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Abstract (294 of 300 words) 30 

Introduction: Current advice to improve fertility includes reducing alcohol and caffeine 31 

consumption, achieving healthy weight-range, and stopping smoking. Advice is informed by 32 

observational evidence, which is often biased by confounding.  33 

 34 

Methods: This study uses data from the Norwegian Mother, Father and Child Cohort Study 35 

(MoBa) and the Medical Birth Registry of Norway. First, we analysed associations between 36 

health behaviours prior to pregnancy (alcohol and caffeine consumption, body-mass index (BMI) 37 

and smoking) and multiple indicators of fertility (including number of children, time to 38 

conception, and miscarriage) (n=83,128 women, 67,555 men), adjusting for birthyear, education 39 

and attention deficit and hyperactive-impulsive (ADHD) traits. Second, we used individual-level 40 

Mendelian randomisation (MR) to explore possible causal effects of health behaviours on 41 

fertility outcomes (n=27,216 women, 26,131 men). Finally, we performed summary-level MR for 42 

available outcomes (n=91,462-1,232,091) and conducted multi-variable MR to control for 43 

education and ADHD liability.     44 

 45 

Results: In observational analysis, higher BMI and smoking (and to a lesser extent caffeine) 46 

were predominantly associated with reduced fertility outcomes. Unexpectedly, higher alcohol 47 

consumption was associated with predominantly improved fertility outcomes. There was little 48 

evidence from individual-level MR analyses, except smoking and higher BMI were associated 49 

with younger age at first birth in women (mean difference in years, per SD increase in genetic 50 

score; smoking: -2.65 (95%CI: -3.57, -1.73); BMI: -0.11 (95%CI: -0.16, -0.08)) and men 51 

(smoking: -2.82 (95%CI: -4.07, -1.58); BMI: -0.17 (95%CI: -0.23, -0.11)). These results were 52 

replicated in the summary-level MR analysis, however effects attenuated after adjusting for 53 

education and ADHD liability.  54 

 55 

Conclusions: Most observational evidence for associations between health behaviours and 56 

fertility was not supported by MR analyses, suggesting possible residual confounding. Evidence 57 

from MR analyses supported an effect of smoking and higher BMI on younger age of first birth, 58 

but multivariable MR suggested this might be explained by underlying liability to ADHD and low 59 

educational attainment.   60 
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Introduction 61 

Women struggling to conceive are often advised to engage in healthier lifestyle behaviours, for 62 

example, reducing their alcohol and caffeine consumption, achieving a healthy weight-range and 63 

quitting smoking (1–3). Reviews of observational evidence support an association between 64 

these health behaviours and reduced fertility in women (4), with high alcohol consumption and 65 

smoking associated with reduced likelihood of conception (5–9) and high caffeine consumption 66 

and obesity associated with increased risk of miscarriage (10,11).  Guidelines and 67 

epidemiological research on fertility often focus on women (2,12,13) however, it is important to 68 

also consider the impact of health behaviours in the partner. Meta-analyses suggest that 69 

smoking and alcohol consumption can reduce semen quality (14), and paternal obesity has been 70 

associated with reduced likelihood of natural conception (15) and an increased time to 71 

conception (16).  72 

 73 

The majority of evidence to date exploring health behaviours and fertility is observational, and 74 

most studies do not adequately control for confounding (17). For example, health behaviours 75 

often co-occur with other health behaviours which might instead affect fertility (e.g. diet, 76 

physical activity, sleep). Furthermore, health behaviours and fertility outcomes (such as age at 77 

first birth and number of children) share common risk factors including low educational 78 

attainment and liability to inattention and hyperactive-impulsive behaviour (traits of attention 79 

deficit hyperactivity disorder; ADHD)(18–20). In addition to confounding, it is necessary to 80 

account for reverse causation because the stress of being unable to conceive might cause couples 81 

to engage in unhealthy behaviours. We extended previous epidemiological studies using 82 

Mendelian randomisation (MR), which can reduce bias from residual confounding and reverse 83 

causation. MR uses genetic variants (single nucleotide polymorphisms; SNPs) to estimate the 84 

causal effect of an exposure on an outcome (21). Causal evidence could improve fertility 85 

guidance, helping couples successfully conceive as well as removing any unnecessary stress or 86 

guilt around unrelated lifestyle factors. The objective of the current study was to explore the 87 

associations between health behaviours and fertility outcomes in both men and women using an 88 

MR approach. We used the Norwegian Mother, Father and Child (MoBa) pregnancy cohort, 89 

containing around 95,000 mothers and 75,000 partners.  90 

 91 

Methods 92 

Sample 93 

MoBa is a prospective population-based pregnancy cohort study conducted by the Norwegian 94 

Institute of Public Health. Pregnant women were recruited from all over Norway from 1999-95 

2008 (22,23). Women consented to participation in 41% of the pregnancies. The cohort includes 96 
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114 500 children, 95 200 mothers and 75 200 partners. The current study was based on version 97 

12 of the quality-assured data files released for research on January 2019. Questionnaires were 98 

completed across multiple time points during pregnancy and after birth. The present study used 99 

measures from the first questionnaires sent to mothers and fathers, received between 13-17 100 

weeks gestation (hereon referred to as the 15-week questionnaire). The questions related to 101 

previous pregnancies, medical history and medication use, occupation, exposures in the 102 

workplace and home, lifestyle habits and mental health. In addition to questionnaire data, 103 

information on maternal characteristics and pregnancy outcomes of the index pregnancies were 104 

available through data linkage to the Medical Birth Registry Norway (MBRN). MBRN also 105 

provided data on age at first birth and total number of children up to 2018, including (but not 106 

limited to) the MoBa index pregnancy. The establishment of MoBa and initial data collection was 107 

based on a license from the Norwegian Data Protection Agency and approval from The Regional 108 

Committees for Medical and Health Research Ethics. The MoBa cohort is now based on 109 

regulations related to the Norwegian Health Registry Act. The current study was approved by 110 

The Regional Committees for Medical and Health Research Ethics (2016/1702). 111 

 112 

After restricting to those with available exposure and outcome data, a maximum of 83,128 113 

women and 67,555 men were included in multivariable regression analysis. After further 114 

restricting to those individuals with quality-controlled genotype data (see details below), a 115 

maximum of 27,216 women and 26,131 men were available for individual-level MR analysis. 116 

More details of participant exclusion are given in Supplementary Figure S1.  117 

 118 

Health behaviours exposure data 119 

For all health behaviours, we used data from the 15-week questionnaire in pregnancy. Women 120 

were asked to report their behaviour 3 months prior to the index pregnancy. Fathers were asked 121 

to report their behaviour 6 months prior to the index pregnancy. 122 

 123 

Alcohol consumption. Frequency of alcohol consumption was self-reported on a 7-point scale 124 

(never, less than once a month, 1-3 times a month, once per week, 2-3 times per week, 4-5 times 125 

per week, 6-7 times per week). Women and men were also asked about binge drinking 126 

behaviour: “How often did you drink 5 units or more on one occasion?”. Responses were on a 5-127 

point scale (never, less than once a month, 1-3 times a month, once a week, several times per 128 

week).  129 

 130 

Caffeine consumption. Caffeine consumption in women was calculated from self-reported daily 131 

beverage consumption, where one cup contained 125ml. Caffeine (mg) weights per cup were 132 
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taken from a previous study of caffeine consumption in MoBa (24). We excluded outliers if they 133 

consumed more than 3.5 litres of any particular drink in a day (28 cups) or if their total caffeine 134 

consumption per day was greater than 1000mg (25). Values were log transformed to adjust for 135 

skewness. In men, beverage consumption was instead measured categorically over a typical 136 

week. Responses were on a 5-point scale (seldom/never, 1-6 cups a week, 1 cup a day, 2-3 cups 137 

a day, 4+ cups a day). Unlike the questionnaire administered to women, men were not directed 138 

as to the volume of the cup, therefore we followed previous calculations (24) and assumed that a 139 

cup was 125ml for coffee (apart from espresso where we assumed a standard single is 30ml) 140 

and 250ml for tea or fizzy drink. Again consumption was weighted by caffeine (mg) (24) and 141 

divided by 7 to estimate mg per day.  142 

 143 

Smoking behaviour.  Smoking initiation was self-reported: “Have you ever smoked?” where yes 144 

was classed as ever smoking and no was classed as never smoking. Smoking heaviness was self-145 

reported amongst current smokers as the average number of cigarettes smoked per day prior to 146 

pregnancy. We excluded current smokers who reported smoking no cigarettes. 147 

 148 

Body mass index (BMI). Height and weight were self-reported. We used pre-pregnancy values for 149 

women and current (15-weeks) values for men. Women were also asked to report their 150 

partner’s height and weight. These reports were highly correlated with partners’ self-report 151 

(r=0.98 for height and r=0.95 for weight). Therefore, we used the woman’s report of their 152 

partner’s height and weight when the partner’s own report was unavailable. We excluded 153 

outliers for women at height <117 or >196 cm and weight <38 or >150 kg and for men at height 154 

<136 or >220 cm and weight <50 or >200 kg as done previously in MoBa (16). From these height 155 

and weight measures we calculated BMI as weight (kg)/height (m2). We note BMI is not a health 156 

behaviour itself but is a biomarker which can crudely proxy for healthy behaviours.  157 

 158 

Fertility outcome data 159 

All fertility outcomes were self-reported in the 15-week questionnaire by the women apart from 160 

age at first birth and total number of children, which were obtained from the Medical Birth 161 

Registry of Norway (MBRN) (version 12, last update November 2018).  162 

 163 

Age at first birth. Age at the time of first recorded child’s delivery obtained from MBRN (not 164 

limited to births recorded in MoBa).  165 

 166 
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Number of children. The total number of children born to women and men up to November 2018 167 

obtained from MBRN (including but not limited to births recorded in MoBa). Totals of more than 168 

6 children were grouped into a 6+ category to adjust for skewness.    169 

 170 

Time to conception. Based upon women’s self-report from the 15-week questionnaire referring 171 

to the index pregnancy. If women reported planning their pregnancy, they were asked: “For how 172 

many months did you have regular intercourse without contraception before you became 173 

pregnant?”. Options were less than one month, 1-2 months or 3+ months. If it took more than 3 174 

months, then they were asked to state the number of months. We combined anyone taking 12 or 175 

more months to conceive into one group to reduce skewness and treated as a continuous 176 

variable. We have used this woman-reported variable as an outcome in both women and men 177 

under the assumption that couples were conceiving together. In our primary analysis, if the 178 

couple were not trying to conceive then they were set to missing. However, given differences 179 

between couples who planned pregnancy and those who did not, we also conducted a sensitivity 180 

analysis where non-planners were included and assigned them the median time to conception 181 

from the planning group (2 months) (Supplementary Note 2). We also conducted a sensitivity 182 

analysis using dichotomised variables as time to conception was not measured continuously 183 

(Supplementary Note 3).  184 

 185 

Infertility treatment. Women self-reported in the 15-week questionnaire: “Have you ever been 186 

treated for infertility?”. Responses were binary yes or no. We did not use this variable as an 187 

outcome in the fathers, as this question did not specify whether the infertility treatment was for 188 

the index pregnancy.  189 

 190 

Miscarriage. Women self-reported (in the 15-week questionnaire) ever having had a 191 

miscarriage, defined as any of their previous pregnancies ending in spontaneous abortion at or 192 

before the 20th week of pregnancy. 193 

 194 

As a secondary outcome, we also explored the impact of health behaviours on frequency of 195 

sexual intercourse (see Supplementary Note 4).  196 

 197 

Genotype data 198 

Blood samples were obtained from both parents during pregnancy and from children (umbilical 199 

cord) at birth (26). For the current study we used MoBa Genetics genotype data release 1.0 200 

(https://github.com/folkehelseinstituttet/mobagen/wiki/MoBaGenetics1.0). This release has 201 

genotype data available for 99,137 individuals (mostly family trios). Details of the genotyping 202 
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and QC procedures are available in Supplementary Note 1 (27) and Supplementary Figure S1. 203 

After quality control and relatedness checks, the remaining samples contained 28,929 women 204 

and 27,723 men.  205 

 206 

Genetic score construction 207 

For individual-level MR, our genetic instruments were individual-level genetic scores 208 

constructed using PRSice (28) and genome-wide significant variants were possible. SNPs were 209 

clumped to ensure independence (r2 < 0.01, clumping window < 1000kb) and weighted by effect 210 

sizes from discovery GWAS detailed below (selected for being the largest samples using 211 

individuals of European ancestry and not containing the MoBa cohort). Prior to analysis, we 212 

checked that each genetic score explained significant variance in the exposure. This is presented 213 

in Supplementary Table S1 along with number of SNPs passing QC in the MoBa cohort.  214 

 215 

GWAS Summary Statistics for health behaviours 216 

The following GWAS summary statistics were used to construct genetic scores for individual-217 

level MR, and individual SNP effects sizes were used in summary-level MR.  218 

  219 

Alcohol consumption. We used two genetic instruments for alcohol consumption: 1) alcohol 220 

consumption frequency and 2) binge drinking. Alcohol consumption frequency was measured as 221 

average number of drinks per week aggregated across types of alcoholic beverage. The GWAS 222 

identified 99 conditionally independent genome-wide significant SNPs in a sample of 941,280 223 

individuals, explaining 2.5% of the variance (29).  Binge drinking in the UK Biobank was defined 224 

as “How often do you have six or more drinks on one occasion?”, where a drink was defined as a 225 

unit of alcohol. The GWAS was conducted by the Neale Lab (http://www.nealelab.is/uk-biobank 226 

– round 2, August 2018), and variance explained in an independent sample was not reported. 227 

After restricting to independent variants, 4 genome-wide significant SNPs remained. Given the 228 

small number of genome-wide significant SNPs, we also used a relaxed p-value threshold of 229 

p<5x10-6, for which 12 SNPs were available.   230 

 231 

Caffeine consumption. Caffeine consumption was measured as number of cups of coffee per day. 232 

The GWAS identified 6 independent genome-wide significant SNPs in a sample of 91,462 coffee 233 

drinkers of European ancestry (30). Genome-wide significant SNPs explained 1.3% of the 234 

variance in coffee consumption. Given the small number of genome-wide significant SNPs, we 235 

also used a relaxed p-value threshold of p<5x10-6, for which 39 SNPs were available. 236 

 237 
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Smoking behaviour.  We used two genetic instruments for smoking behaviour: 1) smoking 238 

initiation and 2) smoking heaviness. Smoking initiation was defined as ever v. never regularly 239 

smoking (more than 100 cigarettes ever or having ever been a daily smoker). The GWAS of 240 

smoking initiation identified 378 conditionally independent genome-wide significant SNPs, in a 241 

sample of 1,232,091 individuals, which explained 4% of the variance (29). Smoking heaviness 242 

was defined as average number of cigarettes smoked per day. The GWAS of smoking heaviness 243 

identified 55 conditionally independent genome-wide significant SNPs in a sample of 337,334 244 

ever smokers, which explained 4% of the variance (29). We also conducted a single-SNP analysis 245 

of rs16969968 genotype from the CHRNA5 gene, known to reduce nicotine aversion and 246 

consequently increase cigarettes smoked per day (31) (see Supplementary Note 5).  247 

 248 

Body mass index (BMI). The most recent GWAS of adult BMI identified 941 independent genome-249 

wide significant SNPs in a sample of  681,275 individuals of European ancestry, which explain 250 

6% of the variance in BMI (32).  251 

 252 

Statistical analysis 253 

All analyses were conducted in R version 4.0.3 (33) and performed separately for women and 254 

men. We corrected for multiple testing using a Bonferroni correction of 0.05/48 tests (6 255 

exposures and 8 outcomes) which resulted in an adjusted p-value of p<0.001.   256 

 257 

Stage 1. Multivariable regression analyses. We first explored the association between each of 258 

the fertility outcomes using correlation for continuous traits, chi-squared tests for binary traits 259 

and independent t-tests when one trait was continuous and the other binary. Second, we 260 

conducted linear regressions for each of the continuous fertility outcomes and logistic 261 

regressions for each of the binary fertility outcomes to see if we observed the expected 262 

association between health behaviours and fertility. Results are presented unadjusted and 263 

adjusted for birth year and educational attainment (at around 15-weeks pregnancy). An 264 

additional adjustment for ADHD traits was included as a sensitivity analysis to proxy for ADHD 265 

liability. ADHD traits were measured when the index child was age 3 years using the Adult ADHD 266 

Self-Report Scale (34).   267 

 268 

Stage 2. Individual-level Mendelian randomisation. MR can be implemented as an 269 

instrumental variable analysis using genetic variants to proxy for an exposure. It can be used to 270 

estimate a causal effect of the exposure (health behaviours) on the outcome (fertility) providing 271 

certain assumptions are satisfied (21,35). The three core assumptions for valid causal inference 272 

are: 1) relevance – the genetic instrument must be robustly associated with the exposure, 2) 273 
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independence – there should be no confounding between the genetic instrument and outcome, 274 

and 3) exclusion-restriction – the genetic instrument must only be associated with the outcome 275 

via the exposure. Additionally, for results to generalise to other populations, there must be no 276 

“defiers” – individuals whose exposure is opposite to their genetic predisposition (35). Our 277 

individual-level MR analysis used individual-level genetic scores (with weights from external 278 

independent GWAS) in an instrumental variable regression controlling for age, genotyping chip 279 

and top 10 principal components of population structure. The genetic scores are first regressed 280 

on the exposure, and then predicted values are regressed onto the outcome. Analyses were 281 

performed using the ivreg command from the Applied Econometrics with R (AER) package for R. 282 

For continuous outcomes, betas are the mean difference per SD increase in the genetic score. 283 

When outcomes are binary, estimates approximate the risk difference per SD increase in genetic 284 

score.  285 

 286 

Sensitivity analyses. We checked for evidence of assortative mating by using the woman’s genetic 287 

score to predict the men’s health behaviours and vice versa and by estimating the correlation 288 

between the genetic score of women and men. We checked for evidence of possible pleiotropy 289 

by testing whether each of the genetic scores predicted any known confounders of the exposure-290 

outcome association (e.g., other health behaviours, income, age) and compared these estimates 291 

with the estimated association between observed exposures on confounders.  Pleiotropy occurs 292 

when one genetic variant influences multiple phenotypes. If these other phenotypes are not on 293 

the causal pathway from exposure to outcome (horizontal pleiotropy) then the independence 294 

and exclusion-restriction assumptions could be violated, and genetic variants are invalid. Where 295 

there was evidence for a causal effect in the individual-level MR analysis, we followed up with 296 

additional summary-level MR sensitivity analyses (MR Egger (36), weighted median (37) and 297 

weighted mode (38)) which make different assumptions about the nature of pleiotropy. A 298 

consistent direction of effect across the different MR sensitivity analyses gives us more 299 

confidence that the effects are not due to pleiotropy. We also calculated the MR Egger intercept. 300 

If the intercept is significantly different from zero, then this suggests significant directional 301 

pleiotropy may be biasing the estimate. To conduct these summary-level sensitivity MR 302 

analyses, we generated SNP-outcome association results for the MoBa cohort using the assoc 303 

command for plink (version 2) (39).  304 

 305 

Stage 3. Summary-level Mendelian randomisation. The second MR method used was 306 

summary-level MR (i.e. two-sample MR) which uses summary statistics from published GWAS 307 

(40). Here we don’t have an effect estimate for each individual but instead an effect size for each 308 

SNP from the discovery GWAS and an effect size for that SNP in an outcome GWAS. The ratio of 309 
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these two effect sizes can be meta-analysed across multiple SNPs to give us an estimate of the 310 

causal effect. This is our primary analysis known as the inverse-variance weighted estimate.  As 311 

sensitivity analyses, again we conducted MR Egger (36), weighted median (37) and weighted 312 

mode (38), which each make orthogonal assumptions about the nature of pleiotropy.  313 

 314 

Independent summary GWAS data was available for three of the outcomes: age at first birth (N= 315 

170,498), number of children (N=333,628) and miscarriage (N= 78,700), self-reported in the UK 316 

Biobank (41). We used outcome GWAS from the UK Biobank only to prevent sample overlap 317 

with our health behaviour exposure GWAS. For age at first birth and miscarriage, we used GWAS 318 

summary statistics from the MRC IEU Open GWAS project (42). The GWAS for age at first birth 319 

used the self-reported question "How old were you when you had your first child?" (field 2754) 320 

asked only to women who had previously indicated that they had given birth to at least one 321 

child.  The GWAS for miscarriage used the item “How many spontaneous miscarriages have you 322 

had?" (field 3839) which was only asked to women who had previously indicated that they had 323 

ever had a miscarriage, abortion or stillbirth (field 2774). Finally, the GWAS for number of 324 

children combined items "How many children have you fathered?" (field 2405) in men and "How 325 

many children have you given birth to? (Please include live births only)" (field 2734) in women 326 

(43).  Age at first birth and miscarriage GWAS are in SD units and units for number of children 327 

are number of children.  328 

 329 

For each of the exposures, we used the same health behaviour GWAS as for the individual-level 330 

MR, with the exception of BMI. Here we used an earlier GWAS (44) that did not contain the UK 331 

Biobank to avoid sample overlap which can bias estimates (45). For smoking initiation and 332 

alcohol consumption, we used SNP-exposure estimates from summary statistics with the UK 333 

Biobank and 23andMe removed. Smoking heaviness could not be used an as exposure as the 334 

fertility outcome GWASs contain both smokers and non-smokers.  Binge drinking could not be 335 

included as this GWAS was also conducted in the UK Biobank.  336 

 337 

Sensitivity analyses. The Cochran’s Q test of heterogeneity was conducted to estimate possible 338 

pleiotropy and the MR Egger intercept was estimated to test for bias from directional horizontal 339 

pleiotropy. The regression dilution I2
GX was calculated to assess the suitability of the MR Egger 340 

effect estimate and a SIMEX correction applied where necessary (46). Steiger filtering was 341 

conducted to check for evidence of reverse causation (47). The mean F statistic was calculated as 342 

an indicator of instrument strength, where F < 10 is considered to indicate a weak instrument.  343 

Where there was evidence for a causal effect, we conducted multivariable MR analysis (48) to 344 
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explore possible pleiotropy via education and ADHD liability (see Supplementary Materials for 345 

details and Table S20). 346 

 347 

Results 348 

Average health behaviours and fertility outcomes were relatively consistent between the full 349 

MoBa sample and the genotyped sub-sample (Table 1). Prevalence of smoking, high alcohol 350 

consumption, high caffeine consumption and high BMI were greater in men than women prior to 351 

pregnancy and men were older on average than women. Fertility outcomes did not differ 352 

between women and men, with the exception of age at first birth which was older in men. 353 

Results for frequency of sexual intercourse, and dichotomised time to conception are given in 354 

Supplementary Notes 3 and 4. Associations between the different fertility outcomes found that a 355 

younger age at first birth was associated with having more children in total, shorter time to 356 

conception, being less likely to miscarry and less likely to have infertility treatment 357 

(Supplementary Table S2). In the following section we highlight results that passed Bonferroni 358 

correction.  359 

 360 

Stage 1. Multivariable Regression Associations 361 

The results of the observed associations between the health behaviours and fertility outcomes 362 

(adjusted for birth year and education) are given in Figure 1 (Tables S3 and S4).   363 

 364 

Alcohol Consumption. Units are per category increase in self-reported alcohol consumption or 365 

binge drinking. In women’s adjusted analyses, greater frequency of alcohol consumption and 366 

binge drinking were both associated with having fewer children (alcohol frequency: -0.090 367 

children, 95% CI: -0.096, -0.085; binge drinking: -0.111 children, 95% CI: -0.118, -0.104) and an 368 

older age at first birth (alcohol frequency: 0.492 years, 95% CI: 0.468, 0.516; binge drinking: 369 

0.333 years, 95% CI: 0.304, 0.362). However, those who consumed more alcohol were less likely 370 

to have had infertility treatment (alcohol frequency: OR = 0.867, 95% CI: 0.847, 0.888; binge 371 

drinking: OR = 0.822, 95% CI: 0.798, 0.847). Binge drinking (but not alcohol frequency) was 372 

associated with decreased odds of miscarriage (OR = 0.959, 95% CI: 0.938, 0.981). Neither 373 

alcohol frequency nor binge drinking were associated with time to conception after correction 374 

for multiple testing. The pattern of results was consistent for outcomes available in men. 375 

 376 

Caffeine consumption. Units are per unit increase in log transformed mg of caffeine per day. In 377 

men, higher caffeine consumption was associated with a younger age at first birth (-0.100 years, 378 

95% CI: -0.139, -0.061) and being less likely to have fertility treatment (OR = 0.951, 95% CI: 379 
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0.931, 0.972). Caffeine consumption was not associated with any of the other fertility outcomes 380 

in men nor with any fertility outcomes in women correction for multiple testing.  381 

 382 

Smoking behaviour. Ever smoking was associated with having fewer children in women (-0.101 383 

children, 95% CI: -0.114, -0.089), a younger age at first birth in both women and men (women: -384 

0.155 years, 95% CI: -0.208, -0.103; men: -0.218 years, 95% CI: -0.284, -0.151), and an increased 385 

time to conception in women (0.095 months, 95% CI: 0.038, 0.151).  Smoking heaviness was also 386 

associated with having fewer children in women (-0.008 children, 95% CI: -0.010, -0.005) and 387 

longer time to conception (women: 0.029 months, 95% CI:  0.016, 0.042; men: 0.021 months, 388 

95% CI: 0.009, 0.034).  389 

 390 

Body mass index.  Units are per kg/m2 increase in BMI. Higher BMI was associated with worse 391 

outcomes across all indicators for fertility in both sexes, including having fewer children 392 

(women: -0.004 children, 95% CI: -0.005, -0.002; men: -0.006 children, 95% CI: -0.008, -0.004) 393 

and taking longer to conceive (women: 0.061 months, 95% CI: 0.055, 0.068; men: 0.045 months, 394 

95% CI: 0.035, 0.054).  For women, having a higher BMI was also associated with being more 395 

likely to have fertility treatment (OR: 1.032, 95% CI:1.026, 1.037) and being more likely to have 396 

a miscarriage (OR: 1.008, 95% CI: 1.004, 1.013). In men, higher BMI was associated with an 397 

older age at first birth (0.026 years, 95% CI: 0.016, 0.035). The only exception to this pattern of 398 

worsened fertility was an association between higher BMI in women and younger age of first 399 

birth (-0.017 years, 95% CI: -0.023, -0.011).  400 

 401 

These results were relatively consistent, but less precise to those observed when restricting the 402 

analysis to the genotyped sample only and after adjustment for ADHD traits (Supplementary 403 

Tables S5 and S6).  404 

 405 

Stage 2. Individual-level Mendelian randomisation  406 

Genetic scores were associated with the exposures in MoBa with the exception of binge drinking, 407 

which was therefore not used in further analyses (Table S1). Results of the individual level MR 408 

are presented in Figure 1 (and Tables S7 for women and S8 for men). All genetic scores were 409 

standardised, so that the results are per standard deviation increase in genetic score for the 410 

exposure. Genetic liability for higher BMI was associated with a younger age of first birth in both 411 

women (-0.113 years, 95% CI: -0.153, -0.073) and men (-0.171 years, 95% CI: -0.232, -0.111). 412 

Genetic liability for smoking initiation was also strongly associated with a younger age of first 413 

birth in both women (-2.647 years, 95% CI: -3.565, -1.730) and men (-2.824 years, 95% CI: -414 

4.072, -1.575). However, stratified by smoking status, rs16969968 genotype was only associated 415 
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with age at first birth in never smokers, suggesting possible pleiotropy (Supplementary Note 5 416 

and Figure S2). We found no robust evidence for association between any of the other exposure 417 

and outcomes using individual-level MR.  418 

 419 

For both BMI and smoking initiation genetic scores there was evidence of assortative mating 420 

(Table S9) and associations between these genetic scores and the other health behaviours and 421 

household income (Table S10). Additional sensitivity analyses which are more robust to 422 

pleiotropy were consistent and there was no evidence for bias from directional horizontal 423 

pleiotropy (Table S11). Sensitivity analyses in women including non-planners with a median 424 

time to conception suggested an association between higher alcohol consumption and decreased 425 

time to conception (-2.653 months, 95% CI: -4.193, -1.112) and between higher BMI and increased 426 

time to conception (0.969 months, 95% CI: 0.811, 1.129), that were not observed when restricting 427 

to planners (see Supplementary Note 2 for more details).  428 

 429 

Stage 3. Summary-level Mendelian randomisation  430 

There was strong evidence for an effect of smoking initiation on younger age at first birth in 431 

women (-0.661, 95% CI: -0.757, -0.566), a greater number of children in both men and women 432 

(0.280, 95% CI: 0.205, 0.355) and fewer miscarriages in women (-0.123, 95% CI: -0.182, -0.064) 433 

(see Table 2). All pleiotropy robust sensitivity analyses showed consistently strong evidence 434 

with the same direction of effect. There was evidence of significant heterogeneity (Table S16) 435 

but the MR Egger intercept suggested that these results were not biased by directional 436 

pleiotropy (Table S17). Steiger filtering indicated that the majority of SNPs explained more 437 

variance in smoking initiation than the outcomes (Table S18), suggesting reverse causation is 438 

unlikely.  439 

 440 

There was also some evidence for an effect of higher BMI on younger age at first birth in women 441 

(-0.108, 95% CI: -0.16, -0.056). All MR sensitivity analyses showed a consistent direction of 442 

effect apart from the weighted mode which could indicate possible pleiotropy (Table 2). There 443 

was strong evidence of heterogeneity (Table S16), but the MR Egger intercept did not suggest 444 

this was due to bias from horizontal pleiotropy (Table S17) and there was no evidence of 445 

reverse causation from Steiger filtering (Table S18).  There was no evidence for an effect of 446 

alcohol consumption or caffeine consumption on reproductive behaviours. All genetic 447 

instruments had F-statistic > 10 apart from that for smoking initiation (Table S19).  448 

 449 

We conducted multivariable MR analysis (48) to estimate the direct effects of smoking initiation 450 

and BMI on age at first birth in women after accounting for education and ADHD liability (see 451 
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Supplementary Materials for details and Table S20). Effect estimates for smoking initiation 452 

attenuated after adjustment but there was still evidence for an effect (after adjusting for ADHD: -453 

0.435, 95% CI: -0.591, -0.279; after adjusting for education: -0.403, 95% CI:-0.527, -0.279). Effect 454 

estimates for BMI were also attenuated, resulting in weak evidence for an effect (ADHD: -0.513, 455 

95% CI: -0.106, 0.003; education: -0.056, 95% CI: -0.113, 0.0008).  456 

 457 

Discussion 458 

This study explored the role of multiple health behaviours on fertility outcomes in men and 459 

women using the MoBa cohort. We extended previous research by including men as well as 460 

women, and strengthening causal inference using MR. We found evidence from multivariable 461 

regression for an association between higher BMI and smoking (and to a lesser extent caffeine) 462 

prior to pregnancy on reduced fertility outcomes. Our MR results were not in line with the 463 

observational associations, finding only support for an effect of higher BMI and smoking 464 

initiation on a younger age at first birth, with evidence of possible horizontal pleiotropy from 465 

ADHD liability and education.  466 

 467 

Frequency of alcohol consumption was associated with being less likely to have infertility 468 

treatment in multivariable regression analyses for both women and men. In contrast, previous 469 

meta-analyses have shown a dose-response relationship between alcohol consumption and 470 

reduced likelihood of conception in women (5) and reduced semen quality in men (14). 471 

However, it is important to note that our analyses were conducted in a pregnancy cohort, so do 472 

not capture those who failed to conceive, introducing possible selection bias. Furthermore, 473 

levels of alcohol consumption were low in our sample, and are possibly below the threshold 474 

which affects fertility (49). To capture more harmful drinking behaviours, we used a measure of 475 

binge drinking, which showed weaker associations, supporting our interpretation.  It might be 476 

feasible that low levels of alcohol consumption are not detrimental for fertility, but it seems 477 

unlikely that alcohol could improve fertility, as observed here. Highly confounded multivariable 478 

regression associations of alcohol consumption are a common phenomenon, with low levels of 479 

consumption often being associated with positive outcomes due to confounding by socio-480 

economic position, or due to never drinkers being a selected group (50). Bias from confounding 481 

is supported by our MR analyses, finding no evidence for effects of alcohol consumption on any 482 

fertility outcomes. Alternatively, our observational results might be affected by reporting bias, as 483 

underreporting of alcohol consumption might be more pronounced amongst those struggling to 484 

conceive. Unfortunately, we were unable to follow up binge drinking associations with MR, as 485 

the genetic instrument did not predict binge drinking in the MoBa cohort. This is not altogether 486 

surprising, as MoBa represents a very different sample to that of the UK Biobank, where the 487 
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binge drinking GWAS was conducted: 1) the UK Biobank were aged between 40 and 69 years at 488 

recruitment (51) compared with an average age of 31 years in MoBa mothers and 33 years in 489 

MoBa fathers, 2) response rate was higher for the MoBa cohort (41%) compared to the UK 490 

Biobank (5%) (22,52), 3) drinking behaviours differ greatly between the UK and Norway (53), 491 

with only 6.31% of MoBa mums reporting binge drinking at least weekly in the 3 months prior 492 

to pregnancy,  and 4) MoBa is a pregnancy cohort rather than a population cohort, capturing 493 

only fertile couples.  494 

 495 

There was no evidence for an association between caffeine consumption and miscarriage risk, in 496 

contrast to what has been reported in several meta-analyses (54). This could be because our 497 

study explored reported caffeine consumption levels prior to pregnancy rather than during 498 

pregnancy, which has been the primary focus of most previous meta-analyses (54). 499 

Alternatively, it could be due to social patterning of caffeine consumption in Norway, with higher 500 

consumption associated with lower levels of education (24) and consequently a younger age at 501 

first birth. Older age is a strong predictor of miscarriage risk (55), so education could be masking 502 

the association. MR results (which are more robust to bias from confounding) did not find 503 

evidence for a causal effect, so it could be possible that previous associations were due to 504 

confounding from other lifestyle factors (56). However, it is important to note that the caffeine 505 

genetic instrument was the weakest, explaining only 0.1-0.2% of the variance. Due to this weak 506 

instrument bias, causal effects cannot be ruled out (57) and replication is warranted.  507 

 508 

We found evidence for an association between smoking heaviness and increased time to 509 

conception in both women and men. This is supported by a previous meta-analysis finding 510 

increased odds of infertility in smokers compared to non-smokers (6). Smoking is hypothesised 511 

to negatively affect sperm production and quality in males (58) and to affect the follicles and 512 

hormone levels in females (49). However, the effect sizes observed in the current study were 513 

quite small and were not supported by the MR results.  514 

 515 

Finally, we saw evidence from multivariable regressions for associations between higher BMI 516 

and reduced fertility, including taking longer to conceive and an increased risk of miscarriage. 517 

These associations are thought to be due to obesity leading to hormone imbalances and 518 

ovulatory dysfunction (similar to very low body weights) (59). However, we did not see 519 

evidence that this effect was causal in the MR analyses. This could be due to confounding, or due 520 

to the MR analysis being unable to detect non-linear effects. Another MR analysis of BMI on 521 

subfertility in the MoBa cohort did find evidence for non-linear effects (60). Intervention 522 

evidence is mixed, with a meta-analysis including randomised control trials finding evidence 523 
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that interventions for weight loss increased chance of pregnancy but did not affect risk of 524 

miscarriage (61). 525 

 526 

A review of studies into health behaviours and fertility concluded that the evidence was robust 527 

for smoking and higher weight reducing fertility (49). However, in the current study, our MR 528 

results did not find evidence to support this effect. In both the individual-level and summary-529 

level MR we saw consistent evidence for an effect of smoking initiation and higher BMI on 530 

having a younger age at first birth. There is also the possibility that these results are due to 531 

selection bias: both the GWAS for age at first birth and being a participant in the MoBa sample 532 

are conditioned on having had at least one child. If BMI and smoking are associated with reduced 533 

fertility, perhaps only those who had children younger were able to conceive and consequently 534 

be in the sample. However, if this were the case, we might expect to also see effects of smoking 535 

and BMI on other indicators of fertility. An alternative explanation could be that our estimates 536 

are biased by horizontal pleiotropy. We used a range of sensitivity analyses to explore potential 537 

assumption violation by horizontal pleiotropy. Methods which are agnostic to the specific 538 

sources of pleiotropy, (for example, MR-Egger), suggested that the results were not importantly 539 

biased by unbalanced horizontal pleiotropy. However, our exploratory multivariable MR 540 

analyses did show strong attenuation of the effects of BMI and smoking initiation on age at first 541 

birth after accounting for ADHD liability (proxy for ADHD traits of inattentive and hyperactive-542 

impulsive behaviour) and educational attainment (known risk factors for age at first birth).  This 543 

is likely because ADHD traits affect smoking behaviour and some of the smoking genetic variants 544 

relate to smoking via their relationship to ADHD traits.  Previous studies have shown a strong 545 

association between the smoking initiation instrument and risk-taking behaviours including 546 

number of sexual partners (62), which could increase the likelihood of having children younger. 547 

Previous Mendelian randomisation studies have also found evidence for bi-directional causal 548 

effects between smoking and education (63,64), smoking and ADHD (65), BMI and education 549 

(66,67) and BMI and ADHD (68). Bi-directional effects between the exposure and the non-550 

exposure traits can make it difficult to disentangle horizontal from vertical pleiotropy (69). 551 

However, several of these previous studies did find evidence of horizontal pleiotropy, especially 552 

for the smoking initiation instrument (64,65,68). Therefore, we conclude that horizontal 553 

pleiotropy is the most plausible pathway. If there is indeed horizontal pleiotropy from ADHD 554 

liability and education, then direct effects from MVMR accounting for these traits will be closer 555 

to the true causal effect. Finally, there was also strong evidence for assortative mating for both 556 

BMI and smoking initiation instruments which can bias MR results, even for methods which are 557 

robust to horizontal pleiotropy (70).  558 

 559 
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Strengths and Limitations 560 

The current study has several strengths. The majority of epidemiological research to date has 561 

focused on women (13), but we also included fathers in our analysis. We observed a similar 562 

pattern of results for women and men in our multivariable regression analyses, despite different 563 

hypothesised mechanisms. This supports our interpretation of widespread confounding, 564 

because pathways through different mechanisms are unlikely to have the same magnitude of 565 

effect (71). Second, this was a very large sample of genotyped individuals with detailed 566 

measures of fertility. Third, we combined multivariable regression and MR methods which each 567 

rely on different assumptions and therefore triangulating across them can strengthen causal 568 

inference. Finally, we included a wide range of health behaviours and different indicators of 569 

fertility.  570 

 571 

This study does have several limitations. First, all MoBa participants were recruited during 572 

pregnancy (12-18 weeks gestation). This means that we are unable to capture the full range of 573 

fertility in the population. Those who never managed to conceive were not observed, and this 574 

could induce selection bias. Second, multivariable regression analyses were cross-sectional and 575 

it is therefore difficult to assess temporality for these associations. Specifically, health 576 

behaviours were retrospectively reported about behaviours 3 or 6 months prior to the index 577 

pregnancy however some couples had been trying to conceive for longer than 6 months. 578 

Furthermore, variables from the Medical Birth Registry of Norway (age at first birth and total 579 

number of children) are across all births, and therefore health behaviours may have differed 580 

compared to before the index pregnancy. Relatedly, there was also a difference between those in 581 

the sample who were planning to conceive compared with those who were not. We hypothesise 582 

that planners are more likely to be cautious about their health behaviours, especially if they have 583 

been having trouble conceiving and have been advised to quit smoking, stop drinking and lose 584 

weight. This could lead to reverse or weakened patterns of association in the multivariable 585 

regression analyses. However, MR would be robust to this type of bias, given that genetic 586 

propensities to health behaviours are fixed at birth. This might explain the different pattern of 587 

results between the multivariable regression and MR analyses. Third, for this paper we have 588 

assumed that partners in MoBa were men. In our genetic analyses this is the case, because 589 

individuals who were not chromosomally XY were removed from the father analysis. However, 590 

in the observational analysis, some partners might have been female partners of the mother, and 591 

these individuals could not be identified.  Finally, this study conducted triangulation within a 592 

single sample, and an approach for stronger causal inference would be to triangulate across 593 

different samples in future studies.  594 

 595 
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Conclusions 596 

For accurate fertility guidance it is extremely important to establish causality. The majority of 597 

associations between health behaviours and fertility observed here, were not replicated using 598 

MR methods. This could suggest that previous observational associations were due to 599 

confounding or other sources of bias, and consequently improving these health behaviours may 600 

not increase the likelihood of conception. We found evidence of potential horizontal pleiotropy, 601 

as our genetic instruments for smoking initiation and BMI were also capturing educational 602 

attainment and ADHD liability. Therefore, triangulation across a broader range of methods, 603 

including those not susceptible to pleiotropy, are required to establish causality.   604 

  605 
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Table 1. Descriptive statistics comparing exposure and outcome data across mothers and fathers.  857 
 858 
 Mothers  Fathers  

 Full Sample  Genotyped Sample Full Sample Genotyped Sample 

 N Mean (SD)/% N Mean (SD)/% N Mean (SD)/% N Mean (SD)/% 

Age (years) 94,418 30.61 (20.66) 28,849 30.34 (15.55) 74,409 33.05 (18.73) 27,598 32.90 (17.44) 

BMI (kg/m2) 83,191 24.05 (4.30) 27,272 24.08 (4.25) 67,679* 25.88 (3.34) 26,161* 25.93 (3.33) 

Alcohol Consumption                             Total 79,562 - 26,819 - 64,023 - 24,775 - 

Never 5,690 7.15% 1,885 7.03% 1,441 2.25% 473 1.91% 

Less than once a month  23,618 29.69% 7,848 29.26% 11,203 17.50% 4,220 17.03% 
1-3 times a month 28,575 35.92% 9,804 36.56% 23,497 36.70% 9,304 37.55% 

Once per week 14,263 17.93% 4,811 17.94% 15,869 24.79% 6,250 25.23% 
2-3 times per week  6,527 8.20% 2,188 8.16% 10,168 15.88% 3,896 15.73% 

4-5 times per week 724 0.91% 221 0.82% 1,488 2.32% 521 2.10% 

6-7 times per week 165 0.21% 62 0.23% 357 0.56% 111 0.45% 

Binge Drinking                                          Total  78,615 - 26,546 - 28,699 - 10,761 - 

Never 26,229 33.36% 8,707 32.80% 3,001 10.46% 1,058 9.83% 

Less than once a month  31,002 39.44% 10,647 40.11% 11,726 40.86% 4,575 42.51% 
1-3 times a month  16,428 20.90% 5,606 21.12% 9,534 33.22% 3,545 32.94% 

Once a week  4,313 5.49% 1,411 5.32% 3,732 13.00% 1,348 12.53% 
Several times per week 643 0.82% 175 0.66% 706 2.46% 235 2.18% 

Smoking Initiation                                  Total    82,824 - 27,601 - 65,670 - 25,324 - 

Never smokers 41,326 49.90% 13,897 50.35% 30,993 47.20% 12,124 47.88% 

Ever smokers 41,498 50.10% 13,704 49.65% 34,677 52.80% 13,200 52.12% 

Smoking Heaviness (cigarettes per day) 16,074 11.41 (5.94) 4,961 11.38 (5.85) 12,606 13.49 (6.39) 4,721 13.42 (6.17) 

Caffeine Consumption (mg per day) 75,172 141.60 (138.36) 24,512 139.40 (136.63) 27,501 125.40 (85.60) 10,326 125.79 (84.99) 
Age at First Birth (years) 94,740 27.15 (4.65) 28,871 27.32 (4.42) 74,681 29.61 (4.99) 27,617  29.63 (4.82) 

Number of children (N children) 94,740 2.55 (0.95) 28,871 2.56 (0.89) 74,681 2.51 (0.91) 27,617  2.52 (0.88) 
Time to Conception (months) 63,068 4.90 (7.94) 21,749 4.63 (7.39) 53,516∇ 4.86 (7.84) 21,146∇ 4.64 (7.40) 

Infertility treatment                               Total 83,876 - 27,616 - - - - - 

Never 76,195 90.84% 25,253 91.44% - - - - 

Ever  7,681  9.16% 2,363  8.56% - - - - 

Miscarriage                                                 Total 55,696 - 17,896 - - - - - 
Never 39,114 70.23% 12,617 70.50% - - - - 

Ever 16,582 29.77% 5,279 29.50% - - - - 

Note. * = supplemented with mother’s report when father’s report was unavailable. ∇ = Father variable reported by the mother.   859 
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 860 

 861 

Figure 1. The association between health behaviours and fertility outcomes comparing 862 

mothers and fathers, and comparing multivariable regression associations with estimates 863 

of causal effects from Mendelian randomisation. For continuous outcomes, units are betas. 864 

For binary outcomes, regression units are on the log odds scale and MR units are risk 865 

differences.   866 
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Table 2. Summary level Mendelian randomisation results for health behaviours on age at first birth, number 870 
of children and number of miscarriages 871 
 872 

Exposure Outcome Method N SNP Beta (95% CI) P 

Drinks per week Age at First Birth IVW 94 -0.055 (-0.145, 0.034) 0.22 

  MR Egger 94 0.04 (-0.095, 0.175) 0.56 

  Weighted median 94 -0.048 (-0.139, 0.042) 0.30  

  Weighted mode 94 -0.046 (-0.129, 0.038) 0.29 

Number of children  IVW 83 0.027 (-0.057, 0.110) 0.53 

  MR Egger (SIMEX) 83 0.014 (-0.029, 0.058) 0.52 

  Weighted median 83 -0.010 (-0.094, 0.074) 0.82 

  Weighted mode 83 0.009 (-0.068, 0.086) 0.82 

Number of miscarriages IVW 94 -0.029 (-0.097, 0.038) 0.39 

  MR Egger 94 -0.018 (-0.121, 0.084) 0.73 

  Weighted median 94 0.001 (-0.099, 0.102) 0.98 

  Weighted mode 94 0.01 (-0.084, 0.103) 0.84 

Caffeine Age at First Birth IVW 6 -0.036 (-0.13, 0.057) 0.45 

  Weighted median 6 0.013 (-0.073, 0.099) 0.77 

  Weighted mode 6 0.033 (-0.067, 0.134) 0.54 

Number of children  IVW 6 0.021 (-0.031, 0.073) 0.43 

  Weighted median 6 0.021 (-0.047, 0.089) 0.54 

Number of miscarriages IVW 6 -0.042 (-0.106, 0.022) 0.20 

  Weighted median 6 -0.052 (-0.128, 0.025) 0.19 

  Weighted mode 6 -0.076 (-0.178, 0.025) 0.20 

Smoking Initiation Age at First Birth IVW 322 -0.661 (-0.757, -0.566) 3.57 x 10-42 

  Weighted median 322 -0.504 (-0.603, -0.405) 2.71 x 10-23 

    Weighted mode 322 -0.555 (-0.785, -0.326) 3.30 x 10-6 

Number of children  IVW 323 0.280 (0.205, 0.355) 3.17 x 10-13 

  Weighted median 323 0.207 (0.125, 0.289) 7.11 x 10-07 

    Weighted mode 323 0.177 (-0.009, 0.363) 0.06 

Number of miscarriages IVW 322 -0.123 (-0.182, -0.064) 4.68 x 10-5 

  Weighted median 322 -0.106 (-0.196, -0.017) 0.019 

  Weighted mode 322 -0.176 (-0.399, 0.047) 0.124 

BMI Age at First Birth IVW 95 -0.108 (-0.16, -0.056) 4.32 x 10-05 

  MR Egger 95 -0.076 (-0.225, 0.072) 0.32 
  Weighted median 95 -0.043 (-0.101, 0.015) 0.14 

  Weighted mode 95 0.006 (-0.114, 0.126) 0.92 

Number of children  IVW 91 -0.014 (-0.054, 0.027) 0.51 

  MR Egger 91 -0.002 (-0.117, 0.113)  0.98 

  Weighted median 91 -0.008 (-0.054, 0.038) 0.73 

  Weighted mode 91 -0.013 (-0.094, 0.069) 0.76 

Number of miscarriages IVW 95 0.004 (-0.033, 0.041) 0.83 

  MR Egger 95 0.021 (-0.086, 0.128) 0.70 

  Weighted median 95 0.019 (-0.033, 0.072) 0.47 

  Weighted mode 95 0.013 (-0.091, 0.116) 0.81 

 873 
Note. Caffeine genetic instrument using a relaxed p-value threshold of p<5x10-6. IVW = inverse-variance 874 
weighted; BMI = body mass index. The I2GX suggested that the smoking initiation and caffeine genetic 875 
instruments were not suitable for conducting MR Egger (Supplementary Table S14). Unweighted SIMEX 876 
corrections were conducted for smoking initiation.  877 
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