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 A joint spatial marked point process model for dengue and severe dengue in Medellin, 

Colombia. 

 

Abstract  

The spatial distribution of surveillance-reported dengue cases and severity are usually analyzed 

separately, assuming independence between the spatial distribution of non-severe and severe 

cases. Given the availability of data for the individual geo-location of surveillance-notified 

dengue cases, we conducted a spatial analysis to model non-severe and severe dengue 

simultaneously, using a hierarchical Bayesian model. We fit a joint model to the spatial pattern 

formed by dengue cases as well as to the severity status of the cases. Results showed that age and 

socioeconomic status were associated with dengue presence, and there was evidence of 

clustering for overall cases but not for severity. Our findings inform decision making to address 

the preparedness or implementation of dengue control strategies at the local level.  

 

Highlights  

• A model to jointly assess the spatial distribution of reported dengue and severity. 

• We account for uncertainty in the surveillance-reported dengue while modelling severe 

cases. 

• We assess spatial clustering of dengue and severe dengue cases in Medellin. 

• Non-monotonic distribution of reported dengue cases across socioeconomic status.  

Key words: Dengue, surveillance, spatial analysis, point processes models, Colombia, 

socioeconomic status. 
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1. BACKGROUND 

Dengue is a vector-borne viral disease transmitted to humans by Aedes mosquitoes and an 

important public health problem worldwide (1-4). The clinical presentation of dengue ranges 

from a self-limited mild febrile illness to severe outcomes (5, 6). Although lifelong immunity can 

be developed for each one of the four dengue serotypes (7-9); secondary or subsequent infections 

from different dengue serotypes increase the risk of severe dengue. Severe dengue is a 

potentially fatal complication with case fatality rates (CFR) up to 20%. However, under adequate 

access to health care, diagnosis and management, dengue CFR could be as low as 1% (3, 10, 11). 

 

Colombia is one of the Latin American countries with the highest burden of dengue (3, 4) and 

within Colombia, dengue burden concentrates geographically in 50 of the 778 municipalities that 

routinely report dengue cases (1, 2, 12, 13). Given the spatial heterogeneity of dengue 

distribution, including its concentration in low socioeconomic settings, and the limitations of 

current dengue control strategies (14-18), it is important to investigate the spatial distribution of 

dengue cases.  For instance, it is necessary to understand how the observed case-specific 

characteristics, in addition to area level covariates, are associated with the distribution of overall 

dengue cases. In addition, the analysis of severe cases is usually performed separately from the 

analysis of overall reported cases, assuming independence between overall presence of dengue 

and the presence of severity, often ignoring the potential underreporting associated with the use 

of surveillance data (4, 15, 19-25). Assuming independence between non-severe and severe cases 

distribution potentially leads to underestimation of the severity and the uncertainty associated to 

the individual factors related to severe cases (6, 14, 18, 25). Moreover, while analyzing severe 

cases, it is important to identify whether the distribution of severe cases follows a different 
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spatial distribution from that of the overall notified dengue cases. However, such analyses are 

rare and limited because they are: i) often constrained by data availability, ii) mainly conducted 

using aggregated census-area level data only, iii) often lacking proper adjustment of neighboring 

areas, and iv) usually computationally intensive (4, 12, 15, 16, 19-23).  

 

Given the availability of individual dengue case locations (exact longitude and latitude), and 

to identify high-risk dengue areas while modelling simultaneously non-severe and severe cases, 

we conducted a single joint spatial marked-point-processes model of notified dengue cases in 

Medellin, Colombia. We were motivated by the advantage of using individual level location and 

area level information to identify spatial patterns for clustering areas while properly accounting 

for spatial autocorrelation (20, 21). Hence, the main purpose of this study is to present the 

methodology and to estimate quantitatively the contribution of area- and the observed case-

specific characteristics while jointly analyzing the spatial distribution of notified (i.e., 

surveillance data) dengue and severe dengue in Medellin, Colombia. 

 

2. METHODS 

2.1. Study site 

Medellin is the second largest city in Colombia with 2.6 million inhabitants (26). Annual 

dengue incidence ranged between 161 and 745 cases per 100,000 inhabitants over the last 10 

years (1) and is consistently included on the top five dengue-reporting cities since 1998 (2). 

Medellin’s urban area is composed of 269 neighborhoods, including 20 institutional units such as 

university campuses, jail facilities and military compounds, distributed over 110 km2. Medellin’s 

altitude ranges from 1,460 to 3,200 meters, the annual average temperature is 24oC, and it has 
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two rainy seasons (April and October). Although 50% of the city is classified as low 

socioeconomic status (SES), 98% of the city has access to potable water. The distribution of 

health coverage of the population is 70% contributory (employees or self-employees), 25% 

government subsidized, and 4% uninsured (26). 

 

2.2. Data description 

To illustrate the proposed methodology, we use an available dataset including observations of 

individual location (exact longitude and latitude) of all notified dengue cases in Medellin in 2013 

(n=1,793). Dengue notification in Colombia is mandatory and cases are individually registered in 

the national surveillance system (SIVIGILA), using the locally validated and standardized codes 

210 and 220 for dengue and severe dengue, respectively (27).  We chose to use this dataset given 

the availability and to avoid the potential threat of misclassification with other arboviruses when 

using data of notified cases from 2014 and onwards, when Chikungunya and zika were 

introduced in the country (13, 28). 

 

Individual level covariates: Each row of the dataset included individual sociodemographic 

and clinical information for each notified case, including sex, age categorized as under 15 years; 

15 to 34 years; 33 to 54 years; and over 55 years and for aggregated analysis as proportion of 

cases under 20 years of age and proportion of cases over 20 years of age, residential and 

work/study addresses, date of notification, date of symptoms’ onset, severity status, insurance 

scheme (subsidized vs contributory schemes) (29), and neighborhood of residence, all collected 

routinely in SIVIGILA’s notification form (27).  
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Area level covariates: The neighborhood’s population and socioeconomic status index (SES) 

were obtained through the office of development and planning at the local ministry of health and 

the Colombian Administrative Department of Demographic Survey (DANE) (26, 30). 

Entomological information, including the Breteau Index (IB) which is usually categorized as 

low, medium or high (27), was used to determine the neighborhood specific level of Aedes 

infestation and obtained from Medellin’s local secretary of health. However, according to the 

entomological information reported for the year of study, there were no neighborhoods with high 

Breteau Index for that year’s entomological survey. 

 

2.3. Study design  

We performed a spatial analysis using a single joint spatial marked point process model, to 

simultaneously estimate the underlying process leading to the spatial patterns of overall and 

severe dengue cases (22, 31).  

 

2.3.1. Spatial point process model 

A spatial point process assesses the distribution of the individual location of an outcome, over 

a spatial region (22, 23). Here, the individual spatial location (exact longitude and latitude) of an 

outcome is denominated by a point pattern (22, 23, 32). There are several other proposed models 

used to assess the point pattern distribution of dengue, including the analysis of disease 

transmission using agent-based models (33), and analysis using space-time kernel density 

estimation (34, 35). Here, we propose a model-based approach wherein the logarithm of the 

intensity of notified dengue cases across Medellin is modelled through a latent Gaussian random 

field (22, 31, 32).  
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Specifically, we proposed a Log-Gaussian Cox process which given the nature of the point 

process follows a Poisson distribution (22, 23, 32, 36). As the likelihood function of a Log-

Gaussian Cox process involves an integral that does not have an analytical solution, we used the 

neighborhood structure of Medellin to approximate this integral. See for example Pinto Jr. et al., 

(36) for details about this approximation. To identify whether there is an underlying mechanism 

leading to a different spatial distribution of severe cases, we considered the presence of severity 

as an individual characteristic of each case and attributed it as a “mark” of the individual point. 

Since the presence of severity is conditional on being a case, we cannot assume independence 

between overall notified cases and severe cases. Therefore, the number of severe cases, 

conditioned on the total number of reported cases in each neighborhood, is assumed to follow a 

Binomial distribution. For this Binomial distribution, the probability of presence of severity is 

described by the fixed effects of the observed severe cases characteristics and an area latent 

spatial effect, which is assumed to be proportional to the one used in the mean of the Poisson 

distribution for overall dengue cases.  Here, the proposed approach has the advantage of 

simultaneously assessing the spatial distribution of overall dengue cases and severe cases, by 

considering the spatial autocorrelation between spatial units. In other words, as the relative risk 

of cases and the probability of severe dengue share a common component, the joint approach 

allows us to learn about this underlying spatial process. Another advantage includes accounting 

for the uncertainty associated with the reported number of dengue cases in the surveillance-based 

data (4, 19, 25, 31, 32) (Supplementary Material).   

 

2.3.2. Model description 
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To fit a joint spatial marked-point-processes model we first constructed a model for each 

latent random field, one for  the “pattern”: overall cases, and another for the “marks”: severe 

cases (32), which are specified as follows: 

𝑦𝑖|𝜂𝑖
(1)

~ 𝑃𝑜(𝐸𝑖 𝜂𝑖
(1)

), Equation (1) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠 𝑚𝑜𝑑𝑒𝑙: 𝑙𝑜𝑔(𝜂𝑖
(1)

) = 𝛽0
(1)

+ 𝛽1
(1)

𝐼𝐵(𝑠𝑖) + 𝛽2
(1)

𝑈𝑁𝐷𝐸𝑅20(𝑠𝑖) +

𝛽3
(1)

𝑃. 𝐹𝐸𝑀𝐴𝐿𝐸(𝑠𝑖) + 𝛽4
(1)

𝑃. 𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖)  + 𝛽5
(1)

𝑆𝐸𝑆(𝑠𝑖) + 𝑓𝑠
𝑗(𝑠𝑖), Equation (2) 

 

𝑚𝑖|𝜂𝑖
(2)

~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑦𝑖 , 𝜂𝑖
(2)

), Equation (3) 

𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑚𝑜𝑑𝑒𝑙: 𝑙𝑜𝑔𝑖𝑡(𝜂𝑖
(2)

) = 𝛽0
(2)

+ 𝛽1
(2)

𝐴𝐺𝐸1(𝑠𝑖) + 𝛽2
(2)

𝐴𝐺𝐸2(𝑠𝑖) + 𝛽3
(2)

𝑆𝐸𝑋(𝑠𝑖) +

𝛽4
(2)

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖) + 𝛽5
(2)

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖)  + 𝛽𝑠𝑓𝑠
𝑖(𝑠𝑖), Equation (4) 

 

Here, we assume that 𝑦𝑖, the total number of dengue cases observed in each neighborhood i, 

follows a Poisson distribution with mean (𝐸𝑖  𝜂𝑖
(1)

), where 𝐸𝑖 is the expected count of cases in 

neighborhood i, obtained via indirect standardization using the city’s disease rate (37) and  𝜂𝑖
(1)

 is 

the Standardized Rate Ratio (SRR) for neighborhood i. Following equation (2), the logarithm of 

SRR is decomposed as the sum of areal effects and a spatially structured random effects 

(𝑓𝑠
(1)(𝑠𝑖)) modelled following the Besag specification (38, 39). The component (𝑓𝑠

(1)(𝑠𝑖)) 

follows, a priori,  a Gaussian Markov Random Field (GMRF) and accounts for the spatially 

structured effect for the pattern, which reflects the spatial autocorrelation (neighboring structure 

or vicinity) in the latent field that is not explained by the covariates (i.e., fixed effects) (20, 32, 

40). Other components of the overall cases model included 𝛽0
(1)

 which is the pattern’s 
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intercept and as fixed effects for the pattern of overall dengue cases we included the following 

neighborhood level covariates with their corresponding 𝛽(1) coefficients including the observed 

cases-characteristics such as the proportion of dengue cases under 20 years of age (𝑈𝑁𝐷𝐸𝑅20𝑖); 

the proportion of female dengue cases (𝑃. 𝐹𝐸𝑀𝐴𝐿𝐸𝑖), the proportion of cases with contributory 

scheme cases (P.INSURANCE), and area-level characteristics data obtained from entomological 

survey Breteau Index (𝐼𝐵𝑖) categorized as low or medium given that there were no 

neighborhoods with high IB; the socioeconomic status level (𝑆𝐸𝑆𝑖), a categorical variable with 

three levels (low SES level, medium SES level, and high SES level) obtained from DANE(30). 

 

For the analysis of the severity “marks”, in equation (3) 𝑚𝑖 is the number of severe cases in 

each neighborhood i and follows a Binomial distribution, 𝜂𝑖
(2)

is the probability of cases being 

severe case in neighborhood i, and 𝑦𝑖 is the total number of dengue cases observed in each 

neighborhood i. The logit(𝜂𝑖
(2)

) = 𝑙𝑜𝑔 (𝜂𝑖
(2)

 (1 − 𝜂𝑖
(2)

)⁄ ) is the random field for the marks 

(severity) and the exponentiated 𝛽(2) coefficients are the odds ratio (OR) for severity: 𝛽0
(2)

is the 

marks’ intercept and the fixed effects covariates for the severity included the proportion of 

severe cases under 20 years 𝐴𝐺𝐸1(𝑠𝑖) and over 20 years 𝐴𝐺𝐸2(𝑠𝑖); the proportion of female 

severe cases: 𝑆𝐸𝑋(𝑠𝑖); the proportion of severe cases using contributory scheme: 

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖𝑗); and the minimum distance between severe cases per neighborhood 

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖𝑗) , which is the standardized nearest-neighbor (Euclidean) distance (km) 

between severe cases in each neighborhood. The logit of the probability of severity is 

decomposed as the sum of the fixed effects described above and a latent spatial effect, 𝛽𝑠𝑓𝑠
𝑖(𝑠𝑖), 

that is proportional to the spatial latent effect in the log relative risk of overall dengue cases 
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(𝑓𝑠
𝑗(𝑠𝑖), in equation (2)). The component 𝛽𝑠𝑓𝑠

𝑖(𝑠𝑖) in equation (4) represents a single (common) 

random field, and includes a coefficient 𝛽𝑠 that makes the structured spatial effect for the 

severity (𝜂𝑖
(2)

) proportional to the spatial effect of the pattern ( 𝜂𝑖
(1)

) (32); which is justified given 

that being a severe case is conditional on being a case in the first place. Therefore, it is expected 

that these two processes share common characteristics after accounting for the different effects 

of the available covariates. 

 

2.3.3. Data analysis 

We calculated the respective descriptive statistics, and continuous estimates were presented as 

mean and standard deviation (SD) or as median and Interquartile Range (IQR), while categorical 

variables were presented as proportions. To inspect the observed distribution of cases, we plot 

the kernel density of the individual overall and severe dengue cases using a 5 km bandwidth 

(41).  

 

The proposed joint spatial marked-point-processes model represents the two outcomes 

(overall reported dengue cases and severity) simultaneously in a hierarchical mixed-effects 

Bayesian model. The overall disease pattern and the severity marks constitute a matrix outcome 

of two link functions (i.e., Poisson for overall dengue cases, and Binomial for severity); the 

parameters for the Poisson and Binomial distributions were jointly analyzed in relation to the 

vector of the sociodemographic covariates described above (32).  For the overall dengue pattern, 

we estimated the crude and adjusted Standardized Rate Ratio (SRR). For the severity marks, we 

estimated the odds ratio (OR), the respective probability of severity, and the overall and 

neighborhood-specific Relative Risk (RR) of severity. We assigned non-informative priors for 
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the precision parameters of the random effects. The posterior distributions of the parameters and 

respective 95% Credible Intervals (95% Cr.Int) were estimated via Integrated Nested Laplace 

Approximation (INLA) (32, 40, 42).  The variables included in the full models: equation (2) and 

(4), were chosen after consideration of different set of relevant covariates. Model selection was 

performed through the Deviation Information Criterion (DIC) (20, 22, 32). All analyses were 

fitted using R-INLA (R Core Team (2019); R Studio version 3.3.3) (23, 42, 43).  We followed 

the REporting of studies Conducted using Observational Routinely-collected health Data 

(RECORD) statement guideline (44) (Supplementary Material). 

 

Sensitivity analysis: To test the performance of our proposed method we also fitted the 

proposed joint model using separate spatial structures for patterns and marks, evaluated different 

structured spatial effects by including an independent unstructured random effect for the pattern 

(overall cases) and for the marks (severe cases), denoted 𝑢(𝑠𝑖) and 𝑣(𝑠𝑖) in equations (2) and (4), 

respectively, and which were parameterized using the Besag-York-Mollié (BYM) specification 

(38). We also explored the BYM2 which is a reparameterization of the BYM and included a 

mixing parameter (Phi) which help with the interpretation as an indicator of spatial 

dependency(45) (Supplementary Material).  

 

Ethics statement: This study analyzed secondary data without identifying information, and 

therefore, did not require informed consent. The protocol was reviewed and approved by the 

Institutional Review Board (Study No. A02-E05-18A) and by the ethics committee of the 

Secretary of Health of Medellin, Colombia. 
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3. RESULTS 

In 2013, there were 1,793 dengue cases reported in Medellin. In total, 1,719 (96%) were 

geocoded and were used for this analysis. There were 247 (14.4%) severe cases.  Median age 

was 28 years (IQR=16 - 45) for overall dengue cases and 29 years (IQR=17 - 49) for severe 

cases. A descriptive analysis of notified cases and neighborhood characteristics is presented in 

Table 1. 

 

Table 1. Individual and Neighborhood Characteristics of Dengue Cases Reported in Medellin, 

2013. 

 Overall cases Severe cases 

Individual Characteristics n (%) n(%) 

Complete cases 1,719 247 (14.4) 

Age, median (IQR) 28 (16, 45) 29 (17, 49) 

<15 years  370 (21.5) 49 (19.8) 

15-34 years 710 (41.3) 100 (40.5) 

35-54 years 424 (24.7) 58 (23.5) 

>55 Years 215 (12.5) 40 (16.2) 

Sex (Male) 884 (51.4) 130 (52.6) 

Insurance   

Subsidized 567 (33) 90 (36.4) 

Contributory 1,152 (67) 157 (63.6) 

DENV Classification   

Severe Dengue 247 (14.4) - 

Hospitalization 384 (22.4) 185 (74.9) 

Distance between cases in Km, median (IQR) 5.15 (0.0, 12.1) 0.2 (0.1, 0.3) 

Neighborhood Characteristics  n (%) n (%) 
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*Among the total reported cases per neighborhood. 

 

The overall crude rate for reported dengue was 78 cases per 100,000 inhabitants. The median 

number of cases per neighborhood was four (IQR= 1- 10; range= 0- 57). The mean crude SRR 

was 1.3, standard deviation (SD: 2.4; range= 0- 20.6). The median number of severe cases per 

neighborhood was one (IQR=0- 2; range= 0, 10). There was an apparent concentration of both 

dengue and severe dengue cases on the northeastern neighborhoods that was observed by the 

crude distribution of geocoded cases (Figure 1) and the unadjusted (i.e.: without accounting for 

population size) estimated density of cases (Supplemental Material). 

 

 

Figure 1. Distribution of dengue cases notified in Medellin in 2013. Plot of observed overall and 

severe dengue cases. 

Low SES Level 641 (37.3) 90 (36.4) 

Medium SES Level 885 (51.5) 128 (51.8) 

High SES Level 193 (11.2) 29 (11.7) 

Breteau Index (Low) 999 (58.2) 132 (53.4) 

Breteau Index (Medium) 717(41.8) 115 (46.6) 

Proportion of Female cases*, median (IQR) 50.0 (40.0, 60.0) 50.0 (37.5, 56.0) 

Proportion of cases* <20 years old, median (IQR) 32.0 (20.0, 44.8) 32.0 (20.0, 43.8) 



 

 13 

The spatial distribution of the unadjusted SRR for overall dengue cases indicated the presence of 

dengue in the entire city with some concentration of dengue cases among neighborhoods in the 

central and the North-Eastern regions of the city. Likewise, compared to the overall odds of 

severity in the entire city, the distribution of severe cases indicated increased odds of severity 

among Southern and Eastern neighborhoods of the city (Figure 2).  

 
 

Figure 2. Spatial distribution of overall and severe dengue cases in Medellin, 2013. (Top) 

Neighborhood specific crude Standardized Rate Ratios (SRR) and standard deviation (SD) for 

overall dengue cases. (Bottom) Neighborhood specific crude Odds Ratios (OR) and standard 

deviation (SD) for severe dengue cases. Note: Scales are different given the magnitude of the 

estimates. 
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The fully adjusted proportional joint model showed that given the presence of dengue cases 

the median adjusted probability of severity per neighborhood was 18.7% (95% Cr.Int=5.3%, 

55.7%). Overall dengue rates increased with every 10% increase in the proportion of cases under 

20 years old per neighborhood (SRR=1.10; 95% Cr.Int=1.04, 1.16), the proportion of  female 

cases (SRR=1.07; 95% Cr.Int=1.03, 1.12), and cases with contributory insurance scheme 

(SRR=1.07; 95% Cr.Int=1.02, 1.12). Just over half of reported cases were from neighborhoods 

with medium SES levels, and compared to these, dengue rates among neighborhoods in the Low 

SES level were on average 26% lower (SRR=0.74; 95% Cr.Int=0.56, 0.98) and rates among 

neighborhoods with high SES level were on average 31% lower (SRR=0.69; 95% Cr.Int=0.48, 

1.01). There were no neighborhoods with a high Breteau Index (i.e., high Aedes presence) and 

the comparisons were made between low (reference) and medium Breteau Index levels.  

Compared to neighborhoods with low Breteau Index (i.e., low Aedes presence), neighborhoods 

with a medium level of Breteau Index had slightly higher rates of dengue cases (SRR=1.06; 95% 

Cr.Int=0.83, 1.36) but the credible intervals covered the null value. For severity, the posterior 

distribution of the proportion of severe female cases, severe cases under and over 20 years of 

age, and severe cases with contributory insurance scheme coefficients showed high posterior 

uncertainty with 95% credible intervals including the null value. (Table 2).  
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Table 2. Posterior mean of the Standardized Rate Ratio (SRR), the Odds Ratio (OR) and 95% 

Credible Intervals (95% Cr.Int) for covariates (fixed effects) in the joint proportional model for 

dengue cases in Medellin, 2013 (DIC=1578). 

Fixed Effects Covariates 

Standardized Rate Ratio or 

Odds Ratio and 95% Credible 

Intervals 

Overall Cases (Area Level Covariates) SRR 2.5% 97.5% 

Proportion of Female Cases 1.07 1.03 1.12 

Proportion of cases <20 years old 1.1 1.04 1.16 

Proportion of Contributory scheme 1.07 1.02 1.12 

Low Breteau Index Ref. - - 

Medium Breteau Index 1.06 0.83 1.36 

Medium SES Level Ref. - - 

Low SES Level 0.74 0.56 0.98 

High SES Level 0.69 0.48 1.01 

Severe Cases  OR 2.5% 97.5% 

Proportion of Female Cases 0.97 0.93 1.01 

Proportion of cases <20 years old 1.04 0.88 1.20 

Proportion of  cases >20 years old 1.06 0.90 1.23 

Proportion of cases with Contributory Insurance 0.99 0.95 1.03 

Median distance between severe cases (Km) 0.99 0.98 1.00 

Spatial Effect (𝛽𝑠) 0.78 0.65 0.93 

Area Level Covariates: Proportion of Female Cases: indicates every 10% increase in the proportion of 
female cases reported per neighborhood; Proportion of cases <20 years old: indicates every 10% increase 

in the proportion of reported cases <20 years old per neighborhood. Proportion of Contributory Scheme 

Cases: indicates every 10% increase in the proportion of cases with contributory scheme insurance 
reported per neighborhood; Breteau Index: Comparing the Low Breteau Index level (Reference group) to 

Medium Breteau Index level; SES Level: Comparing cases in the Medium SES (Reference group) to Cases 

in the Low and High SES levels. Spatial Effect = 𝑒𝑥𝑝 (𝛽𝑠 Coefficient from 𝑔𝑠
𝑗
(𝑠𝑖𝑗)) in Equation 4. 
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After adjusting for other covariates and comparing to the overall rate of dengue in the city, the 

spatially structured effect indicating the residual spatial autocorrelation not explained by the 

fixed effects, showed a widespread distribution of cases with some concentration in central and 

Northern parts of the city. For severity marks, the residual spatial effect showed a homogeneous 

distribution of severe cases without indication of concentration of cases in any particular 

neighborhood (Figure 3).   

 

 
Figure 3. Estimated common spatial trend for overall dengue and Severe dengue cases in 

Medellin, 2013. (Top) Neighborhood specific residual (Random Effects) Standardized Rate 
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Ratio (nSRR) and Standard Deviation (SD). (Bottom) Neighborhood specific residual (Random 

Effects) Odds Ratio (nOR) and Standard Deviation (SD). 

 

The spatial model estimated the marginal variance of the spatial effect (derived from the 

precision parameter for the spatial correlation) and a Beta coefficient 𝛽𝑠 from equation (4), to 

indicate the proportionality between the spatial structure of overall cases and severe cases. The 

joint model showed moderate marginal variance of the spatial effect for dengue distribution 

(Variance= 3.02; 95%Cr.Int= 2.34, 4.00). The Beta coefficient 𝛽𝑠 for the spatial effect of severe 

cases in equation (4) indicated that after accounting for the other covariates in the model, the 

distribution of overall dengue cases and the distribution of severe dengue shares the latent spatial 

effect but in smaller magnitude (OR= 0.78; 95% Cr.Int=0.65, 0.93). 

 

As a sensitivity analysis we fit the joint model using separate spatial structures for patterns and 

marks. The results from the mean of the posterior distribution for the fixed effects were similar 

to the main results presented here but showed higher posterior uncertainty with wider credible 

intervals, mostly for SES and age for the overall dengue distribution and for all the covariates for 

severity. The DIC for the model using separated spatial structure was 1590 the model with the 

joint  proportional structure was 1578, suggesting that the model that assumes that the log 

relative risk of dengue cases and the logit of odds ratio of severe cases share a spatial effect  fits 

the data better. (Supplementary Material). The hyperparameters for the spatial effect in the 

model with separated structures showed more variability in the marginal variance for the spatial 

structure for overall cases (Variance=0.60; 95%Cr. Int= 0.43, 0.82) than for the distribution of 

severe cases (Variance =0.02; 95%Cr. Int= 0.005, 0.33). Compared to the joint model, using only 
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independent spatial structures, the distribution of severe cases become independent of the 

distribution of non-severe cases. Since the assessment of the spatial distribution of severe cases 

in the separate model does not account for the spatial distribution of overall cases (i.e., there is 

no borrow of strength across the overall spatial distribution of dengue cases), the estimates of the 

fixed effects and the hyperparameters for severity are less precise, with wider confidence 

intervals for the fixed effects ORs and the marginal variance. This suggests that the use of the 

joint model with the proportional spatial structure that borrows the strength across the spatial 

distribution of overall and severe cases is preferred. Moreover, epidemiologically, it is relevant 

and plausible given that dengue and severe dengue are transmitted in the same way, and severity 

is a potential clinical change in the status of a dengue case.  

 

The BYM model estimated two hyperparameters for the precision of the structured spatial 

component and another for the unstructured component and BYM2 models estimated the 

marginal variance (derived from the precision parameter for the spatial correlation) and an 

indicator of spatial dependency (Phi). The coefficients for the fixed effects models using BYM 

and BYM2 parameterizations were similar to estimates using the Besag parameterization and the 

estimated posterior distribution of the spatial common trend were similar but the marginal 

variance for the structured spatial component was not identifiable with the BYM 

parameterization. The joint models using the BYM2 structure showed smaller marginal variance 

of the spatial effect (Variance=0.69; 95%Cr. Int= 0.54, 0.86) and a 22% tendency of spatial 

dependency for the distribution of overall cases (Phi= 0.22; 95%Cr.Int = 0.03, 0.57).  The Beta 

coefficient (𝛽𝑠) in all cases indicates proportionality with the overall distribution of cases in 

smaller magnitude (Supplementary Material).  
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4. DISCUSSION  

We presented an analysis of a joint spatial marked point processes model on routinely 

collected dengue data. Our proposed approach shows the possibility of simultaneously estimating 

the distribution of overall dengue cases and the distribution of severity, which given the shared 

common spatial component, allows the assessment of any underlying spatial process. The 

proposed approach also contributes to account for the uncertainty associated to the reporting of 

dengue cases in surveillance-based data, allows for spatial autocorrelation, and uses case-specific 

observed sociodemographic covariates to explain both outcomes: dengue and severe dengue.   

 

4.1. Dengue discussion 

Colombia is an endemic country and Medellin is one of the municipalities consistently 

reporting a high burden of cases during the last decade (1, 2, 27). Our study shows that during 

2013, dengue was present in the entire city, with concentration at the Northeastern 

neighborhoods, which are known for being densely populated areas (18, 26, 46). The 

concentration of cases in the Eastern region of the city has been previously explored in the 

context of serological surveys (47) and among children attending different schools in the city 

(18). However, previous approaches did not include latent spatial structured effects that account 

for the neighboring structure after adjusting for available covariates. Also, previous approaches 

either used only census aggregated data to fit overall dengue cases and severity separately, fitted 

fixed effects for the spatial structure or modeled separately the spatial effects and the 

contribution of case-specific observed sociodemographic covariates (14, 18, 34-36, 46, 47). 
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In our study, there were no neighborhoods with high Aedes presence determined by the 

Breteau Index and there was no association between the SRR and the presence of medium level 

Breteau Index. Although the Breteau Index is considered a useful indicator of Aedes infestation, 

there is conflicting evidence about the concordance with presence of dengue cases (1, 15). This 

could arise in our data because entomological information was collected at regular intervals 

throughout the year in different neighborhoods and households (18, 27, 46). The value of 

entomological indexes changes over time, but the timing of exposure assessment and incident 

cases may not be aligned (48-50). 

 

Although the proportion of female cases was associated with a slight increased rate in the 

overall distribution of cases, being female was not associated with severity in our study.  

Increased proportion of female dengue cases has been also reported in Medellin previously (18). 

However, associations between sex, dengue and dengue severity have been inconsistent in the 

literature (11, 46, 47). Age, specifically the proportion of people under 20 years of age, was 

associated with increased rates of overall dengue cases across neighborhoods and an increased 

OR for severity was observed among people over 20 years of age in the proportional model and 

among individuals 55 years old in the sensitivity analysis. These findings could be associated 

with a high seroprevalence of dengue in the city and a limited presence of secondary infections 

(2, 11, 46). In Medellin, the overall dengue seroprevalence was estimated at 61%, with a mean 

age of 30 years among dengue seropositive cases. The overall seroconversion rates were 

estimated to increase with age, with the highest seroconversion rate (17.9 per 1,000 people) 

observed among subjects between 31 and 40 years of age (47). Likewise, among school children 

under 19 years old,  a trend of increased dengue seroprevalence and seroconversion with age has 
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been reported (18). However, it is also possible that the observed trend of severity by age could 

be related to comorbidities in older patients and the possibility of secondary infections in people 

over 55 years old (6, 9, 11). These characteristics have been described in other Colombian 

municipalities and in other Latin-American contexts (1, 2, 11, 14, 16, 24, 28, 46); and may 

contribute to an understanding of the age-related findings in this study.  

 

In Colombia, the health coverage under the contributory system corresponds to employed 

individuals or people with capacity to pay for their health system coverage (affiliated to a private 

insurance plan or out-of-pocket) and the subsidized system corresponds to individuals for whom 

the state pays for health coverage. Health insurance here was modeled as a proxy for 

socioeconomic status at the individual level (30, 51, 52). In our study, most of the notified cases 

were from the contributory system and contributory insurance was associated to the overall dengue 

rates but not to severity (1, 2, 51-53). Using the health insurance as a proxy for individual 

socioeconomic status could be challenging but modeling simultaneously area level-socioeconomic 

characteristics and individual-level socioeconomic status or their proxy addresses this issue, at 

least partially. For example, a person earning a minimum wage could indeed have a contributory 

insurance, which could be understood as a person in a “better standing”. However, since a person 

earning a minimum would less likely live in a high SES neighborhood, the regression-based 

adjustment for the two variables in our joint model is considered pertinent. According to the SES 

level of the neighborhood of residency, findings from the joint model suggests a non-monotonic 

distribution of cases across SES levels, with fewer cases at low and high SES levels.  There were 

fewer cases among neighborhoods at the lowest SES level, which could be attributed to limited 

access (physical and financial) to health care, compared to people living in neighborhoods with 
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medium- or higher SES levels and or health seeking behavior (1, 2, 51-53). Although the rate of 

dengue cases seems to decrease in neighborhoods at the high SES level, the lack of precision (i.e., 

high uncertainty of the posterior distribution) of the estimates could be attributed to the small 

number of cases in this stratum (n=193 cases). Nonetheless, reporting bias and spatial confounding 

associated to the SES level and health seeking behavior by affiliation to health insurance could not 

be completely ruled out (54).  

 

4.2. Implications of routinely collected data 

We used passive surveillance data, which implies a potential risk of under reporting and 

measurement error (17, 19, 25, 27, 52, 55). Notification depends on health seeking behavior, 

which in turn depends on presence and severity of symptoms and access to health care (insurance 

scheme, availability of health care facility, etc.) that altogether could also depend on other 

socioeconomic factors (15, 52, 55). Therefore, the findings from this analysis should be 

restricted to the subset of notified cases. For this analysis we worked closely with the 

municipality’s secretary of health, which is considered one of the strongest surveillance systems 

in the country and for which dengue is a disease of mandatory notification (18, 27, 47). The 

diagnostic system in place, including serological and clinical confirmation, and the use of data 

from before the introduction of other arboviruses (i.e., chikungunya and Zika), decreased the risk 

of misclassification of the outcome but did not rule it out completely.  To illustrate the proposed 

methodology, we used the available information of cases reported in 2013. Therefore, analyses 

using more recent data are encouraged, although given the endemicity of dengue in the study 

site, the empirical results of this analysis are still relevant and pertinent. 
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4.3. Methodological discussion 

This joint spatial marked point process analyses the distribution of individual-level data on 

dengue cases, adjusting for neighboring effects via spatial structured effects, and accounting for 

area- and individual-level covariates simultaneously. Given the lack of independence between a 

dengue case and a severe case (i.e., a severe case needs to be first a case), the advantage of using 

a joint model to assess the spatial distribution of severe cases relies on several aspects i) the 

opportunity to use individual location data for overall and severe cases to assess their 

distribution, ii) the shared common component between the relative risk of cases and the 

probability of severe dengue that allow us to learn about the underlying spatial process, iii) the 

opportunity to account for the uncertainty associated with the number of overall dengue cases in 

the surveillance-based data when modelling the severe cases, and iv) the opportunity of 

identifying the presence of clustering of severe cases that will otherwise not be identified with 

separated models for dengue and severe dengue. This approach assumes that there is a spatial 

trend in the data that cannot be explained by the measured covariates and that such trend is a 

random field (22, 23, 32).  

 

Although there was a small number of severe dengue cases across the city and within each 

neighborhood, the joint model assumed the spatial distribution of severe cases proportional to the 

spatial distribution of overall cases (see equations (2) and (4)) and allowed the identification and 

confirmation that the spatial patterns of distribution for severe cases showed more dispersion 

across the city than the distribution of overall cases.  
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Typically, point process models are fitted using a regular spatial grid which approximates the 

latent field and the spatial pattern (20, 32). Also, should the data at hand allow it, space-time 

kernel density estimation (STKDE) could be used for spatiotemporal disease transmission 

models, which could be computationally intensive and are not necessarily comparable with the 

methods proposed here (33-36, 41). For ease of applicability among the public health 

community, data availability, and to avoid issues associated with the interpolation of population 

offsets, we followed the approach proposed by Pinto Jr. et al.,(36) and used the actual 

neighborhood map and population information as the spatial grid. This approach facilitated the 

fitting by providing the real neighboring boundaries and used the actual information of the 

population, area, and density to improve accuracy. The use of this dataset favors the use and 

application of research results in the context of surveillance and disease control by decision 

makers and other stakeholders. We followed Illian et al. (2013)(32) and Pinto Jr. et al., 

(2015)(36) and approximate the likelihood in the point process model through the neighborhoods 

of Medellín. Another contribution of our manuscript is to show that the model proposed by Illian 

et al. (2013), which was developed for an application in ecology, can be considered in the spatial 

analysis of infectious diseases when data allows. The sensitivity analysis showed some 

opportunity to gain precision when modeling each case within neighborhoods but further 

research to identify the spatial dependencies is required. Further development is required to 

identify alternatives for modelling point process using individual location in infectious diseases. 

 

Conclusion 

These findings provide epidemiological and geographical information of high-risk areas of 

overall and severe dengue presence in Medellin, Colombia. Age, insurance scheme, and 
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socioeconomic status are key sociodemographic and spatial factors associated with the presence 

of dengue in the city, but severity was low and without evidence of spatial clustering. The use of 

joint marked point process models improves the evidence obtained from surveillance data by 

favoring the assessment of common underlying spatial process, accounting for the uncertainty of 

overall reported dengue cases, and by favoring its analysis using the observed individual-cases 

characteristics when data is available. This application contributes to the production of public 

health information for decision makers to address specific disease control strategies, and to help 

the preparedness of health services for upcoming outbreaks at the local level. 

 

Abbreviations: 

Cr.Int: Credible Interval 

SRR: Standardized Rate Ratio 

IQR: Interquartile Range 

OR: Odds Ratio 

RR: Relative Risk 

DIC: Deviation Information Criterion  

INLA: Integrated Nested Laplace Approximation 

 

Data accessibility: Case-specific data, which is routinely collected using the national 

surveillance system of Colombia (SIVIGILA; http://portalsivigila.ins.gov.co/sivigila/index.php) 

was obtained directly form the Local Surveillance office (Secretaria de Salud Municipal de 

Medellin); Socioeconomic information at neighborhood level was obtained from the website of 

http://portalsivigila.ins.gov.co/sivigila/index.php
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the municipality (https://www.medellin.gov.co) and an open data source for socioeconomic 

information (https://www.datos.gov.co/). 
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