

Figure S1. Pearson correlation between the 117 metabolites computed in the 5,985 controls of the eight cancer type-specific EPIC studies.

c10.Overall-	1.05	1.06	1.06	1.06
	(1.00,1.11)	(1.00,1.11)	(1.00,1.12)	(0.99,1.13)
c4.Overall-	0.95	0.96	0.95	0.96
	(0.90,0.99)	(0.92,1.00)	(0.90,0.99)	(0.91,1.02)
gln.Overall-	0.91	(0.92	0.91	0.93
	(0.87,0.96)	(0.88,0.97)	(0.87,0.90)	(0.87,0.99)
pro.Overall-	(1.07.1.19)	(1.06.1.17)	(1 07 1 19)	(1.03.1.19)
	0.89	0.91	0.90	0.91
lysopc_a_c18_2.Overall-	(0.84.0.95)	(0.86.0.97)	(0.85.0.96)	(0.84.0.98)
	1.09	1.04	1.09	1.11
pc_aa_c28_1_Clus.Overall-	(1.01.1.17)	(0.98.1.12)	(1.00.1.17)	(1.00.1.22)
	0.90	0.92	0.92	0.90
pc_aa_c32_2_Clus.Overall-	(0.83,0.98)	(0.85,0.99)	(0.84,0.99)	(0.82,1.00)
	0.81	0.86	0.82	0.81
pc_aa_c36_0_Clus.Overall-	(0.76,0.87)	(0.80,0.91)	(0.76,0.87)	(0.75,0.88)
	0.95	0.96	0.94	0.93
pc_aa_c36_1_Clus.Overall-	(0.89,1.00)	(0.91,1.02)	(0.89,1.00)	(0.87,1.00)
old 1 Clus BrC	1.16	1.12	1.15	1.14
CT4_T_Clus.brC	(1.04,1.29)	(1.01,1.25)	(1.04,1.28)	(1.00,1.29)
pro BrC-	0.83	0.83	0.83	0.80
pro.bro	(0.75,0.93)	(0.75,0.93)	(0.74,0.93)	(0.70,0.91)
pc aa c36 5 Clus BrC-	1.27	1.19	1.26	1.29
po_uu_0000_0_0100.010	(1.12,1.45)	(1.06,1.35)	(1.11,1.44)	(1.11,1.50)
arg.CRC-	1.24	1.15	1.27	1.23
	(1.05,1.46)	(1.01,1.31)	(1.06,1.51)	(0.99,1.54)
his_Clus.CRC-	0.86	(0.87	0.86	0.85
_	(0.78,0.96)	(0.79,0.96)	(0.78,0.96)	(0.74,0.98)
pc_ae_c36_0.CRC-	(1 12 1 20)	(1.07.1.22)	(1.00, 1.25)	(1.05.1.29)
	1.51	1 20	1.53	1.52
sm_c16_0_Clus.EnC-	(1 19 1 93)	(0.97.1.47)	(1 19 1 97)	(1 14 2 04)
	0.43	0.44	0.42	0.21
lysopc_a_c20_3_Clus.HCC-	(0.24.0.77)	(0.25.0.78)	(0.22.0.79)	(0.06.0.74)
	4.04	3.70	4.55	7.49
pc_aa_c40_2_Clus.HCC-	(2.00,8.13)	(1.91,7.17)	(2.04,10.16)	(2.03,27.55)
	0.16	0.22	0.10	0.09
sm_c16_0_Clus.HCC-	(0.06,0.41)	(0.10,0.48)	(0.03,0.33)	(0.01,0.58)
at 0 to 0 to 0 to 0 to 0	0.77	0.76	0.82	0.84
CTO_1_Clus.Adv.FTC-	(0.63,0.94)	(0.64,0.90)	(0.66,1.01)	(0.66,1.08)
lysopc a c18 2 loc PrC-	1.18	1.15	1.18	1.18
13000_a_010_2.200.FTO	(1.05,1.33)	(1.02,1.28)	(1.04,1.33)	(1.02,1.36)
pc aa c36 0 Clus.Loc.PrC-	1.36	1.26	1.37	1.35
	(1.21,1.53)	(1.13,1.41)	(1.21,1.54)	(1.17,1.56)
h1.Loc.PrC-	0.87	0.89	0.85	0.89
	(0.77,0.98)	(0.80,0.99)	(0.75,0.97)	(0.76,1.04)
	Main Analysis	Fully Adjusted	Excl. 2 first years of Fup	Excl. 7 first years of Fup

Figure S2. Sensitivity analyses of the mutually adjusted odd-ratios for the overall associations and cancer type-specific deviations around the overall association identified by the data shared lasso. Point estimates and confidence intervals were obtained through non-penalized conditional logistic regression models using the design matrix derived from the positions of the non-zero components in the data shared lasso vector estimate $(\hat{\mu}, \hat{\delta}_1, \dots, \hat{\delta}_K)$, and based on: (*first column*) residuals of the metabolite measurements after adjustment for BMI (as for the data shared lasso); (second column) residuals of the metabolite measurements after adjustment for BMI, education level, waist circumference, height, physical activity, smoking status, alcohol intake, use of non-steroidal anti-inflammatory drugs, and, for women, menopausal status and phase of menstrual cycle; (third column) residuals of the metabolite measurements after adjustment for BMI, and excluding pairs for which the case developed cancer within the first two years of follow-up; and (fourth column) residuals of the metabolite measurements after adjustment for BMI, and excluding pairs for which the case developed cancer within the first seven years of follow-up. Point estimates and confidence intervals have to be interpreted with caution since they are the result of post-selection inference. In the labels of the y-axis, BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively. Cluster representatives appear in grey while isolated metabolites appear in black.

	Departure from linearity	Effect Modification by BMI	
c10.Overall	0.09	0.22	
c4.Overall	0.33	0.32	
gln.Overall	0.57	0.27	
pro.Overall	0.53	0.22	
lysopc_a_c18_2.Overall	0.15	0.40	
pc_aa_c28_1_Clus.Overall	0.38	0.41	
pc_aa_c32_2_Clus.Overall	0.12	0.28	
pc_aa_c36_0_Clus.Overall	0.72	0.13	
pc_aa_c36_1_Clus.Overall	0.13	0.42	
c14_1_Clus.BrC	0.43	0.42	FDR
pro.BrC	1.00	0.08	> 0.5
pc_aa_c36_5_Clus.BrC	0.91	0.23	[0.3; 0.5]
arg.CRC	0.23	0.19	[0.1; 0.3]
his_Clus.CRC	0.14	0.46	< 0.1
pc_ae_c36_0.CRC	0.71	0.19	
sm_c16_0_Clus.EnC	0.07	0.17	
lysopc_a_c20_3_Clus.HCC	0.62	0.28	
pc_aa_c40_2_Clus.HCC	0.48	0.08	
sm_c16_0_Clus.HCC	0.42	0.35	
c18_1_Clus.Adv.PrC	0.70	0.05	
lysopc_a_c18_2.Loc.PrC	0.55	0.49	
pc_aa_c36_0_Clus.Loc.PrC	0.16	0.43	
h1.Loc.PrC	0.70	0.01	

Figure S3. P-values of the statistical tests computed to assess (*i*) possible departure from linearity for the associations identified by the data shared lasso; and (*ii*) possible effect modifications by body mass index (BMI) for the associations identified by the data shared lasso. The background colour indicates the value of the corresponding FDR: in particular, none of the FDRs was below 0.10 (the lowest FDR was 0.27). P-values, and FDR, have to be interpreted with caution since they are the result of post-selection inference. In the labels of the y-axis, BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively.

	BrC	CRC	EnC	KiC	GBC	HCC	Adv.PrC	Loc.PrC
c10	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)	1.05 (1.00,1.11)
c4	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)	0.95 (0.90,0.99)
gln	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)	0.91 (0.87,0.96)
pro	0.94 (0.84,1.05)	1.13 (1.07,1.19)	1.13 (1.07,1.19)	1.13 (1.07,1.19)	1.13 (1.07,1.19)	1.13 (1.07,1.19)	1.13 (1.07,1.19)	1.13 (1.07,1.19)
lysopc_a_c18_2	0.89 (0.84,0.95)	0.89 (0.84,0.95)	0.89 (0.84,0.95)	0.89 (0.84,0.95)	0.89 (0.84,0.95)	0.89 (0.84,0.95)	0.89 (0.84,0.95)	1.06 (0.96,1.17)
pc_aa_c28_1_Clus	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)	1.09 (1.01,1.17)
pc_aa_c32_2_Clus	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)	0.90 (0.83,0.98)
pc_aa_c36_0_Clus	0.81 (0.76,0.87)	0.81 (0.76,0.87)	0.81 (0.76,0.87)	0.81 (0.76,0.87)	0.81 (0.76,0.87)	0.81 (0.76,0.87)	0.81 (0.76,0.87)	1.11 (1.00,1.23)
pc_aa_c36_1_Clus	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)	0.95 (0.89,1.00)
	PrO	ORs ES		THE 'EXTENDED	MODELS, ALLO		PE-SPECIFIC ASS	SOCIATIONS
	BrC	ORs ES	EnC	THE 'EXTENDED KiC	MODELS, ALLO GBC	HCC	PE-SPECIFIC ASS Adv.PrC	Loc.PrC
c10	BrC 1.10 (0.99,1.24)	ORs ES CRC 1.05 (0.95,1.17)	TIMATED FROM EnC 1.03 (0.90,1.17)	THE 'EXTENDED KiC 0.92 (0.77,1.10)	' MODELS, ALLO GBC 1.11 (0.77,1.59)	WING FULLY TY HCC 1.34 (0.90,1.99)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39)	SOCIATIONS Loc.PrC 1.02 (0.90,1.16)
c10 c4	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20)	' MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.58,1.34)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06)	SOCIATIONS Loc.PrC (0.90,1.16) 0.98 (0.88,1.08)
c10 c4 gln	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.87,1.07)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08)	THE 'EXTENDED KIC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10)	¹ MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.58,1.34) 0.98 (0.65,1.47)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05)	PE-SPECIFIC AS: Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02)	COCIATIONS Loc.PrC 1.02 (0.90,1.16) 0.98 (0.88,1.08) 0.91 (0.82,1.01)
c10 c4 gln pro	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.87,1.07) 0.94 (0.85,1.04)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96) 1.13 (1.03,1.24)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08) 1.22 (1.07,1.39)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10) 1.19 (1.02,1.38)	Y MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.58,1.34) 0.98 (0.65,1.47) 1.41 (0.89,2.22)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05) 0.80 (0.46,1.40)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02) 1.04 (0.90,1.19)	SOCIATIONS Loc.PrC 1.02 (0.90,1.16) 0.98 (0.88,1.08) 0.91 (0.82,1.01) 1.10 (1.00,1.22)
c10 c4 gln pro lysopc_a_c18_2	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.87,1.07) 0.94 (0.85,1.04) 0.96 (0.85,1.09)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96) 1.13 (1.03,1.24) 0.91 (0.82,1.01)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08) 1.22 (1.07,1.39) 0.86 (0.74,0.99)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10) 1.19 (1.02,1.38) 0.77 (0.65,0.91)	<pre>' MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.68,1.34) 0.98 (0.65,1.47) 1.41 (0.89,2.22) 0.93 (0.62,1.39)</pre>	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05) 0.80 (0.46,1.40) 0.67 (0.35,1.25)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02) 1.04 (0.90,1.19) 0.92 (0.78,1.09)	SOCIATIONS Loc.PrC 1.02 (0.90,1.16) 0.98 (0.88,1.08) 0.91 (0.82,1.01) 1.10 (1.00,1.22) 1.06 (0.95,1.17)
c10 c4 gln - pro lysopc_a_c18_2 pc_aa_c28_1_Clus -	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.87,1.07) 0.94 (0.85,1.04) 0.96 (0.85,1.09) 1.04 (0.89,1.21)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96) 1.13 (1.03,1.24) 0.91 (0.82,1.01) 0.97 (0.85,1.11)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08) 1.22 (1.07,1.39) 0.86 (0.74,0.99) 1.20 (0.99,1.47)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10) 1.19 (1.02,1.38) 0.77 (0.65,0.91) 1.08 (0.90,1.31)	MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.58,1.34) 0.88 (0.65,1.47) 1.41 (0.89,2.22) 0.93 (0.62,1.39) 1.13 (0.71,1.81)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05) 0.80 (0.46,1.40) 0.67 (0.35,1.25) 1.67 (0.87,3.23)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02) 1.04 (0.90,1.19) 0.92 (0.78,1.09) 1.16 (0.96,1.38)	SOCIATIONS Loc.PrC 1.02 (0.90,1.16) 0.98 (0.88,1.08) 0.91 (0.82,1.01) 1.10 (1.00,1.22) 1.06 (0.95,1.17) 1.15 (1.03,1.32)
c10 c4 gln pro lysopc_a_c18_2 pc_aa_c28_1_Clus pc_aa_c32_2_Clus	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.85,1.07) 0.94 (0.85,1.04) 0.96 (0.85,1.09) 1.04 (0.89,1.21) 0.80 (0.68,0.95)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96) 1.13 (1.03,1.24) 0.91 (0.82,1.01) 0.97 (0.85,1.11) 0.97 (0.85,1.11)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08) 1.22 (1.07,1.39) 0.86 (0.74,0.99) 1.20 (0.99,1.47) 0.93 (0.79,1.10)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10) 1.19 (0.65,0.91) 1.08 (0.90,1.31) 1.08 (0.90,1.31) 0.94 (0.78,1.14)	MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.55,1.34) 0.98 (0.55,1.47) 1.41 (0.89,2.22) 0.93 (0.62,1.39) 1.13 (0.71,1.81) 0.87 (0.59,1.29)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05) 0.63 (0.46,1.40) 0.67 (0.35,1.25) 1.67 (0.87,3.23) 0.64 (0.35,1.20)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02) 1.04 (0.90,1.19) 0.92 (0.78,1.09) 1.16 (0.96,1.38) 0.83 (0.68,1.00)	Content in the interval in the interval in the interval interval in the interval interval interval in the interval inter
c10 c4 gln pro lysopc_a_c18_2 pc_aa_c28_1_Clus pc_aa_c32_2_Clus pc_aa_c36_0_Clus	BrC 1.10 (0.99,1.24) 0.96 (0.87,1.06) 0.96 (0.87,1.07) 0.94 (0.85,1.04) 0.96 (0.85,1.09) 1.04 (0.89,1.21) 0.80 (0.680,95) 0.82 (0.71,0.95)	ORs ES CRC 1.05 (0.95,1.17) 0.93 (0.85,1.01) 0.86 (0.76,0.96) 1.13 (1.03,1.24) 0.91 (0.82,1.01) 0.97 (0.85,1.11) 0.97 (0.85,1.11) 0.91 (0.81,1.03) 0.82 (0.73,0.91)	TIMATED FROM EnC 1.03 (0.90,1.17) 0.90 (0.79,1.01) 0.94 (0.82,1.08) 1.22 (1.07,1.39) 0.86 (0.74,0.99) 1.20 (0.99,1.47) 0.93 (0.79,1.10) 0.77 (0.666,0.90)	THE 'EXTENDED KiC 0.92 (0.77,1.10) 1.02 (0.87,1.20) 0.94 (0.80,1.10) 1.19 (1.02,1.38) 0.77 (0.65,0.91) 1.08 (0.90,1.31) 0.94 (0.78,1.14) 0.95 (0.72,0.99)	MODELS, ALLO GBC 1.11 (0.77,1.59) 0.88 (0.58,1.34) 0.98 (0.65,1.47) 1.41 (0.89,2.22) 0.93 (0.62,1.39) 1.13 (0.71,1.81) 0.87 (0.59,1.29) 0.54 (0.54,0.86)	WING FULLY TY HCC 1.34 (0.90,1.99) 1.10 (0.73,1.66) 0.63 (0.37,1.05) 0.63 (0.46,1.40) 0.67 (0.55,1.25) 1.67 (0.67,3.23) 0.64 (0.35,1.20) 0.93 (0.58,1.49)	PE-SPECIFIC ASS Adv.PrC 1.12 (0.90,1.39) 0.90 (0.76,1.06) 0.87 (0.74,1.02) 1.04 (0.90,1.19) 0.92 (0.78,1.09) 1.16 (0.96,1.38) 0.83 (0.68,1.00) 0.86 (0.74,1.00)	Contemporation Contemporatio Contemporation Contemporation Contemporation Contemp

ORs ESTIMATED FROM THE MODEL IDENTIFIED BY DATA SHARED LASSO

Figure S4. Association (odds-ratio) with risks of the eight cancer types for the nine metabolites that had an overall association with cancer risk in our main analysis. (Top) Point estimates and 95% confidence intervals were obtained through non-penalized conditional logistic regression models using the design matrix derived from the positions of the non-zero components in the data shared lasso vector estimate $(\hat{\mu}, \hat{\delta}_1, \dots, \hat{\delta}_K)$; see Section 3.a) in the Supplementary Material for details. (Bottom) For each of the nine features, point estimates and 95% confidence intervals were obtained through non-penalized conditional logistic regression models using the design matrix derived from the positions of the non-zero components in the data shared lasso vector estimate $(\hat{\mu}, \hat{\delta}_1, \dots, \hat{\delta}_K)$, but further allowing for fully type-specific associations between that particular feature and cancer risk; see Section 3.b) in in the Supplementary Material for details. The p-values of the likelihood ratio tests comparing the two types of models were 0.65, 0.85, 0.63, 0.42, 0.39, 0.32, 0.53, 0.55 and 0.11 for c10, c4, gln, pro, lysopc_a_c18_2, pc_aa_c28_1_Clus, pc_aa_c32_2_Clus, pc_aa_c36_0_Clus and pc_aa_c36_1_Clus, respectively, suggesting the absence of type-specific deviations beyond those identified by the data shared lasso for these nine metabolites. Point estimates, confidence intervals and p-values have to be interpreted with caution since they are the result of post-selection inference. In the column labels, BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, GBC for gallbladder and biliary tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively. Cluster representatives appear in grey.

Figure S5. Summary of the results from our univariate analyses: (*top*) associations with an FDR < 5% in the univariate analyses of the association between each feature and risk of each cancer type in conditional logistic regression models adjusted for BMI; (*center*) associations with an FDR < 5% in the univariate analyses of the association between each feature and the risk of cancer (after pooling the data from the eight cancer-type specific studies together, thus ignoring cancer types), in conditional logistic regression models adjusted for BMI; (*bottom*) FDR for the statistical test of a heterogeneity among its (non-mutually adjusted) type-specific associations. In the top and center panels, white entries correspond to the absence of identified associations, while green and red entries correspond to inverse and positive associations, respectively. The more intense the colour, the larger the absolute value of the log-odds-ratio). The x-axis represents the 50 features (33 cluster representatives and 17 isolated metabolites). In the labels of the y-axis, numbers correspond to numbers of pairs for each type-specific cancer (and in total for the pooled analysis), while BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, GBC for gallbladder and biliary tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively.

Figure S6. Comparison of the associations identified by the data shared lasso when working with the 50 features (Clus Level, as in our main analysis) or with the original 117 metabolites (Mets Level). The 117 metabolites are organized by cluster, and for the associations identified when working at the cluster level, the figure displays this association for all the metabolites that compose that cluster. Overall, the analysis conducted at the cluster level identified more associations, but most results from the two types of analyses were consistent. For lysoPCs for example, the two analyses did not identify exactly the same associations, but they both suggested (*i*) an overall inverse association with cancer risk and (*ii*) a stronger inverse association with localized PrC). In the labels of the *y* axis, BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, GBC for gallbladder and biliary tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized prostate cancers, respectively.

Figure S7. Pearson correlation between the 50 features computed in the 5,828 controls of the eight cancer typespecific EPIC studies. The 50 features correspond to 17 isolated metabolites and 33 representatives of clusters of strongly-correlated metabolites, obtained by hierarchical clustering of the 117 metabolites among the 5,828 controls. Clusters are labelled as "metabo_Clus", with "metabo" being one of the metabolites that compose that cluster.

Class	SubClass	Compounds	Name		
Metabolites used in the main analysis					
acylcarnitines	acylcarnitines	C0	Carnitine		
acylcarnitines	acylcarnitines	C10	Decanoylcarnitine		
acylcarnitines	acylcarnitines	C10_1	Decenoylcarnitine		
acylcarnitines	acylcarnitines	C12	Dodecanoylcarnitine		
acylcarnitines	acylcarnitines	C14_1	Tetradecenoylcarnitine		
acylcarnitines	acylcarnitines	C14_2	Tetradecadienylcarnitine		
acylcarnitines	acylcarnitines	C16	Hexadecanoylcarnitine		
acylcarnitines	acylcarnitines	C16_1	Hexadecenoylcarnitine		
acylcarnitines	acylcarnitines	C18	Octadecanoylcarnitine		
acylcarnitines	acylcarnitines	C18_1	Octadecenoylcarnitine		
acylcarnitines	acylcarnitines	C18_2	Octadecadienylcarnitine		
acylcarnitines	acylcarnitines	C2	Acetylcarnitine		
acylcarnitines	acylcarnitines	C3	Propionylcarnitine		
acylcarnitines	acylcarnitines	C4	Butyrylcarnitine		
acylcarnitines	acylcarnitines	C5	Valerylcarnitine		
aminoacids	non-essential aa	Arg	Arginine		
aminoacids	non-essential aa	Gln	Glutamine		
aminoacids	non-essential aa	Gly	Glycine		
aminoacids	essential aa	His	Histidine		
aminoacids	essential aa	Met	Methionine		
aminoacids	non-essential aa	Orn	Ornithine		
aminoacids	essential aa	Phe	Phenylalanine		
aminoacids	non-essential aa	Pro	Proline		
aminoacids	non-essential aa	Ser	Serine		
aminoacids	essential aa	Thr	Threonine		
aminoacids	essential aa	Trp	Tryptophan		
aminoacids	non-essential aa	Tyr	Tyrosine		
aminoacids	essential aa	Val	Valine		
glycerophospholipids	saturated	lysoPC_a_C16_0	lysoPC a C16:0		
glycerophospholipids	mono-unsaturated	lysoPC_a_C16_1	lysoPC a C16:1		
glycerophospholipids	saturated	lysoPC_a_C17_0	lysoPC a C17:0		
glycerophospholipids	saturated	lysoPC_a_C18_0	lysoPC a C18:0		
glycerophospholipids	mono-unsaturated	lysoPC_a_C18_1	lysoPC a C18:1		
glycerophospholipids	poly-unsaturated	lysoPC_a_C18_2	lysoPC a C18:2		
glycerophospholipids	poly-unsaturated	lysoPC_a_C20_3	lysoPC a C20:3		

Table S1. List of the 117 metabolites studied in the main analysis, and the 16 additional metabolites studied in the sensitivity analysis, following the exclusion of the participants from the second CRC study.

glycerophospholipids	poly-unsaturated	lysoPC_a_C20_4	lysoPC a C20:4
glycerophospholipids	mono-unsaturated	PC_aa_C28_1	PC aa C28:1
glycerophospholipids	saturated	PC_aa_C30_0	PC aa C30:0
glycerophospholipids	saturated	PC_aa_C32_0	PC aa C32:0
glycerophospholipids	mono-unsaturated	PC_aa_C32_1	PC aa C32:1
glycerophospholipids	poly-unsaturated	PC_aa_C32_2	PC aa C32:2
glycerophospholipids	poly-unsaturated	PC_aa_C32_3	PC aa C32:3
glycerophospholipids	mono-unsaturated	PC_aa_C34_1	PC aa C34:1
glycerophospholipids	poly-unsaturated	PC_aa_C34_2	PC aa C34:2
glycerophospholipids	poly-unsaturated	PC_aa_C34_3	PC aa C34:3
glycerophospholipids	poly-unsaturated	PC_aa_C34_4	PC aa C34:4
glycerophospholipids	saturated	PC_aa_C36_0	PC aa C36:0
glycerophospholipids	mono-unsaturated	PC_aa_C36_1	PC aa C36:1
glycerophospholipids	poly-unsaturated	PC_aa_C36_2	PC aa C36:2
glycerophospholipids	poly-unsaturated	PC_aa_C36_3	PC aa C36:3
glycerophospholipids	poly-unsaturated	PC_aa_C36_4	PC aa C36:4
glycerophospholipids	poly-unsaturated	PC_aa_C36_5	PC aa C36:5
glycerophospholipids	poly-unsaturated	PC_aa_C36_6	PC aa C36:6
glycerophospholipids	saturated	PC_aa_C38_0	PC aa C38:0
glycerophospholipids	poly-unsaturated	PC_aa_C38_3	PC aa C38:3
glycerophospholipids	poly-unsaturated	PC_aa_C38_4	PC aa C38:4
glycerophospholipids	poly-unsaturated	PC_aa_C38_5	PC aa C38:5
glycerophospholipids	poly-unsaturated	PC_aa_C38_6	PC aa C38:6
glycerophospholipids	mono-unsaturated	PC_aa_C40_1	PC aa C40:1
glycerophospholipids	poly-unsaturated	PC_aa_C40_2	PC aa C40:2
glycerophospholipids	poly-unsaturated	PC_aa_C40_3	PC aa C40:3
glycerophospholipids	poly-unsaturated	PC_aa_C40_4	PC aa C40:4
glycerophospholipids	poly-unsaturated	PC_aa_C40_5	PC aa C40:5
glycerophospholipids	poly-unsaturated	PC_aa_C40_6	PC aa C40:6
glycerophospholipids	saturated	PC_aa_C42_0	PC aa C42:0
glycerophospholipids	mono-unsaturated	PC_aa_C42_1	PC aa C42:1
glycerophospholipids	poly-unsaturated	PC_aa_C42_2	PC aa C42:2
glycerophospholipids	poly-unsaturated	PC_aa_C42_4	PC aa C42:4
glycerophospholipids	poly-unsaturated	PC_aa_C42_5	PC aa C42:5
glycerophospholipids	poly-unsaturated	PC_aa_C42_6	PC aa C42:6
glycerophospholipids	saturated	PC_ae_C30_0	PC ae C30:0
glycerophospholipids	mono-unsaturated	PC_ae_C32_1	PC ae C32:1
glycerophospholipids	poly-unsaturated	PC_ae_C32_2	PC ae C32:2

glycerophospholipids	saturated	PC_ae_C34_0	PC ae C34:0
glycerophospholipids	mono-unsaturated	PC_ae_C34_1	PC ae C34:1
glycerophospholipids	poly-unsaturated	PC_ae_C34_2	PC ae C34:2
glycerophospholipids	poly-unsaturated	PC_ae_C34_3	PC ae C34:3
glycerophospholipids	saturated	PC_ae_C36_0	PC ae C36:0
glycerophospholipids	mono-unsaturated	PC_ae_C36_1	PC ae C36:1
glycerophospholipids	poly-unsaturated	PC_ae_C36_2	PC ae C36:2
glycerophospholipids	poly-unsaturated	PC_ae_C36_3	PC ae C36:3
glycerophospholipids	poly-unsaturated	PC_ae_C36_4	PC ae C36:4
glycerophospholipids	poly-unsaturated	PC_ae_C36_5	PC ae C36:5
glycerophospholipids	saturated	PC_ae_C38_0	PC ae C38:0
glycerophospholipids	poly-unsaturated	PC_ae_C38_2	PC ae C38:2
glycerophospholipids	poly-unsaturated	PC_ae_C38_3	PC ae C38:3
glycerophospholipids	poly-unsaturated	PC_ae_C38_4	PC ae C38:4
glycerophospholipids	poly-unsaturated	PC_ae_C38_5	PC ae C38:5
glycerophospholipids	poly-unsaturated	PC_ae_C38_6	PC ae C38:6
glycerophospholipids	mono-unsaturated	PC_ae_C40_1	PC ae C40:1
glycerophospholipids	poly-unsaturated	PC_ae_C40_2	PC ae C40:2
glycerophospholipids	poly-unsaturated	PC_ae_C40_3	PC ae C40:3
glycerophospholipids	poly-unsaturated	PC_ae_C40_4	PC ae C40:4
glycerophospholipids	poly-unsaturated	PC_ae_C40_5	PC ae C40:5
glycerophospholipids	poly-unsaturated	PC_ae_C40_6	PC ae C40:6
glycerophospholipids	mono-unsaturated	PC_ae_C42_1	PC ae C42:1
glycerophospholipids	poly-unsaturated	PC_ae_C42_2	PC ae C42:2
glycerophospholipids	poly-unsaturated	PC_ae_C42_3	PC ae C42:3
glycerophospholipids	poly-unsaturated	PC_ae_C42_4	PC ae C42:4
glycerophospholipids	poly-unsaturated	PC_ae_C42_5	PC ae C42:5
glycerophospholipids	poly-unsaturated	PC_ae_C44_3	PC ae C44:3
glycerophospholipids	poly-unsaturated	PC_ae_C44_4	PC ae C44:4
glycerophospholipids	poly-unsaturated	PC_ae_C44_5	PC ae C44:5
glycerophospholipids	poly-unsaturated	PC_ae_C44_6	PC ae C44:6
sphingolipids	sphingomyelin	SM_OH_C14_1	SM (OH) C14:1
sphingolipids	sphingomyelin	SM_OH_C16_1	SM (OH) C16:1
sphingolipids	sphingomyelin	SM_OH_C22_1	SM (OH) C22:1
sphingolipids	sphingomyelin	SM_OH_C22_2	SM (OH) C22:2
sphingolipids	sphingomyelin	SM_OH_C24_1	SM (OH) C24:1
sphingolipids			
	sphingomyelin	SM_C16_0	SM C16:0

sphingolipids	sphingomyelin	SM_C18_0	SM C18:0				
sphingolipids	sphingomyelin	SM_C18_1	SM C18:1				
sphingolipids	sphingomyelin	SM_C20_2	SM C20:2				
sphingolipids	sphingomyelin	SM_C24_0	SM C24:0				
sphingolipids	sphingomyelin	SM_C24_1	SM C24:1				
sugars	sugars	H1	Sum of Hexoses				
Additional metabolites used in the analysis following the exclusion of the second CRC sub-study							
aminoacids	non-essential aa	Ala	Alanine				
aminoacids	non-essential aa	Asn	Asparagine				
aminoacids	non-essential aa	Asp	Aspartate				
aminoacids	non-essential aa	Cit	Citrulline				
aminoacids	non-essential aa	Glu	Glutamate				
aminoacids	essential aa	Ile	Isoleucine				
aminoacids	essential aa	Leu	Leucine				
aminoacids	essential aa	Lys	Lysine				
biogenic amines	biogenic amines	alpha_AAA	alpha-Aminoadipic acid				
biogenic amines	biogenic amines	Creatinine	Creatinine				
biogenic amines	biogenic amines	Kynurenine	Kynurenine				
biogenic amines	biogenic amines	Serotonin	Serotonin				
biogenic amines	biogenic amines	Spermidine	Spermidine				
biogenic amines	biogenic amines	Spermine	Spermine				
biogenic amines	biogenic amines	Taurine	Taurine				
glycerophospholipids	poly-unsaturated	PC_ae_C30_2	PC ae C30:2				