SJ	167	1 458 000	Primary Clarifier

- 48 Table S2. Summary of fraction of solid measured for samples from each POTW; the average
- 49 solid content was used to calculate the theoretical lower measurement limit.

ΡΟΤΨ	Dav	Gil	Ocean	SJ
Min	0.108	0.048	0.147	0.171
Average	0.228	0.072	0.221	0.250
Мах	0.32	0.111	0.313	0.321

- 51
- 52
- 53 Table S3. Empirical relationship between log-transformed SARS-CoV-2 RNA N gene
- 54 concentrations and laboratory-confirmed COVID-19 incidence rates using 10 merged wells; the
- 55 error represents standard error for the calculated coefficients.

POTW	Intercept	Slope	R ²	p-Value
Dav	-6.32 ± 0.16	0.50 ± 0.04	0.70	< 10 ⁻¹⁵
Gil	-7.26 ± 0.16	0.71 ± 0.03	0.84	< 10 ⁻¹⁵
Ocean	-7.11 ± 0.20	0.67 ± 0.05	0.72	< 10 ⁻¹⁵
SJ	-8.24 ± 0.16	0.88 ± 0.04	0.88	< 10 ⁻¹⁵
All	-7.02 ± 0.09	0.64 ± 0.02	0.75	< 10 ⁻¹⁵

57

59 Table S4. Theoretical lower measurement limit (units of cp/g dry weight) for each POTW

60 assuming the percent dry weight of dewatered solids was the average observed, 20 000

61 droplets generated per well for dd-RT-PCR, and 3 positive droplets across the merged wells.

Merged	Dav	Gil	Ocean	SJ
1	8200	24000	8500	7500
2	4100	12000	4300	3800
3	2700	8100	2800	2500
4	2100	6100	2100	1900
5	1600	4900	1700	1500
6	1400	4100	1400	1300
7	1200	3500	1200	1100
8	1000	3000	1100	940
9	920	2700	950	840
10	820	2400	850	750

62 63

Table S5. Measurable incidence lower limit calculated using empirical relationship derived from

66 Table S3 for each number of merged wells and range of observed incidence rate calculated

67 using theoretical lowest measurable concentration in Table S4 for each number of wells; the

	Merged	Dav	Gil	Ocean	SJ
Incidence Lower Limit	1	4.1 ± 0.3	6.9 ± 0.4	3.3 ± 0.3	1.6 ± 0.1
(#/100 000)	2	2.9 ± 0.2	4.2 ± 0.3	2.1 ± 0.2	0.8 ± 0.1
	3	2.4 ± 0.2	3.2 ± 0.2	1.6 ± 0.2	0.6 ± 0.1
	4	2.1 ± 0.2	2.6 ± 0.2	1.3 ± 0.2	0.5 ± 0.1
	5	1.9 ± 0.2	2.2 ± 0.2	1.1 ± 0.1	0.4 ± 0.05
	6	1.7 ± 0.2	1.9 ± 0.2	1.0 ± 0.1	0.3 ± 0.04
	7	1.6 ± 0.2	1.7 ± 0.2	0.9 ± 0.1	0.3 ± 0.04
	8	1.5 ± 0.2	1.6 ± 0.2	0.8 ± 0.1	0.2 ± 0.04
	9	1.4 ± 0.2	1.5 ± 0.1	0.8 ± 0.1	0.2 ± 0.03
	10	1.3 ± 0.2	1.4 ± 0.1	0.7 ± 0.1	0.2 ± 0.03
Range of observed incidence rate (#/100 000)		0 - 22	0.8 - 33	0.4 - 19	1.3 - 21

68 error is calculated from the standard error of the fit.

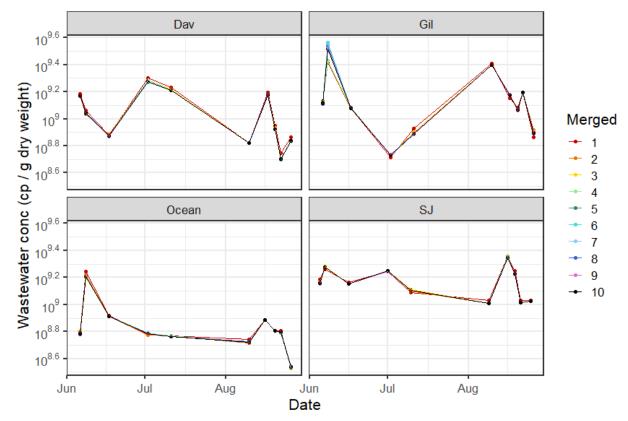
- 72 Table S6. Kendall's tau correlation between wastewater SARS-CoV-2 concentration and
- rate in each sewershed for the entire study period between June 1, 2021 and August
- 74 31, 2021.

	Dav		Gil		Ocean		SJ	
	Tau	p-Value	Tau	p-Value	Tau	p-Value	Tau	p-Value
1	0.62	< 10 ⁻¹⁴	0.70	< 10 ⁻¹⁷	0.57	< 10 ⁻¹¹	0.69	< 10 ⁻²⁰
2	0.62	< 10 ⁻¹⁴	0.72	< 10 ⁻¹⁹	0.57	< 10 ⁻¹¹	0.70	< 10 ⁻²¹
3	0.63	< 10 ⁻¹⁵	0.73	< 10 ⁻²¹	0.58	< 10 ⁻¹²	0.70	< 10 ⁻²¹
4	0.63	< 10 ⁻¹⁵	0.74	< 10 ⁻²²	0.57	< 10 ⁻¹²	0.70	< 10 ⁻²¹
5	0.63	< 10 ⁻¹⁵	0.74	< 10 ⁻²²	0.57	< 10 ⁻¹²	0.70	< 10 ⁻²¹
6	0.63	< 10 ⁻¹⁵	0.74	< 10 ⁻²²	0.56	< 10 ⁻¹¹	0.70	< 10 ⁻²¹
7	0.63	< 10 ⁻¹⁵	0.74	< 10 ⁻²²	0.55	< 10 ⁻¹¹	0.70	< 10 ⁻²¹
8	0.63	< 10 ⁻¹⁵	0.74	< 10 ⁻²¹	0.55	< 10 ⁻¹¹	0.70	< 10 ⁻²¹
9	0.63	< 10 ⁻¹⁵	0.73	< 10 ⁻²¹	0.55	< 10 ⁻¹¹	0.70	< 10 ⁻²¹
10	0.63	< 10 ⁻¹⁵	0.73	< 10 ⁻²¹	0.56	< 10 ⁻¹¹	0.70	< 10 ⁻²¹

78 Table S7. Kendall's tau correlation between wastewater SARS-CoV-2 concentration and

	Dav		Gil		Ocean		SJ	
	Tau	p-Value	Tau	p-Value	Tau	p-Value	Tau	p-Value
1	0.29	0.10	0.23	0.15	0.43	< 10 ⁻²	0.13	0.32
2	0.31	0.06	0.40	< 10 ⁻²	0.44	< 10 ⁻²	0.25	0.05
3	0.37	0.02	0.48	< 10 ⁻³	0.50	< 10 ⁻²	0.23	0.08
4	0.38	0.01	0.49	< 10 ⁻³	0.46	< 10 ⁻²	0.26	0.04
5	0.36	0.02	0.50	< 10 ⁻³	0.48	< 10 ⁻³	0.25	0.05
6	0.36	0.02	0.48	< 10 ⁻³	0.37	< 10 ⁻²	0.24	0.06
7	0.38	0.01	0.48	< 10 ⁻³	0.34	0.01	0.24	0.06
8	0.38	0.01	0.44	< 10 ⁻²	0.34	0.01	0.24	0.06
9	0.38	0.01	0.43	< 10 ⁻²	0.35	0.01	0.25	0.05
10	0.39	< 10 ⁻²	0.44	< 10 ⁻²	0.36	< 10 ⁻²	0.24	0.06

79 incidence rate in each sewershed during the low incidence month of June.

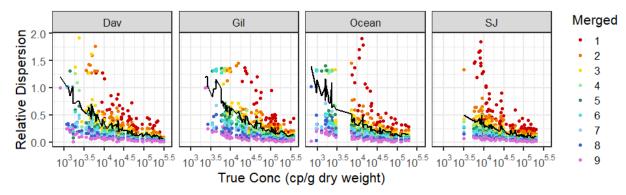

80 81 82

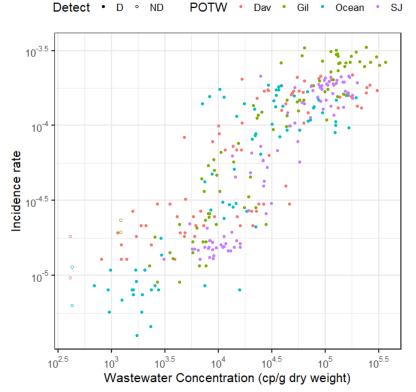
S7

Table S8. Logistic regression between true concentration and fraction detected out of 1000

84 simulations for each measurement.

Merged	Intercept	Estimate	p-value
1	-2.10	1.93 x 10 ⁻⁴	< 10 ⁻¹⁰
2	-2.26	4.02 x 10 ⁻⁴	< 10 ⁻⁹
3	-1.85	5.07 x 10 ⁻⁴	< 10 ⁻⁸
4	-1.47	6.04 x 10 ⁻⁴	< 10 ⁻⁶
5	-1.27	7.68 x 10 ⁻⁴	< 10 ⁻⁴
6	-1.13	9.59 x 10 ⁻⁴	< 10 ⁻³
7	-1.11	1.24 x 10 ⁻³	< 10 ⁻²
8	-1.41	1.80 x 10 ⁻³	< 10 ⁻²
9	-2.33	3.02 x 10 ⁻³	< 10 ⁻²
10	-3.29	4.41 x 10 ⁻³	< 10 ⁻²




88 Figure S1. Time series of PMMoV concentration in wastewater solids (cp/g dry weight) from ten


randomly selected samples for each of the four POTWs from June 1, 2021 to August 31, 2021.

90

- 92 Figure S2. Relative dispersion (interquartile range normalized by median) of SARS-CoV-2 N
- 93 gene concentrations resulting from thousand simulations for each number of merged wells
- 94 plotted against true concentration, defined as concentration obtained from merging ten wells.

97 concentration from merging ten wells.

98

99 References

- Huisman, J. S.; Scire, J.; Caduff, L.; Fernandez-Cassi, X.; Ganesanandamoorthy, P.; Kull,
 A.; Scheidegger, A.; Stachler, E.; Boehm, A. B.; Hughes, B.; Knudson, A.; Topol, A.;
 Wigginton, K. R.; Wolfe, M. K.; Kohn, T.; Ort, C.; Stadler, T.; Julian, T. R. WastewaterBased Estimation of the Effective Reproductive Number of SARS-CoV-2. Accept. Env.
- 104 *Health Perspect.* **2022**. https://doi.org/10.1101/2021.04.29.21255961.
- 105 (2) United States Environmental Protection Agency. Method 160.5, Methods and Guidance for
 106 the Analysis of Water Version 2.0, 1999.