1 Title: Evaluate the reliability of the apprenticeship in the first year of medical school: towards a reliable first level ultrasound examination.

Michela Cristina Turci ${ }^{\mathrm{Il} 1}$, Massimo Tassoni ${ }^{\mathrm{TI} 2}$, Florida Gajtani ${ }^{\& 2}$, Antonino Michele Previtera ${ }^{\& 3}$, Alberto Magenta-Biasina ${ }^{\&, 4}$, Elia Mario Biganzoli ${ }^{\mathrm{ql5}}$ and Graziano Serrao ${ }^{* I 2,3}$.
${ }^{1}$ Dept. of Biomedical Sciences for Health. Università degli Studi di Milano. Via Mangiagalli, 31 I-20133 Milan, Italy; ${ }^{2}$ SPUMS San Paolo Ultrasounds Medical School, San Paolo Hospital. Università degli Studi di Milano. Via Antonio di Rudinì, 8 I-20142 Milan, Italy; ${ }^{3}$ Dept. of Health Sciences. Università degli Studi di Milano. Via Antonio di Rudinì, 8 I-20142 Milan, Italy; ${ }^{4}$ Servizio di Radiologia Diagnostica e Interventistica. Azienda Ospedaliera Santi Paolo e Carlo, Ospedale San Paolo. Via Antonio di Rudinì, 8 I-20142 Milan, Italy; ${ }^{5}$ Dept. of Clinical Sciences and Community Health. Università degli Studi di Milano. Via Augusto Vanzetti, 5 I-20133 Milan, Italy.

* Corresponding author

E-mail: graziano.serrao@unimi.it; iD: 0000-0001-9651-7685
${ }^{\text {II }}$ These authors contributed equally to this work
${ }^{\text {\& }}$ These authors also contributed equally to this work

Conflict of interests: The authors declare that they have no proprietary, commercial, or financial interests that could be construed to have inappropriately influenced this study.

Funding: NONE

Authors Contributions

Conceptualization: Graziano Serrao

Data Curation: Massimo Tassoni, Michela Cristina Turci
Investigation: Massimo Tassoni, Florida Gajtani, Alberto Magenta Biasina, Antonino Michele Previtera

Formal Analysis: Elia Mario Biganzoli

Writing - Original Draft Preparation Michela Cristina Turci, Graziano Serrao
Writing - Review \& Editing: all authors
30

Abstract

Objectives

Our aim was to motivate apprentices' sonographer needs, to appraise their own measurements, to reduce inconsistencies within and between operators. Deep knowledge of ultrasound sectional anatomy is mandatory for an appropriate performance.

Methods

In three different weekdays, 3 sonographer apprentices (rater), randomly selected from a cohort of San Paolo Medical School first year students participated in vertically integrated study of living anatomy through ultrasound examination, repeated lumbar multifidus crosssections scans on 6 subjects at lumbar level. The Agreement R package $0.8-1$ was used to monitored the performances of each apprentice.

Results

The agreement $\left(\mathrm{CCC}_{\text {intra }} 0.6749 ; \mathrm{CCC}_{\text {inter }} 0.556 ; \mathrm{CCC}_{\text {total }}\right.$ is 0.5438$)$ was further from least acceptable CCC of 0.92-0.95. The precision indices $\left(\operatorname{precision}_{\text {intra }} 0.6749\right.$; inter 0.801 ; total 0.6274) were unsatisfactory, while the accuracy was high (0.9889 to 0.9913). The same occurred for the agreement on rater performances comparisons, where readings were high accurate (0.9537 to 0.9733) but moderately precise (0.7927 to 0.8895), not interchangeable TIR (1.173) but without rater supremacy. IIR (r1 vs r2 1.104, r1 vs r3 1.015, r2 vs r3 0.92) 95% confidence limits.

Conclusions

Apprentices were not reliable, repeatable, interchangeable. The weak link in the method seemed to be cultural weakness on vivo imaging morphologies, qualitative and quantitative measurement procedure on elementary statistical processing.

Introduction

Moved by evidence, teachers must work hardly to transform excellence into routine performances. Handle echography represents a key toll that allows an immediate correlation between imaging findings and clinical data, which will improve the management of prime care supply at the patient's home. The fast advancement on telemedicine, the increased use and the decreasing instrument costs lead to a great demand for appropriate education toward a sturdy echo's competence [1-5]. Echo continuously improves the instrumental semiotics potentials by making more anatomic structures visible. Since 2007 at San Paolo Medical School, an ultrasound learning resource was located within the anatomy area [6]. The focus of this educational training would be the capacity to forge a physician able to execute a first level ultrasound examination (FLUx). Often in clinical practice, only one measurement per patient is performed, hence before getting down to the data analysis you want to ensure that they are not contaminated by assessed procedure/factors.

Our aim was to verify apprentice's judgement validity and tune learning path.

Methods

Ultrasonic method is commonly described as largely employable, pliant, and non-invasive [6,7]. In 2009, San Paolo Medical School Didactic College planed vertically integrated study of the living body anatomy through peer physical and ultrasound examination. Core group of faculty experts in ultrasound developed a standardized curriculum that was presented to the student body. Faculty-supported facility for medical students' independent education projects allowed each student to be alternately examine and examiner [8]. To evaluate the competences acquired and tune the training on academic year 2019-2020, 3 women and 3
 apprentices, ruffled among participants in the ultrasound living anatomy course took part in the present study as examines, but only 3 as examiners too. The Ethics Committee of the University of Milan examined and issued, an ex post favourable opinion on the project (03/28/2022 advisory $31 / 22$).

Scanning procedure

An experienced physiatrist (AMP) evaluated each drawn student to exclude any sequels that could alter the region of interest. A multi-frequency probe equipped ultrasound machine Bmode Real Time (Logic QE, Medical Systems, Milwaukee, WI, USA) was used. A convex probe at 5 MHz emission was employed [9,10], 3 apprentices (raters), under conditions as close as possible to the clinical daily routine, performed ultrasound scans then run measurement/rating process.

Following the procedure commonly recommended in literature, each rater proceeded by steps. To flatting down the lumbar lordosis the subject lied prone with a pillow under the pubic bones and feet off the bed, arms along her/his hips and head turned toward the most comfortable side (Fig. 1). To identify the spinous processes of L4-L5 the rater aligned each of her/his index fingers with the correspondent iliac crest and extended the thumbs towards the spinous processes of the vertebral column (Fig.2) [11]. To confirm the level found by palpation, each rater verifies by ultrasound scan [12]. In order to allow the vertebral lamina, the multifidus muscle was scanned longitudinally (Fig. 3).

Figure 1. Subject position.

Figure 2. Identification of the spinous processes.
Figure 3. Lumbar longitudinal scan btween L4 and sacrum a: apex of the spinous process, b: yellow ligament, c: median sacral crest.

Thereafter in order to be transverse correctly aligned, the rater performed a 90° rotation of the probe. The discrimination of lateral edges of multifidus out of the surrounding muscles was the most difficult part of the scanning protocol. Each subject was requested of slightly lifting the ipsilateral lower limb from the couch; the identification of that lateral edge was so favored. After the contraction, before measuring the muscle diameters, the rater waited a few seconds to settle the rest position [13,14]. After having identified the multifidus, the rater moved the probe to the left and then to the right while tracing antero-posterior (r/lAP) and latero-lateral diameter (r/lLL) assessments. On frozen images, the AP diameter, from the lamina to the inner edge of the upper edge of the multifidus, and the LL diameter, corresponding to the maximum width from the lateral edge of the multifidus to the spine, were marked out. Each rater established independently the positioning of the subject and the anatomical landmarks. Raters were not aware to other rater's judgments. In accord with Watson statements [15,16], 3 repeated measurements are usually considered appropriate, hence on different weekdays, the procedure was 3 times repeated, on 6 subjects, at five vertebral levels, on each side and therefore 180 scans generated 360 diameters.

Statistical analysis

Reliable and accurate measurements have a common theme: assessing closeness (agreement) between observations. Because there are 3 raters involved, one may like assessing the intra, inter and the total agreement with replicated readings produced by different observers. A meaningful statistic to measure the agreement of observations has been the mean squared deviation (MSD). The Concordance Correlation Coefficient (CCC), a scaled index proposed by Lin [17,18], translates the MSD into a combine's coefficients of precision (degree of refinement) and accuracy (degree of total displacement) that can be used to compare the differences between operators and sessions. To esteem multiple observers with replications, where none of the observers is treated as reference, Barnhart [19] proposed $\mathrm{CCCr}_{\text {otal }}, \mathrm{CCC}_{\text {inter }}$,
and $\mathrm{CCC}_{\text {intra }}$ series of indices. Another intuitive agreement index is a measure that captures a large proportion of data within a settled maximum acceptable absolute difference between two observers' readings. This probability is called coverage probability $(\mathbf{C P})$. On the other hand, if we set a predetermined coverage probability, we can find the boundary so that the probability of absolute difference is less than the boundary itself. This boundary called total deviation index (TDI) is proportional to the square root of the MSD and it is a performance measurement. A satisfactory agreement may require a large CP or equivalently a small TDI [18,20,21].

When multiple raters are available with replicates, we are often interested if raters are interchangeable. The Total-Intra Ratio (TIR) assesses comparative agreement indices for the interchangeability between multiple raters with multiple readings. The scale criterion means that the $\mathrm{MSD}_{\text {total-raters }}$ cannot be more than a predefined value of the $\mathrm{MSD}_{\text {intra-rater }}$, or $\mathrm{TIR}_{\mathrm{R}}<$ predefined value, with 95% confidence. In addition, we compared the intra rater precision by computing $\mathrm{MSD}_{\text {intral_ }} / \mathrm{MSD}_{\text {intra3 }}, \mathrm{MSD}_{\text {intral_ }} / \mathrm{MSD}_{\text {intra2 }}$, and $\mathrm{MSD}_{\text {intra2_ }} / \mathrm{MSD}_{\text {intra1 }}$ or IntraIntra Ratio (IIR). A $100(1-\alpha / 2) \%$ confidence interval for IIR is computed based on the logtransformed IIR estimates and claim the superiority or inferiority if the upper or lower limit is less than or greater than 1.0 [22]. All index was computed by Agreement R package 0.8 [23].

Results

Table 1 shows the multifidus cross section AP and LL diameters measurements (mm) relieved by each rater, for each subject and lumbar level.

Table 1. AP e LL diameters values (mm) of the multifidus relieved by each rater are shown for each subject, lumbar level and repeat $(\mathbf{t} 1,2,3)$.

subject		right anteropost								left anteropost								right laterolateral								left laterolateral									3t2ater3t3		
					rate	Hater2							12 ate	ater			ter3				Hater	2rat	3rat	ater					3rater1	liater							
1	11	154	158	177	125	159	160	179	146	141	140	149	163	110	151	149	153	139	137	206	216	192	179	168	199	318	163	98	182	182	163	193	220	230	291	208	163
2	11	231	198	218	161	219	197	193	176	155	190	218	215	159	175	202	168	166	159	216	210	156	186	163	172	314	182	188	174	181	148	135	202	152	296	202	210
3	11	213	219	252	190	165	194	159	162	146	193	227	196	191	168	189	159	152	157	326	227	204	192	188	233	296	202	126	286	223	181	177	191	220	186	185	168
4	11	215	168	191	163	199	143	142	162	160	175	132	188	159	188	151	148	141	157	177	244	204	161	226	202	95	124	106	140	226	182	172	189	150	95	118	103
5	11	180	129	169	164	165	141	149	123	121	177	142	167	115	121	158	132	129	104	217	208	154	136	243	187	156	171	159	203	213	171	139	219	197	187	169	152
6	11	192	173	202	169	164	202	198	137	180	236	172	195	168	156	212	173	152	188	148	247	160	207	257	221	159	152	163	168	209	277	179	218	174	229	229	205
1	12	210	226	165	199	222	192	226	202	173	237	248	216	208	239	184	218	183	173	377	254	223	350	261	235	354	194	143	345	279	230	421	251	224	408	263	143
2	12	154	201	203	127	223	215	202	205	188	156	233	257	118	262	213	205	166	168	177	327	188	174	251	195	285	197	241	174	318	158	179	353	202	283	260	235
3	12	219	216	206	155	192	213	238	171	207	191	156	247	153	179	270	213	143	176	215	187	236	159	253	182	269	123	152	219	176	191	179	173	190	261	126	123
4	12	262	182	177	210	182	187	257	140	188	250	175	212	247	164	187	247	165	160	386	215	276	332	255	184	309	155	132	321	179	211	278	249	182	405	143	127
5	12	183	224	156	193	185	172	163	187	129	211	196	203	161	210	195	132	173	135	202	195	271	161	147	218	89	159	142	206	168	168	202	173	164	101	159	145
6	12	223	208	216	189	201	202	160	189	199	183	261	185	163	176	210	176	194	171	202	213	245	182	263	237	176	192	225	188	220	277	166	248	207	173	242	235
1	13	221	237	171	177	217	238	198	256	185	217	237	181	228	263	255	159	222	168	247	346	230	213	268	218	215	241	114	194	310	243	167	304	249	199	235	182
2	13	163	229	260	134	257	271	181	188	222	187	248	282	158	233	268	165	182	224	222	335	254	179	350	289	283	168	258	190	401	226	253	256	263	306	303	242
3	13	224	187	258	185	191	282	263	204	187	247	204	218	219	209	276	265	193	202	302	304	254	245	213	294	412	131	131	273	266	227	161	203	238	385	212	233
4	13	267	133	199	252	168	207	245	163	204	260	171	196	248	193	201	260	182	200	376	263	323	317	251	214	335	219	187	355	228	254	206	280	258	378	219	193
5	13	175	199	152	207	230	165	188	180	141	225	195	163	214	212	190	185	176	168	221	251	288	249	177	212	154	171	140	221	283	289	352	188	179	190	183	143
6	13	268	187	263	192	193	230	182	177	205	208	228	224	195	223	223	202	251	213	241	286	299	223	305	240	227	294	228	314	289	248	234	327	287	227	346	253
1	14	257	181	204	270	193	230	179	246	229	236	210	205	203	159	223	218	328	233	313	372	296	230	288	283	272	330	278	245	388	290	267	256	321	246	306	286
2	14	185	261	275	139	248	260	223	291	241	187	240	235	136	230	257	199	326	258	253	341	292	193	336	329	291	409	333	215	244	252	200	208	349	370	359	338
31	14	259	212	257	206	232	293	257	270	297	243	233	248	163	236	261	321	260	308	335	379	294	321	382	394	377	300	317	229	354	294	177	326	288	341	330	353
4	14	250	177	216	255	171	240	262	205	247	265	217	232	266	201	254	266	205	255	387	248	363	432	229	311	344	309	333	359	267	307	343	257	329	417	341	314
5	14	253	257	181	186	238	161	257	213	177	242	215	213	201	243	131	254	191	187	176	332	333	229	227	199	316	211	168	173	411	326	237	243	200	302	235	182
6	14	261	200	232	161	235	227	218	228	286	240	198	233	157	205	255	193	269	297	247	308	275	233	305	321	364	300	395	203	287	286	262	344	349	293	351	320
1	15	238	202	224	259	217	227	261	258	218	271	179	187	267	203	221	286	255	211	374	397	319	351	337	336	311	426	331	370	396	282	341	286	351	307	443	283
2	15	190	263	229	149	248	229	193	256	256	199	260	247	165	236	238	185	266	260	272	362	369	204	382	374	403	320	392	277	327	325	219	360	376	299	343	376
3	15	219	191	237	234	161	255	230	247	264	252	207	252	198	215	271	241	256	269	352	363	344	382	216	366	445	347	343	327	370	322	252	279	329	445	334	339
4	15	262	138	212	237	170	216	261	191	242	239	137	224	249	174	202	246	179	253	391	271	359	353	347	193	332	364	353	354	291	367	354	280	201	336	423	359
5	15	194	201	194	221	290	115	223	280	199	210	251	196	261	285	125	241	275	190	202	359	371	257	296	188	344	326	384	221	316	316	229	320	180	344	330	350
6	15	256	201	165	249	205	207	201	230	241	229	238	204	219	238	235	177	225	236	268	376	398	326	374	361	342	347	345	273	413	407	306	416	417	39	38	382

Based on multifidus assessments conducted by experts in the field found out on literature in terms of agreement, we set a within-rater deviation not more than 30% of the total deviation, and inter-rater deviation not more than 50% of the total deviation. These translated into a least acceptable

$$
\mathrm{CCC}_{\text {intra }} \text { of } 0.91\left(1-0,3^{2}\right), \text { and a least acceptable } \mathrm{CCC}_{\text {inter }} \text { of } 0.75\left(1-0,5^{2}\right)
$$

The CCC estimates are shown on Table 2.

Table 2. CCC estimates (see text for details).

Statistics	Estimate	$\mathbf{9 5 \%} \mathbf{C l}$
$\mathbf{C C C}_{\text {intra }}$	0.674	0.597
$\mathbf{C C C}_{\text {inter }}$	0.792	0.732
$\mathbf{C C C}_{\text {total }}$	0.621	0.627
Precision $_{\text {intra }}$	0.674	0.597
Precision $_{\text {inter }}$	0.801	0.744
Precision $_{\text {total }}$	0.627	0.550
Accuracy $_{\text {intra }}$		
Accuracy $_{\text {inter }}$	0.988	0.980
Accuracy $_{\text {total }}$	0.991	0.984

The $\mathrm{CCC}_{\text {intra }}$ was estimated to be 0.6749 , which means a within-sample deviation is about $57 \% \sqrt{ }(1$ -0.6749) of the total deviations. The $C C C_{\text {inter }}$ was estimated to be 0.7921 , which means a withinsample deviation is about $\sqrt{ }(1-0.791) 63 \%$ of the total deviations [17]. The $C C C_{\text {total }}$ was estimated to be 0.6219 , which means for individual observations from different rater, the within-sample deviation is about 61% of the total deviations. These findings are consistent with moderate precision $\left(0.6749_{\text {intra }}, 0.8_{\text {inter, }} 0.6274_{\text {total }}\right)$, but high accuracy $\left(0.9889_{\text {inte }}\right.$ to $\left.0.9913_{\text {total }}\right)$ ever larger than 0.95 and 0.91 , respectively. Performance analysis of raters is shown in Table 4.

Table 3. Rater performances (see text for details).

Statistics	Estimate	95\% Cl	Allowance	RBS
TDI ${ }^{95}$ r1-2	5.573	6.19	5.4	
TDI ${ }^{95 \mathrm{rl} \text {-3 }}$	8.494	9.453	5.4	
TDI ${ }_{95}{ }_{\text {r } 2-3}$	8.608	9.581	5.4	
CP_{54} r1-2	0.941	0.908	0.95	0.234
$\mathrm{CP}_{54}{ }_{\text {r1-3 }}$	0.783	0.730	0.95	0.03
CP_{54} r2-3	0.777	0.723	0.95	0.01
TIR ${ }_{\text {r1-2-3 }} \mathrm{vs}$ all	1.173	1.72	1.5	
IIR $_{\text {r1 vs } 22}$	1.104	(0.842,1.447)	1	
IIR $_{\text {r1 vs r3 }}$	1.015	(0.687,1.499)		
IIR $_{\text {r2 vs r3 }}$	0.92	(0.633,1.336)		

RBS relative bias squared.

The agreement was moderate and further from least acceptable CCC of 0.91-0.95. This finding agrees with the data presented in Fig. 4a-c, where readings were evenly scattered around the 45°
line (high accuracy 0.9537 to 0.9733) but not tightly scattered (moderate precision 0.7927 to 0.8895). The plots indicated that score differences tended to be more dispersed for large value correspondent to a lower lumbar level.

Fig 4. Inter-rater (R) agreement: a R1vsR2; b R1vsR3; c R2vsR3.

In terms of TDI and CP indices, the least acceptable agreement was set as having at least 95% pair's observations within 5.4 mm (allowance, equal to 20% of all measurements mean), independently to rater. The $\mathrm{TDI}_{0.95 \mathrm{rlr} 2}$ estimate was 5.573 mm , close to 5.4 mm target values, which means based on the average readings, 95% of the readings are within 5.573 mm of their replicate readings from the other rater. The $\mathrm{TDI}_{0.95 \mathrm{rlr} 3}$ estimate was 8.494 mm , and the $\mathrm{TDI}_{0.95 \mathrm{rr} 3}$ estimate was 8.608 mm . The one-sided upper confidence limit for $\mathrm{TDI}_{0.95 \mathrm{r} \mathrm{r} 2}$ was $6.19 \mathrm{~mm}, \mathrm{TDI}_{0.95 \mathrm{r} \mathrm{r} 3} 9.453 \mathrm{~mm}$, and $\mathrm{TDI}_{0.95 \mathrm{r} 2 \mathrm{r} 3}$ 9.581 mm all larger than target values. The $\mathrm{CP}_{54 \mathrm{rr} 2}$ estimate was 0.9418 , which means that 94% of observations were within their target values from the other rater. The one-sided lower confidence limit for $\mathrm{CP}_{54 \mathrm{r} 1 \mathrm{r} 2}$ was 0.9170 , smaller than 0.95 . The $\mathrm{CP}_{54 \mathrm{r} \mathrm{r} 3}$ estimate was 0.7835 and $\mathrm{CP}_{54 \mathrm{r} 2 \mathrm{r} 3}$ 0.7773 which means that 78% of observations are within 5.4 mm . The one-sided lower confidence limit for $\mathrm{CP}_{54 \mathrm{rlr} 3}$ was 0.7301 , and for $\mathrm{CP}_{54 \mathrm{r} 23}$ was 0.7236 both smaller than 0.95 .
$\mathrm{TIR}_{\mathrm{rl}-2-3} \mathrm{vs}$ all the ratio between average of the total MSD of all raters relative to the average of intra MSD of all raters, was estimated to be 1.173 , with a 95% upper confidence limit of 1.72 . If we consider that a precision deviation of more than 50% (1.5 allowance) is clinically not acceptable, we cannot claim raters' interchangeability. The IIR was estimated to be $\mathrm{IIR}_{\mathrm{rlvsr2}} 1.04, \mathrm{IIR}_{\mathrm{rlvsr} 3} 1.015$ and $\operatorname{IIR}_{\mathrm{r} 2 \mathrm{vsr} 3} 0.92$. If we refer at the individual bioequivalence FDA criterion, that the ratio of geometric means between readings differences must lie between 0.8 and 1.25, IIR upper/lower 95\% interval $\left\{\begin{array}{rl} \\ \mathrm{rls} \mathrm{r} 2\end{array}(0.842,1.447)\right.$, r1 vs r3 $(0.687,1.499)$, r2 vs r3 $\left.(0.633,1.336)\right\}$ indicated no rater precision supremacy.

Discussion

The study confirmed the ultrasound procedure as an operator dependent technique that is prone to variable measurements. Each considered parameter (rater and replicates) induced bias. Each rater proved to be accurate but not sufficiently precise.

Lacking intra-operator and inter-operator reliability made impossible to compare data obtained by different raters of the same department or in different groups and centers, and also frustrated a complete tuning of correct guidelines. Because errors are inherent in every measurement procedure, one must ensure the magnitude of the measurement agreement [18,24,25]. In clinical practice measurements are detect to take a decision, consequently magnitude of acceptable differences between ratings, it depends on clinical decision consequences. No universal standard for an acceptable confidence interval is currently available, but most experts consider range values 0.8 1.25 as supporting good reliability. A confidence interval for the difference between measurement results indicates the smallest detectable difference (SDD) [26-29]. With repeated rating, any change outside these boundaries can be considered a true change in the entity being assessed. The smallest detectable difference it is a useful starting point in determining what is a minimum clinically important difference (MCID) in values handle.

When measurements show evidence of lack of agreement, we need to address the sources of the deficiencies. According to Alvan Feinstein [30] for gaining insight into the "clinimetric" property, we should reinforce apprentice's attention on measurements methodologic discipline quality of the measurement $[31,32]$. To enable assessment in routine care, we'll beckon worth on agreement, reliability, repeatability, and reproducibility. Because of that, it is essential to reinforce statistical skill in medical training too.

Conclusions

The cohort sampled was limited but indicative to same training adjustments. Future efforts could focus on tear down "observational errors". In order to improve rater's performance, and promote inter-rater reliability, it should be considerers a number of strategies: training on imaging
morphologies, nurture feedback to those who have shown a low reproducibility, reinforce protocols.
All these methods used as a screening quality, self-evaluation check, and calibration experience encourage raters to achieve 0.8-1.25 range values and gaining smallest detectable difference validity [27,33].

References

1. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-Learning

Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J
Am Coll Cardiol. 2016 Nov 29;68(21):2287-2295. doi: 10.1016/j.jacc.2016.08.062. PMID:
27884247.
2. Papolos A, Narula J, Bavishi C, Chaudhry FA, Sengupta PP. U.S. Hospital Use of Echocardiography: Insights from the Nationwide Inpatient Sample. J Am Coll Cardiol. 2016 Feb 9;67(5):502-11. doi: 10.1016/j.jacc.2015.10.090. PMID: 26846948.
3. Bunting KV, Steeds RP, Slater LT, Rogers JK, Gkoutos GV, Kotecha D. A Practical Guide to Assess the Reproducibility of Echocardiographic Measurements. J Am Soc Echocardiogr. 2019 Dec;32(12):1505-1515. doi: 10.1016/j.echo.2019.08.015. Epub 2019 Oct 22. PMID: 31653530
4. Iagnocco A, Naredo E, Bijlsma JW. Becoming a musculoskeletal ultrasonographer. Best Pract Res Clin Rheumatol. 2013 Apr;27(2):271-81. doi: 10.1016/j.berh.2013.02.004. PMID: 23731935.
5. Kim EY, Park KH, Choi SJ, Chung W-J Educational value of pocket-sized ultrasound devices to improve understanding of ultrasound examination principles and sonographic anatomy for medical student. PLoS ONE 201712(9): e0185031.
https://doi.org/10.1371/journal.pone. 0185031
6. Fowlkes JB; Bioeffects Committee of the American Institute of Ultrasound in Medicine. American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary. J Ultrasound Med. 2008 Apr;27(4):503-15.
7. Miller DL. Safety assurance in obstetrical ultrasound. Semin Ultrasound CT MR. 2008.
8. Serrao G, Tassoni M, Magenta-Biasina AM, Mantero AG, Previtera A, Turci MC, Biganzoli EM, Bertolini EAM. Virtual Dissection by Ultrasound: Probe Handling in the First Year of Medical Education. Ultrasound Int Open. 2017 Sep;3(4):E156-E162. doi: 10.1055/s-0043121983. Epub 2017 Dec 7. PMID: 29226274; PMCID: PMC5721288.
9. Stokes M, Rankin G, Newham DJ. Ultrasound imaging of lumbar multifidus muscle: normal reference ranges for measurements and practical guidance on the technique. Man Ther. 2005 May;10(2):116-26
10. Whittaker JL, Teyhen DS, Elliott JM, Cook K, Langevin HM, Dahl HH, Stokes M. Rehabilitative ultrasound imaging: understanding the technology and its applications. J Orthop Sports Phys Ther. 2007 Aug;37(8):434-49
11. Fawcett E. A Note on the Identification of the Lumbar Vertebrae of Man. J. Anat. April 1932;66(Pt 3):384-6.
12. Kilby J, Heneghan NR, Maybury M. Manual palpation of lumbo-pelvic landmarks: a validity study. Man Ther. 2012 Jun;17(3):259-62
13. Hides J, Gilmore C, Stanton W, Bohlscheid E. Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther. 2008 Feb;13(1):43-9
14. Wallwork TL, Hides JA, Stanton WR. Intrarater and interrater reliability of assessment of lumbar multifidus muscle thickness using rehabilitative ultrasound imaging. J Orthop Sports Phys Ther. 2007 Oct;37(10):608-12.
15. Watson PF, Petrie A. Method agreement analysis: a review of correct methodology. Theriogenology. 2010 Jun;73(9):1167-79. doi: 0.1016/j.theriogenology.2010.01.003. PMID: 20138353.
16. Watson T. Ultrasound in contemporary physiotherapy practice. Ultrasonics. 2008 Aug;48(4):321-9.
17. Lin L, Hedayat AS, Wu W. A unified approach for assessing agreement for continuous and categorical data. J Biopharm Stat. 2007; 17.4:629-652
18. Lin, L. I., Hedayat, A. S., Sinha, B., and Yang, M. Statistical methods in assessing agreement: models, issues \& tools. Journal of American Statistical Association 2002;97(457), 257-270
19. Barnhart HX, Haber M, Song J. Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics. 2002 Dec;58(4):1020-7.
20. Escaramís G, Ascaso C, Carrasco JL. The total deviation index estimated by tolerance intervals to evaluate the concordance of measurement devices. BMC Med Res Methodol. 2010 Apr 8;10:31. doi: 10.1186/1471-2288-10-31. PMID: 20377875; PMCID: PMC2859350.
21. Jang JH, Manatunga AK, Taylor AT, Long Q. Overall indices for assessing agreement among multiple raters. Stat Med. 2018 Dec 10;37(28):4200-4215. doi: 10.1002/sim.7912. Epub 2018 Jul 30. PMID: 30062738; PMCID: PMC6587587.
22. Lin L, Hedayat AS, Tang Y. A comparison model for measuring individual agreement. J Biopharm Stat. 2013 Mar 11;23(2):322-45
23. Yue Yu AND Lawrence Lin (2012). Agreement: Statistical Tools for Measuring Agreement. R package version 0.8-1. https://CRAN.R-project.org/package=Agreement
24. Barnhart HX, Song J, Haber MJ. Assessing intra, inter and total agreement with replicated readings. Stat Med. 2005 May 15;24(9):1371-84. doi: 10.1002/sim.2006. PMID: 15570569; PMCID: PMC1653
25. Barnhart HX, Haber MJ, Lin LI. An overview on assessing agreement with continuous measurements. J Biopharm Stat. 2007;17(4):529-69. doi: 10.1080/10543400701376480. PMID: 17613641.
26. Bruynesteyn K, Boers M, Kostense P, van der Linden S, van der Heijde D. Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change. Ann Rheum Dis. 2005 Feb;64(2):179-82. doi: 10.1136/ard.2003.018457. Epub 2004 Jul 29. PMID: 15286006; PMCID: PMC1755378.
27. Lassere M, Boers M, van der Heijde D, Boonen A, Edmonds J, Saudan A, Verhoeven AC. Smallest detectable difference in radiological progression. J Rheumatol. 1999 Mar;26(3):731-9. PMID: 10090192.
28. Lassere MN, van der Heijde D, Johnson K, Bruynesteyn K, Molenaar E, Boonen A, Verhoeven A, Emery P, Boers M. Robustness and generalizability of smallest detectable difference in radiological progression. J Rheumatol. 2001 Apr;28(4):911-3. PMID: 11327275.
29. Riemann BL, Lininger MR. Statistical Primer for Athletic Trainers: The Essentials of Understanding Measures of Reliability and Minimal Important Change. J Athl Train. 2018 Jan;53(1):98-103. doi: 10.4085/1062-6050-503-16. Epub 2018 Jan 13. PMID: 29332472; PMCID: PMC5800735.
30. Feinstein AR. An additional basic science for clinical medicine: IV. The development of clinimetrics. Ann Intern Med. 1983 Dec;99(6):843-8. doi: 10.7326/0003-4819-99-6-843. PMID: 6651026.
31. de Vet HC, Terwee CB, Bouter LM. Current challenges in clinimetrics. J Clin Epidemiol. 2003 Dec;56(12):1137-41. doi: 10.1016/j.jclinepi.2003.08.012
32. Lexell JE, Downham DY. How to assess the reliability of measurements in rehabilitation. Am J Phys Med Rehabil. 2005 Sep;84(9):719-23. doi: 10.1097/01.phm.0000176452.17771.20. PMID: 16141752.
33. Hernaez R. Reliability and agreement studies: a guide for clinical investigators. Gut. 2015

Jul;64(7):1018-27. doi: 10.1136/gutjnl-2014-308619. Epub 2015 Apr 14. PMID: 25873640.

34. Figures

35.
36.

37. Figure 4. Subject position.
38.
39.
40.
41. Figure 5. Identification of the spinous processes.
42.
43.
44.

45.

46. a: apex of the spinous process, b: yellow ligament, \mathbf{c} : median sacral crest.
47.
48.

49. Fig 4. Inter-rater (R) agreement: a R1vsR2; b R1vsR3; c R2vs

