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Abstract 

Hepatocellular carcinoma (HCC) is an invasive disease which is characteristic with 

highly heterogeneous molecular phenotype, rich blood supply, and unique immune 



niche, therefore it is of great significance to explore the tumor heterogeneous niche 

and clonal evolution progress of these malignant cells. Based on the advance in 

single-cell technology, spatial transcriptome technology, and Oxford nanopore 

technology, this study innovatively reconstructed and delineated the heterogeneity of 

the HCC tumor niche and its tumor progression pattern. Our results showed that the 

copy number variation (CNV) of cells in cancer lesions and liver cirrhosis lesions of 

the same patient is basically the same and is mainly regulated by transcription factors 

such as TP53, HOXA7, FOXN3, and PPARG, suggests that malignant cells of 

common origin gradually evolve into different lesions in a very rare numbers of 

different CNVs, which are mainly regulated by expression patterns and mediate the 

heterogeneity between the tumor and cirrhosis lesions. Angiogenesis-related genes 

(SREBF1, ZNF585A, and HOXB5) may mediate communication between HCC 

subpopulations and endothelial cells via exosomes, thereby contributing to the 

angiogenic niche before HCC metastasis. In addition, numerous CNVs were found in 

patients with early recurrent HCC, and these mutated genes is the potential niche 

genes for the early tumor recurrence. In summary, this study provides a general 

transcriptional landscape of the ecological structure of HCC, systematically maps the 

molecular, cellular, and spatial composition of different HCC cell niches, and 

provides a scientific and theoretical basis at the molecular and cellular levels for 

personalized and accurate treatment strategies for HCC. 

 

Introduction 

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the 

second leading causes of cancer-related deaths worldwide, which is characteristic with 

high aggressiveness and invasiveness [1, 2]. Although progress has been made greatly 

in regional therapies in the past few decades, the prognosis of patients remains poor. 

So far, the five-year recurrence rate for radical HCC treatments (surgical resection or 

radiofrequency ablation) still beyond 70% [3, 4]
 , even in patients with early HCC (<3 

cm) who underwent surgery, the five year survival rate was unsatisfactory (47–53%) [5, 

6]. Besides, HCC is still highly resistant to systematic anti-cancer therapies owing to 



its highly heterogeneous molecular phenotype, rich blood supply, and unique immune 

niche. Conventional chemotherapy, small molecular targeted therapy and 

immunotherapy all provide limited survival benefit [7-12]. 

Intratumoral heterogeneity is one of the main reasons why current therapies are 

ineffective for most types of cancers, especially HCC [13]. However, most current 

theories describing the generation of intratumor heterogeneity are based on tumor 

evolution [14]. In tumor cells, subclones arise when novel genomic aberrations lead to 

distinct cell subpopulations, which are driver mutations in key oncogenes or tumor 

suppressor genes that confer an adaptive advantage to tumor cells [15]. For example, 

tumor cells can develop drug resistance through gene amplification of therapeutic 

targets, point mutations that affect the ability of the therapy to inhibit oncogenic 

pathways, and/or amplification/suppression of other genes that compensate for 

drug-suppressed oncogenes [16]. In addition, tumor metastasis and recurrence 

contributes to the weakness of locally targeted therapies. In recent years, molecules 

and cells identified in distant metastatic tissues of different tumor animal models, 

including primary tumor-derived soluble factors, vesicles, exosomes, and bone 

marrow derived cells (BMDCs), have gradually confirmed the existence of a 

premetastatic niche [17, 18]. The premetastatic niche refers to a microenvironment that 

is well prepared for tumor cell colonization and the spread to distant organ sites [19, 20]. 

Signals from the primary tumor mobilize and adapt immune cells and communicate 

directly with distant niche cells to induce broad adaptations in target organs, including 

the induction of angiogenesis, inflammation, extracellular matrix remodeling, and 

metabolic reprogramming, which interact together to promote the formation of 

pre-transfer niches [21]. HCC metastasis to specific organs is associated with the 

generation of pre-metastatic niches [22, 23]; however, the exact mechanism remains 

unclear. Therefore, a comprehensive and accurate understanding of the genomic 

structure of HCC, including mutations, copy number variation (CNV), RNA 

expression, tumor immune microenvironment landscape, and clarifying the tumor 

heterogeneous niche and its clonal evolution model in the HCC tumor 

microenvironment are very important for the development of personalized therapy. 



Single-cell analysis, which enables us to better define tumor cell populations and 

identify potential targets for immunotherapy or combination therapy, has been widely 

used in HCC research [24]. In addition, spatial omics can reveal the impact of cell 

spatial distribution on a disease by studying the relative positional relationship of cells 

in tissue samples [25]. Therefore, based on increasingly mature single-cell technology, 

spatial transcriptome (ST) technology, and Oxford nanopore technology (ONT), we 

innovatively reconstructed and delineated the heterogeneity of HCC tumor niches and 

their clonal evolution patterns.  

 

Methods 

Human samples 

Six HCC patients and one patient with hemangioma included in this study agreed 

to a diverse library and sequencing protocol covering all research procedures, which 

was approved by the ethics review committee of the Guangxi Medical University 

Cancer Hospital. Demographic and clinical data are presented in Table S1. According 

to the research needs, six tumor tissues and one liver cirrhosis nodule were obtained 

from HCC patients as a case, and one normal liver tissue was obtained from a 

hemangioma patient as a control for sequencing. Sequencing was performed using 

BMKCloud (Biomarker Technologies Corporation, Beijing, China). 

 

Spatial transcriptome sequencing 

Frozen embedded tissue stored at –80°C was sliced to extract RNA and subjected 

to quality inspection. The RNA integrity number (RIN) value was required to be ≥7. 

Then, the tissue permeabilization time was explored for the sample, and tissue 

permeabilization and mRNA reverse transcription were performed to synthesize 

cDNA according to the permeabilization time determined by tissue optimization. Next, 

synthesis and denaturation of the second strand of cDNA was performed. The cycle 

number of cDNA amplification was determined by quantitative polymerase chain 

reaction (qPCR), and the cDNA was purified and quality controlled, after which the 

gene expression library was constructed and quality checked. After the library passed 



quality inspection, the Visium spatial gene expression library was sequenced using the 

Illumina NovaSeq 6000 platform, and the sequencing strategy used was PE150. 

 

Single-cell sequencing 

Sample preparation and cDNA library construction were performed as described 

in the 10X Genomics Single Cell 3' Kit v3.1 User Guide. Droplets of latex gel beads 

(GEMs) containing cells were obtained using microfluidic technology. The GEMs 

were then broken, and the cDNA was recovered and amplified by PCR to complete 

the construction of the cDNA library. The cDNA product and library concentration 

were detected using a Qubit 4.0, and a Qseq400 bioanalyzer was used to detect the 

insert size of the cDNA library to ensure a qualified insert size, single peak shape, no 

spurious peaks, no adapters, and no primer dimers. Finally, the sample library was 

sequenced using a Novaseq 6000 instrument on an Illumina platform. After 

identifying the Casava bases, the obtained raw image files were converted into 

sequence files and stored in the FASTQ format. The sequencing data were compared 

and quantified using CellRanger, the official 10X Genomics software. 

 

The construction of single-cell maps and annotation of cell types 

For single-cell sequencing (scRNA-seq) data, the IntegrateData function in the 

Seurat package [26] was used to merge single-cell data and cell cluster analysis was 

performed according to the default parameters. The clustering results were uniformly 

reduced and visualized using the uniform manifold approximation and projection for 

dimensionality reduction (UMAP) algorithm[27], projected onto a 2-dimensional 

image, defined as a single-cell atlas. In addition, the FindAllMarkers function of the 

Seurat package was used to identify the markers for each cell cluster. Referring to the 

SingleR package[28], the defined cell types were annotated into the single-cell atlas 

according to the known cell markers. 

 

CNV estimation in single cells 

Single-cell CNV estimates were performed using the copy number karyotyping 



of Aneuploid Tumors (CopyKAT) method[29]. CopyKAT calculates the genome copy 

number distribution of a single cell by combining Bayesian methods and hierarchical 

clustering and defines the subclone structure. 

 

Functional enrichment analysis 

To further explore the biological processes and pathways involved in the markers 

of each cell cluster, the R software package clusterProfiler[30] was used to perform 

enrichment analysis on the biological processes (BP) and KEGG signaling pathways 

of Gene Ontology (GO) for the markers, P value < 0.05 for BP and KEGG signaling 

pathways were considered significant. 

 

Pseudotime and RNA rate calculation 

Pseudotime explores the cellular trajectories of cells transitioning from one state 

to another during development, disease, and throughout life, based on changes in gene 

expression in different cell subsets over time. In this study, the R language package 

Monocle 3 [31] was used to reconstruct the differentiation and developmental 

trajectory of the single-cell atlas of HCC patient tumor cells and to simulate the 

evolutionary trajectory of malignant cancer cell subclones. 

In addition, RNA rates (the time derivative of the gene expression state) can be 

used to predict the future state and ultimate fate of individual cells, thereby dissecting 

their developmental lineage and cellular dynamics. Here, referring to velocyto.R [32] 

by Gioele La Manno, RNA rates were directly calculated based on distinguishing 

between unspliced and spliced mRNAs in single-cell maps. 

 

Gene regulatory network 

Single-cell regulatory network inference and clustering (SCENIC) is a tool used 

to infer gene regulatory networks based on single-cell expression profiles to identify 

cell states [33]. In this study, we used the Python module tool pySCENIC [34] to analyze 

and comprehensively reconstruct gene regulatory network (GRN) centered on 

transcription factors. The workflow starts with a count matrix describing the gene 



abundance of all cells and consists of three stages. First, co-expression modules were 

inferred using the per-target regression method (GRNBoost2). Indirect targets were 

pruned from these modules using cis-regulatory motif discovery (cisTarget). Finally, 

the activity of these regulons was quantified using the enrichment fraction of the 

regulon target genes (AUCell). Based on the cellular activity patterns of these 

regulons, nonlinear projection methods can be used to display the visual groupings of 

cells. 

 

Data Analysis and Statistics 

All bioinformatic analyses in this study were performed using the Bioinforcloud 

platform (http://www.bioinforcloud.org.cn). 

 

Results 

Global single-cell ecology and spatial distribution of HCC 

According to the UMAP method, 54 cell clusters, including HCC malignant cells, 

myeloid cells, and lymphocytes, belong to the common cell population in HCC 

(Figure 1A). Further CNV estimation using CopyKAT in patients with HCC allowed 

for the identification of aneuploid tumor cells in the single-cell transcriptome data of 

patients with HCC (Figure 1B). Cancer cells in solid tumors typically contain 

aneuploid copy number events in their genomes, whereas most stromal and immune 

cells have diploid copy number profiles. These cell subpopulations expressed 

molecular markers consistent with previously known laboratory markers (Figure 1C). 

Mapping patients using single-cell profiles indicated that the data were free from 

noise contamination, such as batch effects (Figure 1D, E). The cell type ratio analysis 

reflected the widespread presence of HCC malignant cells, CD8+ T cells, B cells, and 

Kupffer cells (hepatic macrophages) in patients with HCC (Figure 1F). Interestingly, 

the widespread presence of these cells was also observed in the ST analysis (Figure 

1G). In patients, ST analysis was performed on HCC malignant cells and 

tumor-associated spot clusters were mapped to HCC malignant cells using scRNA-seq 

(Figure 1H). Taken together, these data provide a representative cellular atlas of HCC. 



  

HCC heterogeneity mainly stems from the diversity of tumor cells 

Single-cell analysis revealed the existence of several different subpopulations of 

HCC (Figure 2A), which may contribute to the heterogeneity of HCC. The expression 

of markers guiding the annotation of each HCC subpopulation was demonstrated at 

both the single cell (Figure 2B) and spatial transcriptome (Figure 2C) levels, and the 

markers were all specifically expressed in the HCC subpopulation, indicating that 

these markers are of guiding significance. Subsequent enrichment analysis of the 

HCC subpopulations revealed that the markers were all involved in drug metabolism 

and other related pathways, mainly cytochrome P450 (Figure 2D). These markers of 

subpopulations are differentially expressed and significantly involved in different 

signaling pathways (P value < 0.05) and are one of the main reasons for the 

heterogeneity of HCC. 

  

Angiogenesis in HCC 

HCC is characterized by a rich blood supply, and endothelial cells are crucial in 

HCC angiogenesis. Studying the characteristics of endothelial cells is important to 

reveal differences in the rate of HCC progression and sensitivity to targeted therapies. 

A large number of endothelial cells were found in all HCC subpopulations (Figure 

3A), and the specific expression of markers guiding the annotation of endothelial cells 

in endothelial cell subpopulations was demonstrated (Figure 3B). Functional 

enrichment analysis was performed to explore the biological functions of the HCC 

and endothelial cell subpopulations. The results revealed that the HCC subpopulation 

was mostly involved in tumor-related pathways, such as the PI3K-AKT and HIF1 

signaling pathways, while resistance to epidermal growth factor receptor tyrosine 

kinase inhibitors was significantly activated in endothelial cells in HCC (Figure 3C). 

A gene regulatory network with transcription factors such as fulcrums was 

subsequently explored, which was organized into seven modules (Figure 3D), with 

SREBF1, ZNF585A, and HOXB5, which are transcription factors that regulate 

endothelial cells in HCC patients. In addition, the expression of exosome marker 



genes (CD9, CD63, and CD81) was observed in both HCC subpopulations and 

endothelial cells (Figure 3E), suggesting that HCC subpopulations and endothelial 

cells achieve intercellular communication through exosomes, and thus, participate in 

the formation of angiogenic niches in HCC. 

  

Specific immune cells are closely related to tumor immunity 

The development of HCC is also closely associated with immune cells, and after 

reaggregation of CD8T+ cells, 13 major CD8T+ cell subpopulations were observed, 

which, interestingly, had notable patient heterogeneity in their abundance (Figure 4A). 

Some subpopulations expressed representative immune-related genes, including IFNG, 

GNLY, and CCL20 (Figure 4B). Similarly, re-clustering of B cells revealed two 

subpopulations of B cells (Figure 4C), which also showed patient heterogeneity. We 

also observed high expression of CD81, HLA-DRA, and IGHG1 in different B cell 

subpopulations (Figure 4D). In addition, we found that Kupffer cells were widespread 

in HCC patients; therefore, re-clustering of Kupffer cells captured twelve cell 

subpopulations (Figure 4E), and each subpopulation was patient-heterogeneous. 

Remarkably high expression levels of CCL2, IL1B, and MARCO were also observed 

in the Kupffer cell subpopulation (Figure 4F). After re-clustering the different 

immune cells, they were all found to be patient-heterogeneous, suggesting that the 

development of HCC is closely related to immunity. 

  

Clonal evolutionary pattern of HCC cells 

To understand the role of HCC cells in the evolution of disease progression, we 

first extracted HCC cells for reclustering and obtained 15 HCC cell subpopulations 

(Figure 5A). CNV estimation was performed on HCC cell subsets, and the CNV of 

HCC lesions and liver cirrhosis lesions (HCC401 and HCC402) in the same patient 

were essentially the same (Figure 5B). Pseudotime trajectories of hepatocyte 

development showing the development of malignant subclones of HCC revealed that 

the HCC_7 subpopulation was in early development while the HCC_3 subpopulation 

was in late development (Figure 5C). In addition, the gene regulatory network with 



transcription factors (TFs) as the fulcrum was organized into four modules (Figure 

5E), such as TP53, HOXA7, FOXN3 and PPARG, to regulate the RNA transcription 

rate of the HCC malignant cell subpopulation (Figure 5D). In conclusion, these results 

suggest that multiple malignant cell subsets exist in HCC patients, which may develop 

from some liver disease (cirrhosis) cells, and that the specific gene expression of HCC 

malignant cell subsets is regulated by some transcription factors, which in turn guide 

cell fate. Selection promotes the transformation and differentiation of the core state 

and ultimately mediates the formation of a range of clonal phenotypes. 

  

Early recurrence ecotone of HCC 

The challenge of a high relapse rate after radical treatment of HCC remains. 

During the study, one patient (HCC2) was found to have an early postoperative 

relapse with a spatial single-cell and multi-omics molecular pattern worthy of 

investigation. Therefore, the single-cell landscape of this patient after relapse was 

explored (Figure 6A), and 54 clusters and 14 cell types were obtained. CNV was 

observed at the genomic level in patients with early recurrent HCC (Figure 6B), and 

somatic mutation spectrum (Figure 6C) and fusion gene patterns (Figure 6D) in 

patients with early recurrent HCC. More CNVs were present in patients with recurrent 

HCC than in those without recurrence. Thus, HCC cell heterogeneity and high CNVs 

may contribute to recurrence. 

  

Discussion 

So far, novel small molecular targeted and immunotherapy regimens greatly 

improved the multidisciplinary treatment of HCC [35]. However, rare promising results 

have been reported in phase III clinical trials, the response rates remains suboptimal, 

owing to immune escape events mediated by tumor molecular heterogeneity [36]. In 

the current study we conducted single-cell technology, ST technology, and ONT to 

generate an innovative, direct and in depth depiction of the ecological niche of HCC 

tumor heterogeneity and its clonal evolutionary pattern. 

Our results demonstrated the existence of multiple subpopulations of malignant 



cells in patients with HCC, suggesting that the intra-tumor heterogeneity in HCC 

stems primarily from the diversity of tumor cells. However, the fact that tumors are 

not a single clonal genome; rather, multiple distinct subclones that evolve from one or 

more origins during the disease cycle of HCC development, thereby mediating 

intra-tumor heterogeneity. Therefore, we performed reclustering and CNV estimation 

of the HCC cells. The results showed that the CNA of the two lesions (HCC lesions 

and cirrhosis lesions) in the same HCC patient were basically the same, suggesting 

that the two lesions may have a common origin, and the lesion cells gradually 

differentiated into HCC cells. GRN analysis showed that malignant cell 

subpopulations of HCC are regulated by multiple TFs. Among them, the link between 

HCC progression and TP53 mutations has been demonstrated [37], and the linkage 

between HOXA7, FOXN3, NR1I2, and PPARG has also been well documented [38-41]. 

In contrast, the association of RARG with HCC has rarely been reported in previous 

studies, and its dysregulation was found to be associated with acute promyelocytic 

leukemia (APL) [42]. In the present study, we found that RARG is involved in the 

regulation of malignant cell subpopulations in HCC and may be a novel potential 

therapeutic target for HCC. Taken together, these findings led us to hypothesize that 

malignant cells of common origin with very few differential CNAs and expression 

patterns gradually evolve to form distinct foci and are mainly regulated by expression 

patterns, thus, mediating intertumor heterogeneity. 

Metastasis in HCC is closely associated with angiogenesis[43] and that the 

remarkable plasticity of endothelial cells contributes to pathological angiogenesis [44] 

is increasingly certain. Therefore, we explored the endothelial cell subpopulation in 

HCC. In the present study, the endothelial cell subpopulation was involved in the 

resistance pathway to epidermal growth factor receptor tyrosine kinase inhibitors, 

suggesting that patients with HCC have developed resistance to these drugs. 

Subsequent GRN analysis showed that endothelial cells were regulated by SREBF1, 

ZNF585A, and HOXB5, and the remarkable expression of exosome marker genes 

was observed in both malignant and endothelial cell subpopulations. Among them, 

SREBF1 appears to be associated with cancer [45] but is rarely reported in HCC, 



whereas HOXB5 promotes HCC metastasis by targeting FGFR4 and CXCL1 [46]. 

HCC-derived exosomes are the main drivers of pre-metastatic ecotone formation and 

can mediate the metastasis of tumor cells to specific organs [47, 48]. Thus, we 

tentatively inferred that angiogenic ecotone genes mediate the communication 

between HCC subpopulations and endothelial cells through exosomes, contributing to 

the pre-metastatic angiogenic ecotone of HCC. 

Next, we explored the ecological niche of immune cell subpopulations in HCC 

and found that Kupffer cells are widely present in patients with HCC. Kupffer cells 

act as resident hepatic macrophages, both as effector cells that destroy hepatocytes 

and antigen presenting cells during hepatic viral infection [49]. Interestingly, we found 

that CCL2, IL1B, and MARCO were remarkably expressed in the Kupffer cell 

subpopulation. Previous studies have confirmed that higher MARCO expression is 

associated with poor prognosis in a variety of cancers [50-52]. More importantly, 

preclinical studies have shown that anti-MARCO antibodies inhibit tumor growth and 

metastasis in 4T1 breast cancer and B16 melanoma mouse models [53]. This suggests 

that in HCC, high MARCO expression may be involved in HCC immunomodulation 

by regulating Kupffer cells and may be an interesting therapeutic target for HCC. In 

addition, we explored the ecological niche of patients with early relapse of HCC, 

considering that relapse of HCC is the ultimate cause of treatment failure and death. 

More copy number variants were present in patients with recurrent HCC than in those 

without recurrence, and these mutated genes may be HCC early recurrence ecotype 

genes. 

This study remains several limitations. We included only six patients with HCC 

and one control in our study; therefore, these results need to be further validated in a 

larger sample. In addition, our results were derived using scientific bioinformatics 

analysis methods, which were not demonstrated in experimental or clinical practice. 

As the establishment of animal models for such purposes is difficult, clinical trials 

may provide valuable information. 

In summary, we performed a multi-omics approach to conduct a comprehensive 

study of tumor heterogeneity and its clonal evolutionary patterns to reveal 



heterogeneity-mediated progression and recurrence of HCC in tumor cells under the 

tumor microenvironment. These findings described the great potential prognostic and 

therapeutic targets for HCC with decision-making value in the clinical practice. 
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Figure legend 

Figure 1: Single-cell and spatial transcriptomes reveal the global single-cell 

ecology and spatial distribution of hepatocellular carcinoma. A. The single-cell 

atlas showing that the cells of all samples are divided into different cell subsets. B. 

Chromosome heatmap showing single-cell profiles of liver cancer patients based on 

copy number variation (CNV) estimation. C. Expression of marker genes annotating 

cell types. D–E. Single-cell atlas map single cells from patient and control donors. F. 

Heatmap mapping the proportion of cell types in each sample in a single cell. G. 

Heatmap maps the proportion of cell types in spatial resolution. H. Hematoxylin and 

eosin (H&E) staining of patient sections and unbiased clustering of spots based on 

HCC malignant cell gene expression within individual spots. 

 

Figure 2: Subpopulation Analysis of hepatocellular carcinoma cells. A. The 

single-cell profiling maps subpopulations of HCC. B. Single-cell atlas maps specific 

markers of HCC subpopulations. C. Spatial transcriptome mapping maps specific 

markers of HCC subpopulations. D. The heatmap-pathways showing the biological 

functions and signaling pathways in which the markers of HCC subgroups are 

significantly involved (P value <0.05). 

 



Figure 3: Exploration of the angiogenic niche in hepatocellular carcinoma (HCC). 

A. The single-cell atlas maps the single-cell landscape of a patient exhibiting liver 

cancer endothelial cells. B. The single-cell atlas maps specific markers of endothelial 

cell subsets in patients with angiogenesis (HCC3, HCC401, and HCC5). C. The 

heatmap pathways showing the endothelial cell subsets and the markers in patients 

with angiogenesis and their significantly involved biological functions and pathways 

(P value <0.05). D. The modular heatmap transcription factor (motif-Logo) 

subpopulation showing the gene regulatory network of angiogenic subpopulations of 

HCC. E. The violin plot showing the expression of exosome marker genes in HCC 

and epithelial cells. 

 

Figure 4: Single-cell mapping of specific immune cells in hepatocellular 

carcinoma (HCC). A. 13 subsets of CD8+ T cells. The proportion of HCC patient 

and control donor cells is represented by a pie chart. B. Single-cell atlas mapping 

immune-related gene expression in CD8+ T cells. C. 2 subsets of B cells. D. The 

single-cell atlas mapping immune-related gene expression in B cells. The proportion 

of HCC patient and control donor cells is represented by a pie chart. 12 

subpopulations of E. Kupffer cells. The proportion of HCC patient and control donor 

cells is represented by a pie chart. F. The single-cell atlas mapping immune-related 

gene expression in Kupffer cells. 

 

Figure 5: Exploration of the clonal evolution pattern of malignant cells in 

hepatocellular carcinoma (HCC) cells. A. The single-cell atlas of malignant 

subclones of HCC. B. Chromosomal heatmap showing copy number variation 

estimates for two lesions, HCC401 (left) and HCC402 (right). C. Pseudochronological 

developmental and differentiation trajectories of hepatocytes. D. Mapping of RNA 

rates of HCC malignant subclones in a single-cell atlas. E. Co-expression modules of 

transcription factors in HCC malignant subclones of HCC patients. Left: The 

regulator module is identified from the regulator's connection specificity index matrix. 

middle. The representative transcription factors and their binding motifs in modules. 



Right panel: The association of modules with malignant subclones. 

 

Figure 6: Early recurrence niche of hepatocellular carcinoma (HCC). A. The 

single-cell atlas maps the single-cell landscape of patients with early stage recurrent 

liver cancer. B. The chromosome heatmap and chromosome bar graph showing the 

spectrum of copy number variation in patients with early recurrent HCC. C. The 

chromosomal circPlot showing the spectrum of somatic mutations in patients with 

early stage recurrent HCC. D. The chromosomal circPlot connection diagram showing 

the fusion gene pattern in patients with early recurrent HCC. 

 

Supplementary Table 1. Patient Clinical Information. 

 














