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Abstract 

Background and Hypothesis 

Quantitative acoustic and textual measures derived from speech (“speech features”) may provide valuable biomarkers 

for psychiatric disorders, particularly schizophrenia spectrum disorders (SSD). We sought to identify cross-diagnostic 

latent factors for speech disturbance with relevance for SSD and computational modeling.  

Study Design 

Clinical ratings for speech disturbance were generated across 14 items for a cross-diagnostic sample (N=343), including 

SSD (n=97). Speech features were quantified using an automated pipeline for brief recorded samples of free-speech. 

Factor models for the clinical ratings were generated using exploratory factor analysis, then tested with confirmatory 

factor analysis in the cross-diagnostic and SSD groups. Relationships among factor scores, speech features and other 

clinical characteristics were examined using network analysis. 

Study Results 

We found a 3-factor model with good fit in the cross-diagnostic group and acceptable fit for the SSD subsample. The 

model identifies an impaired expressivity factor and two interrelated disorganized factors for inefficient and incoherent 

speech. Incoherent speech was specific to psychosis groups, while inefficient speech and impaired expressivity showed 

intermediate effects in people with nonpsychotic disorders. Network analysis showed that the factors had distinct 

relationships with speech features, and that the patterns were different in the cross-diagnostic versus SSD groups. 

Conclusions 

We report a cross-diagnostic 3-factor model for speech disturbance which is supported by good statistical measures, 

intuitive, applicable to SSD, and relatable to linguistic theories. It provides a valuable framework for understanding 

speech disturbance and appropriate targets for modeling with quantitative speech features. 
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Introduction 

Quantitative features derived from speech are 

increasingly recognized as valuable predictors and 

objective biomarkers for psychiatric disorders, notably 

including schizophrenia spectrum disorders (SSD).1–4 

In this paper, we identify cross-diagnostic latent factors 

for language disturbance, then demonstrate the 

relevance of these factors for computational linguistic 

modeling in relation to general psychopathology and in 

SSD, particularly. Here, we regard speech as speech, 

without making inferences regarding “thought disorder,” 

a related construct which infers disruptions to thought 

based on observable changes in speech. 

 A range of speech features appear promising 

as predictors of psychiatric diagnoses and biomarkers 

of individual symptom dimensions. We use the term 

“speech features” broadly to indicate quantitative 

metrics derived from speech samples, including 

phonetic, acoustic and textual measures. Much of the 

work on speech biomarkers has been done in SSD. For 

example, SSD diagnosis can be classified with >80% 

accuracy relative to healthy volunteers (HV) using 

measurements of semantic distance, which quantify the 

“closeness” of the meaning in successive sentences or 

segments of words.5,6 This strategy can be combined 

with other automated measurements of syntax/parts-of-

speech,7–9 referential ambiguity,9 and metaphoricity.10 

Acoustic features (pitch, voice quality, pauses) also 

successfully predict SSD diagnosis.11 Additionally, 

transition to psychosis among individuals at clinical 

high risk can be predicted with 83-97% accuracy using 

automatic measurements of semantic density,12 

detection of metaphorical speech or non-standard 

meanings,10 and a combination of semantic distance 

and parts-of-speech.13,14 Speech features are also 

promising biomarkers for other clinical contexts, 

including mania,15 depression,16 autism,17 and 

dementia.18,19 

Presumably, speech features predict clinical 

characteristics by reflecting speech-related symptoms 

such as decreased prosody, tangentiality, and changes 

in quantity. However, most studies have used speech 

features to directly predict diagnosis or outcomes, 

without relating features to observable speech 

disturbances.5–14 There are weaknesses to this approach. 

First, there is substantial heterogeneity in speech 

phenotypes within diagnoses. Cross-diagnostically, and 

within SSD, positive/disorganized versus 

negative/impoverished dimensions have been 

consistently reported;2,20,21 they are poorly and 

sometimes even negatively correlated with one 

another.22 Therefore, greater precision may be achieved 

by modeling specific types of speech disturbance, 

rather than diagnostic phenotypes as a whole.22–24 

Second, speech disturbances may be shared across 

disorders, with implications for underlying 

neurobiology. We need to define cross-diagnostically 

valid constructs in order to determine whether speech 

features can be used consistently across disorders as 

biomarkers for particular speech phenotypes. Notably, 

in a large sample (N=1,071), Stein et al. found three 

factors of speech disturbance (emptiness, 

disorganization, and incoherence) which were linked to 

changes in distinct brain regions and valid across 

diagnoses.25 Speech graph features have been shown to 

be a good marker of thought disorder in mania and 

SSD,15 and to be related to cross-diagnostic 

psychopathological dimensions.26 However, there are 

few studies examining whether quantitative speech 

features are consistently related to cross-diagnostic 

dimensions of speech disturbance. 

Previous studies have reported factor 

analyses on rating scales for thought disorder, but 

results are varied, mostly limited to SSD cohorts, and 

relevance for computational modeling is unclear. The 

two-factor model distinguishing impoverished speech 

(e.g., poverty of speech, latency, concreteness) from 
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disorganized speech (e.g., tangentiality, derailment, 

incoherence, neologisms, clanging) is the most 

consistent.2,20,21 However, “disorganized speech” is 

inconsistently defined across studies and encompasses 

a broad collection of individual symptoms which may 

require different computational strategies. A 6-factor 

model has been replicated in SSD but several factors 

are not likely to be relevant cross-diagnostically (e.g., 

idiosyncratic: word approximations and stilted speech; 

referential: echolalia and self-reference).21,27 

 The objective of this study was to delineate 

dimensions of observable speech disturbance suitable 

as targets for computational modeling in SSD and 

across diagnoses. First, we used factor analyses to 

identify and test interpretable models. Then, we 

evaluated the clinical relevance of the factor scores by 

comparing severity across diagnostic groups, with the 

expectation that clinically relevant factors should show 

different patterns in different groups. Finally, using 

network analysis, we related the factors to multi-modal 

speech features cross-diagnostically and within an SSD 

subgroup.  

 

Methods 

Participants 

The cross-diagnostic sample included brief recordings 

of free speech (~1.5-3 minutes) from 343 individuals, 

including 97 definitively diagnosed with SSD, 31 with 

affective psychosis or probable but unconfirmed 

psychotic disorder (PSY), 130 with other non-psychotic 

disorders (OD), and 76 HV (Table 1). Other psychiatric 

disorders included unipolar and bipolar mood disorders, 

anxiety disorders, OCD, borderline personality disorder, 

ADHD, and substance use disorders. Many participants 

were diagnosed with multiple comorbid conditions, so 

diagnoses were not mutually exclusive. Individuals 

with developmental, neurological, or medical 

conditions likely to impact speech were excluded, 

including intellectual disability, autism spectrum 

disorder, and dementia. All recruited participants 

signed informed consent, and human subjects research 

ethical approval was given by the IRB at the Feinstein 

Institutes for Medical Research. Additional details on 

ascertainment and sample collection are provided in the 

supplement. 

 

Clinical Ratings of Speech Disturbance 

To clinically characterize language disturbances, all 

samples were given ratings using the 18 items from the 

Scale for the Assessment of Thought Language and 

Communication (TLC)28 and two additional speech-

related items from the Scale for the Assessment of 

Negative Symptoms (SANS)29 which were not 

included in the TLC (SANS-06: Decreased Vocal 

Inflection; SANS-11: Increased Latency of Response). 

Consistent with previous reports,21,28,30 we found low 

prevalence (absent in >90% of the sample), low 

interrater reliability, or low sampling adequacy for six 

TLC items: echolalia, blocking, clanging, word 

approximation, self-reference, and stilted speech. 

These were not included in the analyses. Each of the 

remaining 14 items exhibited excellent interrater 

reliability (ICC³0.9). 

 

Speech Features 

All samples were transcribed verbatim and processed 

through an automated pipeline to extract acoustic 

(prosody and voice quality, speaking tempo and pauses) 

and textual features (semantic distances, dysfluencies 

and speech errors, speech graph measures, lexical 

characteristics, sentiment, parts-of-speech, speech 

quantity). We initially selected 79 features for analysis. 

To improve interpretability of the graphs, we calculated 

variance inflation factors for each category of features 

and omitted redundant features. Twenty-seven features 

were included in the final analysis. Additional details 

are provided in the supplement. 
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Table 1. Participant and Sample Characteristics 

  
Healthy 

Volunteers (HV) 

Other 
Psychiatric 

Disorders (OD) 

Other or 
Undetermined 

Psychosis (PSY) 

Schizophrenia 
Spectrum 

Disorders (SSD) 
Total 

Sample P - Value 
N 76 130 31 97 334   
Age - mean (SD) 29.0 (6.7) 23.8 (5.5) 26.7 (6.9) 26.8 (6.7) 26.2 (6.6) <0.001 
Gender -  n (%)       0.004 
     Man 35 (46%) 44 (34%) 19 (61%) 57 (59%) 155 (46%)   
     Non-Binary 2 (3%) 12 (9%) 0 (0% 4 (4%) 18 (5%)   
     Woman 39 (51%) 73 (56%) 12 (39%) 34 (35%) 158 (47%)   
Race – n (%)       0.002 
     Asian 11 (15%) 14 (13%) - 15 (16%) 40 (14%)   
     Black 29 (38%) 21 (19%) - 41 (42%) 91 (32%)   
     Multiple 5 (7%) 8 (7%) - 6 (6%) 19 (7%)   
     Other 2 (2%) 8 (7%) - 14 (14%) 25 (9%)   
     White 29 (38%) 60 (54%) - 21 (22%) 112 (39%)   
Hispanic – n (%) 10 (13%) 19 (17%) - 14 (15%) 44 (16%) 0.7 
TLC Global – mean (SD) 0.1 (0.3) 0.4 (0.6) 1.7 (1.1) 1.3 (1.0) 0.7 (1.0) <0.001 
Note: SD – standard deviation, TLC Global – Global score from the Scale for the Assessment of Thought Language and Communication. 

 
 

Clinical Assessments 

A subset of participants was further characterized on 

psychosis symptoms, functioning, and select cognitive 

measures (n=125), which were included in the network 

analysis to provide context for the clinical speech 

factors and computational speech features. Clinical 

characteristics included measures of general psychosis 

symptoms, anxiety/depression, negative symptoms, 

verbal ability, social cognition, and functional 

impairment. Additional details are provided in the 

supplement. 

 

Factor Analyses 

Exploratory factor analysis (eFA) was used to generate 

potential models for latent factors for clinical speech 

disturbance ratings in the cross-diagnostic sample. 

Usual assumptions were met: Bartlett Test of Sphericity: 

p<<0.001; Kaiser-Meyer-Olkin measure of sampling 

adequacy = 0.9; determinant = 0.0004. Visual 

inspection of the scree plot (Supplemental Figure 1) 

suggested 2-3 latent factors. We used the psych 

package31 in R32 to generate 2- and 3-factor principal 

axis solutions with promax rotations. We chose an 

oblique rotation because we hypothesized that latent 

factors may be correlated with one another. 

Confirmatory factor analysis (cFA) was used to 

examine fit statistics for the full cross-diagnostic 

sample and the SSD subgroup. Maximum likelihood 

estimation from lavaan package33 was used. The main 

group effect on factor scores was evaluated using 

ANOVA and pair-wise comparisons were made using 

t-tests. 

 

Network Generation 

Speech factor scores were computed based on the final 

3-factor model and a network was constructed to 

illustrate correlational relationships. Nodes represent 

factor scores, speech features, and clinical 

characteristics. Edges represent Spearman correlation 

coefficients with ρ>0.3 and p<0.01. The graph was 

plotted in R using the igraph package34 and network 

descriptors were calculated. All metadata, code for 
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analysis, and resources for duplicating our factor score 

calculations are available at: 

https://github.com/STANG-

lab/Analysis/tree/main/Factor-network. 

 

 

Results 

Latent Factors of Language Disturbance 

Results of the eFA (Table 2, Supplemental Figures 2 & 

3) suggested 2- and 3-factor models based on 14 

clinical ratings for speech and language disturbance 

symptoms in the cross-diagnostic sample. The 2-factor 

model identified factors related to disorganized speech 

and impaired expressivity (decreased speech content 

and expressiveness), explaining 40% and 12% of the 

variance, respectively. The 3-factor model also 

produced the impaired expressivity factor (5% variance) 

and further divided disorganized speech into items 

consistent with inefficient speech (poor organization 

across ideas; 41% of variance) and incoherent speech 

(nonsensical or unintelligible utterances; 12% of 

variance). Each model was tested using cFA in both the 

overall sample and the SSD subgroup. The 2-factor 

model was a poor fit for both groups (Cross-diagnostic: 

Comparative Fit Index (CFI)=0.850, Tucker-Lewis 

Index (TLI)=0.821, Root Mean Square Error of 

Approximation (RMSEA)=0.095; SSD: CFI=0.827, 

TLI=0.793, RMSEA=0.118). Because the 3-factor 

model had multiple cross-loadings which are not 

suitable for cFA, we tested this model in two ways: first, 

by omitting the cross-loaded items (Poverty of Content 

of Speech, Derailment, and Loss of Goal) and then by 

including a separate fourth factor with the cross-loaded 

items. Both approaches demonstrated good fit for the 

final model in the cross-diagnostic sample: Without 

cross-loaded items (3-factor): CFI=0.965, TLI=0.953, 

RMSEA=0.047; With separate factor (4-factor): 

CFI=0.954, TLI=0.941, RMSEA=0.054. The fits were 

acceptable in the SSD subsample: Without cross-

loaded items (3-factor): CFI=0.908, TLI=0.877, 

RMSEA=0.086; With separate factor (4-factor): 

CFI=0.917, TLI=0.893, RMSEA=0.085). 

 

Group Differences in Factor Scores 

Each of the three factors exhibited significant group 

effects (p<0.001) but with different patterns (Figure 1). 

Inefficient speech showed a graded effect with 

significant differences between each pair of groups; 

inefficient speech was highest in the SSD group, 

followed by PSY, then OD and HV. Incoherent speech 

was specific to psychosis and was elevated in both 

psychotic groups (SSD and PSY) compared to both 

nonpsychotic groups (OD and HV); with no significant 

difference between SSD and PSY or between OD and 

HV. Clinically significant impaired expressivity 

symptoms were present across all groups, but highest in 

the psychosis groups (SSD and PSY), intermediate for 

participants with other psychiatric disorders (OD), and 

lowest for healthy volunteers (HV). 

 

Relationships to Computational Features 

Networks generated for the factor scores, 

computational language features, and clinical 

symptoms also showed distinct relationships with each 

of the three factors, as well as different patterns for the 

cross-diagnostic (Figure 2) versus SSD samples (Figure 

3). For the cross-diagnostic group, all clinical 

characteristics were tightly interrelated. The overall 

density was 0.19. Impaired expressivity was the most 

highly connected speech factor (Degree (D)= 14; 

Betweenness Centrality (BC)=181.4), followed by 

inefficient speech (D=13, BC=8.5) and then incoherent 

speech (D=10, BC=3.7). For the SSD subgroup, overall 

density was 0.09, reflecting greater separation among 

clinical characteristics and speech features. Inefficient 

speech was the most highly connected (D=9, 

BC=122.3), followed by impaired expressivity (D=7, 

BC=64.8), and then incoherent speech (D=6, BC=13.9). 
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Table 2. Factor Loadings 

2-Factor Model 

Speech and Language Items 

3-Factor Model 

Disorganized 
Speech 

Impaired 
Expressivity 

Inefficient 
Speech 

Incoherent 
Speech 

Impaired 
Expressivity 

  0.77 Poverty of Speech (TLC-01)     0.81 
0.87  Poverty of Content of Speech (TLC-02) 0.46 0.47  
0.65 -0.34 Pressured Speech (TLC-03) 0.79    
0.49   Distractible Speech (TLC-04) 0.58     
0.85   Tangentiality (TLC-05) 0.92     
0.89   Derailment (TLC-06) 0.58 0.39   
0.65   Incoherence (TLC-07)   0.89   
0.73   Illogicality (TLC-08)   0.67   
0.38   Neologism (TLC-10)   0.58   
0.72  Circumstantiality (TLC-12) 0.84     
0.82   Loss of Goal (TLC-13) 0.45 0.43   
0.66   Perseverations (TLC-14) 0.58     

  0.62 Decreased Vocal Inflections (SANS-06)     0.69 
  0.57 Increased Latency of Response (SANS-11)     0.56 

Note: Loadings <0.3 are masked. TLC – Scale for the Assessment of Thought Language and Communication; SANS – Scale for the Assessment 

of Negative Symptoms.  

 

For both groups, the three speech factors had 

distinct patterns of correlations with other features. 

Among SSD, inefficient speech was most closely 

correlated with incoherent speech, repeated words, 

higher speaking rate, and impairment in emotion 

processing; other significant relationships to 

computational features included largest clique size in 

sequential graphs, cosine embedding distances using 

latent semantic analysis, and higher age of acquisition 

of words. Incoherent speech was most closely 

correlated with impaired theory of mind, inefficient 

speech, alogia, and impaired emption processing; other 

significant relationships included higher speaking rate, 

higher arousal sentiment, greater use of subordinate 

conjunctions, and decreased variance in vocal shimmer. 

Impaired expressivity was most tightly connected to 

withdrawal/retardation symptoms, affective flattening, 

alogia, and impairment in interpersonal functioning; 

other significant relationships included decreased mean 

pitch, decreased clustering coefficient in action-

predication graphs, and decreased variance in shimmer. 

 

Discussion 

In this study, we identified a 3-factor model that 

describes speech and language disturbance with good 

fit in cross-diagnostic and SSD samples. An impaired 

expressivity factor included items related to decreased 

quantity and expressiveness. Two interrelated 

disorganized factors emerged: an inefficiency factor 

included items describing poorly-related, redundant, or 

excessive speech, and an incoherent factor included 

items relating to nonsensical or unintelligible speech. 

Fittingly, derailment, loss of goal, and poverty of 

content of speech were cross-loaded on both the 

inefficient and the incoherent factors. Our confirmatory 

models suggest a good fit for the 3-factor model in the 

cross-diagnostic sample, and adequate fit for the SSD 

subgroup which is comparable to previously reported 
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models.21 The distinction between impaired 

expressivity and disorganization-type symptoms is 

well-replicated in SSD21 and cross-diagnostically.2 

Specifically, a latent factor for poverty of thought and 

decreased expressiveness has been found by other 

groups and using other rating scales.35,36 Factor analysis 

of the Thought and Language Index also suggests that 

unusual word usage, sentence structure, and logic 

(consistent with our incoherence factor) may be 

differentiated from distractibility and perseveration 

(included in our inefficiency factor).37 Overall, our 

model is very similar to the 3-factor model for formal 

thought disorder reported by Stein et al. in their cross-

diagnostic sample of N=1,071.25 They describe an 

emptiness factor (poverty of speech and content, 

increased latency, and blocking), a disorganization 

factor (tangentiality, circumstantiality, derailment, 

pressure of speech), and an incoherence factor 

(incoherence, illogicality, distractibility). The principal 

differences are that we include decreased vocal 

inflection in our impaired expressivity factor (since we 

are looking at speech as a whole, and not specifically 

thought disorder), and that we prefer the term 

“inefficiency” over “disorganization” because 

“disorganization” is an overly broad term than can 

include incoherence and other items. Notably, Stein et 

al. report distinct correlates to brain structure for their 

three factors. The similarity between our findings, and 

the fact that the samples were collected in different 

languages and rated by different teams, provides added 

confidence for the 3-factor model we propose. 

 
Figure 1. Group Differences In Factor Scores:  
Pairwise comparisons made using t-tests. NS – Not significant; * p<0.05; ** p<0.01; ***p<0.001. HV – healthy 

volunteers; OD – other psychiatric disorders; PSY – other or undetermined psychotic disorders; SSD – schizophrenia 

spectrum disorders.  
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Figure 2. Cross-Diagnostic Factors, Features, and Symptoms Network: Nodes represent factor scores, 
computational acoustics and lexical features, and clinical symptoms ratings and scores; size is proportional to the 
degree of the node. Edges represent Spearman correlation coefficients with cutoff of ρ=0.3 and p=0.01; weight is 
proportional to absolute value; gray edges are positive correlations and red edges are negative correlations.  
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Figure 3. Schizophrenia Spectrum Disorders Subgroup – Factors, Features, and Symptoms Network: Nodes 
represent factor scores, computational acoustics and lexical features, and clinical symptoms ratings and scores; size is 
proportional to the degree of the node. Edges represent Spearman correlation coefficients with cutoff of ρ=0.3 and 
p=0.01; weight is proportional to absolute value; gray edges are positive correlations and red edges are negative 
correlations.  
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 The 3-factor model proposed here can be 

understood in the context of linguistic theories on pragmatics. 

In classical Gricean pragmatics, a speech act is carried out 

successfully when the addressee is made to recognize the 

speaker’s communicative intent (“Meaning-intention” or 

“M-intention”).38,39 Understanding the M-intention 

necessitates not only deciphering the semantic content 

(literal meaning) of what is spoken, but also the 

conversational implicatures which are grounded in the 

context of the discourse and in the cooperative principle. Per 

Grice, the cooperative principle assumes that the speaker is 

always following four maxims: (1) Quantity: be informative, 

but not overly informative; (2) Quality: be truthful, to the 

best of one’s knowledge; (3) Relation: be relevant; and (4) 

Manner: be perspicuous (clear). Along these lines, we can 

characterize the impaired expressivity factor as violations of 

the maxim on quantity—specifically, delivery of too little 

information. Inefficiency and incoherence both involve 

violations of relation, manner, and (excessive) quantity, but 

differ in degree. With incoherent speech, the violations are 

severe to the point of preventing the M-intention from being 

inferred. With inefficient speech, the violations of the 

cooperative principle are perceived, but the M-intention can 

still be ascertained. We can also differentiate between 

incoherent and inefficient disorganized speech by referring 

to Grosz’s theories on centering and discourse structure.40,41 

She suggests that, just as individual sentences can be broken 

down into a hierarchical structure of phrases which give 

meaning to one another, so can discourse be broken into a 

hierarchy of discourse segments (each containing one or 

more utterances). In coherent discourse, individual 

utterances within a discourse segment collaborate to convey 

the discourse segment purpose (local coherence), and 

multiple discourse segments relate to one another to satisfy 

the overall discourse purpose (global coherence). With 

respect to our work, we would characterize inefficiency as 

disruptions in global coherence, where there are disruptions 

or inefficiencies in satisfying the overall discourse purpose, 

while incoherence arises from disruptions to local coherence 

that cause the discourse segment purpose to be obscured. 

 We also found distinct and significant diagnosis 

group effects for each of the three factors, suggesting that the 

model is not just statistically and theoretically sound, but 

also clinically meaningful. There were intermediate effects 

for nonpsychotic disorders in inefficiency and impaired 

expressivity, but incoherence was specific to people with 

psychosis and rarely elevated in either healthy volunteers or 

people with nonpsychotic disorders. Intuitively, this pattern 

may be explained by the sensitivity of impaired expressivity 

and inefficiency to non-psychiatric (e.g., personality, culture, 

social context) and non-specific factors (e.g., impaired 

attention, psychomotor retardation, ruminations and 

repetitive thinking). In contrast, incoherence may be more 

specific to psychosis-related brain-changes. This hypothesis 

should be further evaluated.  

 There were notable differences between the cross-

diagnostic and SSD groups in how factor scores related to 

other clinical characteristics and quantitative speech features. 

In the cross-diagnostic sample, all clinical characteristics 

were tightly interrelated, likely representing a common 

dimension of psychopathology. Impaired expressivity 

showed the highest betweenness centrality and served as a 

bridge between clinical characteristics and quantitative 

speech features. In the SSD subsample, as expected, 

impaired expressivity was more closely related to negative 

symptoms like affective flattening, withdrawal, anhedonia, 

and avolition, while incoherent and inefficient speech were 

more closely related to positive symptoms like thought 

disturbance, hostility and suspiciousness. Among SSD, 

inefficient speech had the highest betweenness centrality, 

and connected multiple symptom dimensions, functioning, 

and quantitative speech features. For both groups, each 

speech factor was closely related to other clinical 

characteristics but demonstrated distinct relationships with 

quantitative speech features. Some of the relationships 

illustrated in our network diagrams reflect those reported in 

previous works. For example, disorganized speech has been 

connected with poor functioning and greater cognitive 

impairment.42 Affective flattening and anhedonia have been 

related to decreased speaking rate.43,44 In general, we 

interpret the results from our network analyses to suggest 

that each speech factor taps consistently into critical clinical 

phenomena, but that computational modeling should be 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2022.03.31.22273263doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.31.22273263
http://creativecommons.org/licenses/by/4.0/


 11 

pursued separately for the individual factors, and possibly 

separately for different clinical populations.  

 There were several limitations in our work which 

should be addressed in future studies. There were 

heterogeneities in the data collection methods. The network 

analysis does not account for moderating or confounding 

variables, such as gender, age, and socioeconomic status. All 

samples were collected in English and rated with the TLC 

scale (with 2 SANS items) at a single site. A larger multi-

lingual study using multiple rating scales would further 

support the generalizability of our findings. The fit of the 3-

factor model for other (nonpsychotic) diagnostic groups or 

within individual SSD diagnoses was not examined because 

it was outside the scope of this paper. Furthermore, both 

clinical ratings and quantitative speech features may be 

affected by the context of the interview and the nature of the 

task. There may also be group by context effects on speech. 

The performance of predictive models may be further 

improved by standardizing and accounting for these 

variations. 

In this study, we report a cross-diagnostic 3-factor 

model for speech and language disturbance which is 

supported by good statistical measures, intuitive, applicable 

to SSD, and relatable to linguistic theories. Impaired 

expressivity, inefficiency, and incoherence show 

meaningfully distinct patterns in different diagnostic groups, 

with incoherent speech being most specific to psychosis. 

Each factor was closely related to a network of other clinical 

characteristics but demonstrated distinct relationships to 

quantitative speech features. The factors also intuitively 

inspire different computational strategies. In conclusion, the 

3-factor model reported here is a valuable framework for 

understanding speech and language disturbance cross-

diagnostically and in SSD particularly, and the factor scores 

are appropriate targets for modeling with quantitative speech 

features. 
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