Pharmaceutical Payments to Japanese Board-Certified Infectious Disease Specialists: A Four-year Retrospective Analysis of Payments from 92 Pharmaceutical Companies between 2016 and 2019

Authors:

Anju Murayama1,2,*,†; Sae Kamamoto1,3; Kohki Yamada1; Divya Bhandari, MSH1; Iori Shoji1; Hanano Mamada1; Moe Kawashima1; Erika Yamashita1; Hiroaki Saito, MD, PhD4; Eiji Kusumi, MD5; Toyoaki Sawano, MD, PhD6; Binaya Sapkota7; Tetsuya Tanimoto, MD1,8; Akihiko Ozaki, MD, PhD1,9

Affiliations:

1Medical Governance Research Institute, Minato-ku, Tokyo, Japan
2Tohoku University School of Medicine, Sendai city, Miyagi, Japan
3Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
4Department of Gastroenterology, Sendai Kosei Hospital, Sendai City, Miyagi, Japan
5Navitas Clinic Shinjuku, Shinjuku-ku, Tokyo, Japan
6Department of Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City, Fukushima, Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Nobel College Faculty of Health Sciences, affiliated to Pokhara University, Kathmandu, Nepal

Department of Internal Medicine, Navitas Clinic, Tachikawa City, Tokyo, Japan

Department of Breast Surgery, Jyoban Hospital of Tokiwa Foundation, Iwaki City, Fukushima, Japan

Correspondence

Anju Murayama
Medical Governance Research Institute, Minato-ku, Tokyo, 1087505, Japan
Telephone: 81-90-6321-6996
Email address: ange21tera@gmail.com

Conflicts of interest:

Dr. Saito received personal fees from TAIHO Pharmaceutical Co. Ltd outside the scope of the submitted work. Dr. Kusumi received personal fees from Otsuka Pharmaceutical outside the scope of the submitted work. Drs. Ozaki and Tanimoto received personal fees from Medical Network Systems outside the scope of the submitted work. Dr. Tanimoto also received personal fees from Bionics Co. Ltd, outside the scope of the
submitted work. Regarding non-financial conflicts of interest among the study authors,
all are engaged in ongoing research examining financial and non-financial conflicts of
interest among healthcare professionals and pharmaceutical companies in Japan.
Individually, Anju Murayama, Hiroaki Saito, Toyoaki Sawano, Tetsuya Tanimoto, and
Akihiko Ozaki have contributed to several published studies addressing conflicts of
interest and quality of evidence among clinical practice guideline authors in Japan and
the United States. The other authors have no example of conflicts of interest to disclose.

Funding sources:

This study was funded in part by the Medical Governance Research Institute. This non-
profit enterprise receives donations from Ain Pharmacies, Inc., a dispensing pharmacy,
other organizations, and private individuals. This study also received support from the
Tansa (formerly known as the Waseda Chronicle), an independent non-profit news
organization dedicated to investigative journalism. None of the entities providing
financial support for this study contributed to the design, execution, data analyses, or
interpretation of study findings and the drafting of this manuscript.
Abstract

Objective

Conflict of interest with pharmaceutical companies is one of the most contentious issues in infectious diseases. However, there is a lack of whole picture of detailed payments in Japan.

Study Design and Setting

This retrospective study assessed financial relationships between pharmaceutical companies and all infectious disease specialists board-certified by the Japanese Association for Infectious Disease, using publicly disclosed payment data from 92 pharmaceutical companies. Descriptive analyses were conducted for the payments. Payment trends were examined by the generalized estimating equations.

Results

Of 1614 board-certified infection disease specialists, 1,055 (65.4%) received a total of $17,784,070 payments, corresponding to 21,680 cases between 2016 and 2019. The mean±SD and median (interquartile range: IQR) were $16,857±$45,010 and $3,183 ($938–$11,250) in payments. All board executive members of Japanese Association of
Infectious Disease received higher payments averaging $163,792. There were no significant changes in payments per specialist (annual change rate: -1.4\% [95\% CI: -4.7\%\div2.3\%], p=0.48) and prevalence of specialists with payments (annual change rate: -1.4\% [95\% CI: -3.1\%\div0.2\%], p=0.093) over the four years.

Conclusion

There were substantial financial relationships between pharmaceutical companies and board-certified infectious disease specialists in Japan. Such personal payments must be restricted to a certain level to avoid potential conflict of interest.
Keywords:
Board-Certified Infectious Disease Specialists, Pharmaceutical payments, Physician payment, conflicts of interest, Health policy, Japan

Running title: Pharmaceutical Payments to Japanese Board-Certified Infectious Disease Specialists

Word count: Abstract 197 words, Main text 3432 words
Main text

Introduction

There has been an increasing concern on financial relationships between healthcare professionals, healthcare organizations and pharmaceutical companies, which sometimes become conflicts of interest (COI), because of its potential bias on healthcare.

In response to this concern, many countries have started requesting pharmaceutical companies to disclose data on their donations and honoraria to healthcare professionals and healthcare organizations.[1, 2] Consequently, previous studies utilizing these data have demonstrated that there were substantial financial relationships between pharmaceutical companies.[3-7]

Among several specialties, infectious disease is one where there is a greatest concern about the influence from pharmaceutical companies. As in the case of Lyme disease guideline issued by the Infectious Diseases Society of America (IDSA), the guideline chair and authors manipulated the guideline recommendations and statements for the benefits of testing and insurance companies, leading to inadmissible harms on the patients in the US.[8]
In cases of Japan, 91.7% of authors of clinical guideline for methicillin-resistant

Staphylococcus aureus issued by the Japanese Association for Infectious Diseases received an average of $28,371 personal payments in 2016, and four pharmaceutical companies’ employees were involved in the guideline development.[9] Moreover, during coronavirus disease 2019 (COVID-19) pandemic, substantial financial relationships were uncovered among healthcare professionals specialized in infectious diseases and pharmaceutical companies worldwide. However, the Japanese government COVID-19 advisory board members did not manage to disclose the detailed information on COI with pharmaceutical companies.[10] Although COI among influential infectious disease experts such as television commentators specialized in infectious diseases[11], guideline authors[7, 9], and government advisory members[10] were investigated, the whole picture of financial relationships with pharmaceutical companies remains to be elucidated. Since board-certified infectious disease specialists directly prescribe drugs for patients, it is crucial to understand financial relationships among pharmaceutical companies and those specialists.

This study aimed to elucidate the prevalence of board-certified infectious disease specialists receiving payment from pharmaceutical companies, the magnitude of the
payments, and payments trend over last few years in Japan.

Methods

Study design and participants

This study was a retrospective analysis evaluating financial relationships among all board-certified infectious disease specialists and pharmaceutical companies in Japan. All infectious disease specialists who were board-certified by the Japanese Association for Infectious Disease (the Association hereafter) as of November 2021 were included in this study. The Association is the largest and most prestigious professional medical society for infectious diseases in Japan, which contributed to improve patient care by promoting research and training physicians for infectious diseases in Japan since its establishment in 1926. Also, the Association is the only organization in Japan that trains and certifies infectious diseases specialists in the country.

As of November 2021, the Association required physicians to complete several requirements to certificate them as infectious disease specialists, such as being a specialist certified by at least one of the 19 major Japanese medical societies[12], having completed at least six years of clinical practice training after having acquired a medical license and at least three years of specialized training in infectious diseases at
an institution accredited by the Association, and having published at least one academic
article on a peer-review journal and at least two conference presentations as the first
author.

Data collection

Data concerning name and affiliations for all of those board-certified specialists were
extracted from the official webpage of the Association
(https://www.kansensho.or.jp/modules/senmoni/index.php?content_id=29) on
November 10, 2021. Also, the Association webpage provided us names of all executive
board members as of 2021. All drugs with additional or new indications for infectious
diseases between 2015 and 2019 were extracted from the database of the
Pharmaceuticals and Medical Devices Agency[13], the Japanese regulatory authority for
drugs and medical devices.

Payment data from 2016 to 2019 to all healthcare professionals and healthcare
organizations for lecturing, writing, and consulting were collected from all 92
pharmaceutical companies affiliated with Japan Pharmaceutical Manufacturers
Association (JPMA).[14-16] JPMA required that the member companies disclose only
the payment for lecturing, writing, and consulting on the individual basis. However, payment categories such as meals, travel, and accommodations were not disclosed on each individual specialist. Thus, we could only analyze personal payments concerning lecturing, writing, and consulting.

Then, we stored all payment data collected from 92 companies into an excel file and structured the searchable payment database. By searching for the specialist names in the payment database, the payment data to the infectious disease specialists were extracted from the payment database. The extracted data included recipient names, recipient affiliations, monetary amount, number of payment cases, payment category, and name of pharmaceutical company making the payment. To remove payment data of different persons with duplicate names in the database, we checked and compared the affiliations, affiliation address, and recipient specialties among the data from the Association and the pharmaceutical companies. In cases where affiliation reported by the company differed from the one reported by the Association, we manually googled the name of specialists and collected other data from the official institutional webpages and other sources to verify that they were the same person. The detailed process can be found in our previously published papers.[5, 14-16]
Data Analysis

Descriptive analyses were performed for payment values and number of cases on individual specialist and pharmaceutical company levels. Average and median payments, cases, number of companies making payments per specialist were calculated based on the only specialists receiving payment in each year, as in other studies assessing pharmaceutical payments to physicians.[17-20] To compare the payments among the specialists with and without a leading role in the Association, the average mean and median payments were evaluated by the specialists with and without the executive board membership. The difference between two groups was assessed by the Mann-Whitney U test, as the payments data were not normally distributed.

The Gini index and the shares of the payment values held by the top 1%, 5%, 10%, and 25% of the specialists were calculated to examine distribution and concentration of payments. The Gini index ranges from 0 to 1, and the greater the Gini index is, the greater the disparity in the distribution of payments on the specialist basis, as performed previously.[14, 21, 22] Also payment distributions were geographically examined on prefectures and regions, as there were differences in number of the specialists and the medical institutions accredited by the Association.
The population-averaged generalized estimating equations (GEE) were performed to evaluate the payment trends. As the payment distribution was highly skewed (Supplemental Material 1), negative binomial GEE model for the payment values per specialist, and linear GEE log-linked model with binomial distribution for the prevalence of specialists with payments were used. The year of payments was set as independent variable, and the payment values per specialist and proportion of physicians receiving payments were set as dependent variables. The average annual changes in independent variables, payment values per specialist and prevalence of specialists with one or more payments, were reported as a relative percentage. As several pharmaceutical companies among all 92 companies disaffiliated from the JPMA and newly joined the JPMA, there were 18 companies without payment data over the four years. Thus, the average and median payments for each year and the trend of payments were calculated based on payments from all 92 companies and 74 companies with payment data for the four years between 2016 and 2019, as previously described.[3, 4, 23]

Finally, we assessed association between number of drugs with new or additional indications and (1) total payments and (2) number of specialists with payments on company level using the Spearman’s correlation.
Japanese yen (¥) was converted into US dollars ($) using 2019 average monthly exchange rates of ¥109.0 per $1. All analyses were conducted using Microsoft Excel, version 16.0 (Microsoft Corp.) and Stata version 15 (StataCorp.).

Ethical approval

The Ethics Committee of the Medical Governance Research Institute approved this study (approval number: MG2018-04-20200605; approval date: June 5, 2020). As this study was a retrospective analysis of the publicly available information, informed consent was waived by the Ethics Committee.

Results

We identified 1,614 infectious disease specialists certified by the Association as of November 10, 2021. The Association stated that there were a total of 1,622 infectious disease specialists in Japan, and therefore, names of eight specialists missing were not disclosed on the webpage, as the specialists could have wished not to disclose their names on the webpage.

Overview and Per-Specialist Payments
Of 1,614 eligible board-certified infectious disease specialists, 1,055 (65.4%) received one or more payments, totaling $17,784,070 corresponding to 21,680 payment counts between 2016 and 2019. Among 92 companies, 78 (84.8%) made at least one payment to the specialists over the four-year period. The average (standard deviation: SD) and median (interquartile range: IQR) were $16,857 ($45,010) and $3,183 ($938–$11,250) in payments; 20.5 (41.6) and 6.0 (2.0–19.0) in payment cases; and 5.6 (5.2) and 4.0 (2.0–8.0) in number of pharmaceutical companies per specialist. (Table 1)

Regarding the payment distribution, although 34.6% of specialists had no payments, 5.1% and 2.7% received more than $50,000 and $100,000, respectively. The Gini index for the four-year cumulative payments per specialist was 0.86. Top 1%, 5%, 10% and 25% of the specialists occupied 26.3% (95% confidence interval (CI): 21.4%–31.2%), 61.5% (95% CI: 57.0%–65.9%), 77.2% (95% CI: 73.9%–80.4%), and 93.6% (95% CI: 92.5%–94.7%) of total payments, respectively. (Supplemental Material 2) One specialist received a maximum of $711,965 payments over the four-year from 21 pharmaceutical companies.

Of 18 executive members of the Association as of November 2021, 17 (94.4%) had
certification of infectious disease specialists. All the 17 members with the specialist certification, including the current Association president, received more substantial payments averaging $163,792 (SD: $173,475; median: $95,551; IQR: $54,227–$207,948) than the specialists without executive board membership (p<0.001 in Mann-Whitney U test) over the four-year.

Payment trend between 2016 and 2019

The average annual payments per specialist ranged from $5,775 (SD: $13,410) in 2017 to $6,134 (SD: $15,283) in 2016, and median payments were from $1,430 (IQR: $511–4,531) in 2017 to $1,737 (IQR: $642–5,286) in 2018. The payment values per specialist remained constant, with an average annual change of -1.2% (95% CI: -4.7% □ 2.3%, p=0.49). The prevalence of specialists with payments decreased by -1.3% (95% CI: -2.9 □ 0.4, p=0.13) in each year from 47.1% (760 out of 1614) in 2016 to 44.9% (724 out of 1614) in 2019, but were not statistically significant (p=0.12).

Among 78 companies making payments, 10 companies were devoid of the four-year continuous payment data. Excluding payments from ten companies, the specialists received payments averaging from $5,562 (SD: $13,383) in 2017 to $6,105 (SD:
$13,312) in 2018. There were also no statistically significant annual changes in payments per specialist (average annual change rate: -1.3% [95% CI: -4.7 % 2.3%), p=0.48) and prevalence of specialists with payments (average annual change rate: -1.4% [95% CI: -3.1 % 0.2%], p=0.093) between 2016 and 2019. (Table 2)

Payment by pharmaceutical companies

The top companies made 63.8% of the total payments, representing $11,340,870 and 13,247 cases. (Figure 1) In company level analysis, the average and median number of specialists with payments per company were 74.9 (SD: 98.8) and 27.0 (IQR: 5.0–113.0), respectively. The average payments and number of cases per specialist were $2,333 (SD: $2,578) and 2.8 (SD: 1.9) cases, respectively. In short, each company made an average of $2,333 payments, entailing 2.8 cases per specialist, to 74.9 specialists in average for the reimbursement of lecturing, consulting and writing.

MSD made the largest payments of $2,493,244 to 460 (28.5%) specialists. Pfizer with the second largest payments distributed a total of $1,376,045 payments to 267 (16.5%) infectious specialists. The average payments per specialist were the highest from FujiFilm Toyama Chemical ($7,269), followed by MSD ($5,456), Pfizer ($5,154), Boehringer Ingelheim ($5,002), and AstraZeneca ($4,990). Payment categories by each
company were described in Supplemental Material 3. MSD also had the largest number of drugs with new and additional indications (8 drugs), followed by Daiichi Sankyo Company (5 drugs) and GlaxoSmithKline (5 drugs). (Supplemental Material 4) There were moderately positive correlations between number of new or additional indications and (1) total payments ($r(76)=0.46, p<0.001$) and (2) number of specialists with payments ($r(76)=0.43, p<0.001$).

Geographical payment distribution

There were geographical differences in distribution of infectious disease specialists. (Supplemental Material 5A and 5B) Number of infectious disease specialists per million populations ranged from 0.8 in Iwate Prefecture to 47.9 in Nagasaki Prefecture, while the average number of specialists per million was 12.7 in nationwide. There were geographic differences in total and per-specialist payment distribution as well. (Supplemental Material 5C and 5D) The average payment values per specialist were the highest in Okayama Prefecture ($21,750$) and lowest in Ibaraki Prefecture ($1,574$). In the analysis by region, the number of specialists per million populations ranged from 7.8 in the Hokkaido region (northernmost of Japan), and 8.7 in the Tohoku region (northernmost of main Japanese islands) to 20.6 in the Kyusyu region (southernmost of Japan).
Meanwhile, the average payments per specialist were the highest in Tohoku region ($15,057), followed by Chugoku (the western part of main Japanese islands, $13,980) and Kyusyu regions ($13,394).

Discussion

This study demonstrated that a total $17,717,264 personal payments, equal to 1.8% of all payments were distributed to the board-certified infectious disease specialists over the period of four years in Japan. Among all Japanese board-certified infectious disease specialists, 65.4% (1,055 out of 1,614) of the specialists received an average of $16,794 and a median of $3,183 personal payments from 78 pharmaceutical companies between 2016 and 2019. The payments per specialist and proportion of specialists with at least one payment remained stable between 2016 and 2019.

First, this study found that there were substantial financial relationships among the board-certified infectious disease specialists and pharmaceutical companies in Japan. Although the prevalence of specialists with payments were similar to the previous findings, ranging from 62.0% among hematologists to 70.6% among medical oncologists,[3, 4, 15, 23], payment values per specialist among the infectious disease
specialists ($3,183 in median four-year combined payments and $1,430–$1,720 in median single-year payments) were higher than all of the available evidence among pediatric oncologists ($2,961 in average)[23], pulmonologists ($2,210 in median)[3], hematologists ($2,471 in median)[23], and medical oncologists ($1,103 in one-year median)[15] in Japan. Overall, compared to the previous studies, Japanese infectious disease specialists have higher financial relationships with pharmaceutical companies.

Second, we found that the payment values and prevalence of specialists with payments did not significantly change between 2016 and 2019. Kusumi et al. found that the pharmaceutical companies increasingly prioritized the payments to hematologists in Japan, with a 11.2% annual increase in payments per specialist.[4] Also, similar trends were observed by Murayama et al. among Japanese pulmonologists, with 7.8% annual increase in payments.[3] Our finding was different from these studies, indicating that the financial relationships among infectious disease specialists and pharmaceutical companies did not decline nor increase, but remained stable for the last four years. Although we found that there were many drugs newly approved or gained additional indications for infectious diseases, the Japanese government now recommends physicians to refrain from using new antibiotics to prevent antimicrobial-resistant
bacteria. This trend in payments might be due to the demand for fewer use of new
antibiotics.

Furthermore, we found that vast majority of payments disproportionately concentrated
only on a small portion of the infectious disease specialists in Japan. Surprisingly, a
small portion of the specialists included authoritative specialists such as leaders of the
Association and other medical societies. For example, the specialist with the largest
payments ($711,965) was in various authoritative positions such as a full professor at a
private medical university and a very influential television commentator for infectious
disease.[11] Also, he was the current executive member of the Association and other
medical societies.
The specialist with the second-largest payments ($421,678) was also in authoritative
positions such as a full professor at a national university and an executive or council
member at several medical societies, including the Association, and the Japanese
Respiratory Society. He also served on public authorities as an author of the clinical
guidelines for COVID-19 issued by the Japanese Ministry of Health, Labor and
Welfare[7] and as a member of government scientific advisory committee.
The specialist with the fourth largest payments ($318,565) was the former president of
the Association who served from 2017 to 2020. He was also a current executive member
of the Association and the deputy chairperson of the Japanese government COVID-19
scientific advisory board, but his COI was not publicly disclosed by neither the
Association nor the Japanese government.[10]

The receipt of substantial personal payments by executive members of medical societies
was widely prevalent in Japan and other countries such as the US. Saito et al. found that
86.9% of Japanese executive members received a median of $7,486 personal payments
in 2016, and especially members specialized in internal medicine had higher financial
relationships with pharmaceutical companies.[24] Moynihan et al. elucidated that 72%
of the US influential medical society leaders had financial ties with pharmaceutical
companies,[25] and that 93% of the leaders of Infectious Diseases Society of America
received $31,805 in median total payments for six years, where the payments were the
most prevalent of ten influential medical societies in the US.[25] Although we did not
evaluate financial relationships during the tenure of the board membership, our findings
indicated that the current board members of Japanese Association for Infectious
Diseases had much larger financial relationships with pharmaceutical companies over
the past several years, with 3.2 times higher median annual payments than those among
board members of other Japanese medical societies or at least 4.5 times higher median
annual payment values than that of the Infectious Diseases Society of America.

A number of studies have shown that financial relationships with pharmaceutical
companies influence physicians' behavior in prescribing drugs,[26-30] recommending
clinical guidelines,[5, 8, 31-33] and commenting on drugs in pharmaceutical advisory
committees.[34-37] Pharmaceutical companies sometimes spend more payments for
marketing less effective and less advantageous drugs[38, 39] but with more harms to
patients.[40, 41] Despite these influences, the trends of the physicians’ acceptance of
personal payments from industries are still common[17, 42, 43] and are even increasing
in several specialties.[3, 4, 23, 44] More transparency is required to reduce the undue
influences of financial relationships with pharmaceutical companies on physician
behaviors and potentially patients care,[28, 45] to increase trust in healthcare, and to
provide patients with more information about their treatment.[46-49] However, there is
no consensus on how to manage the financial relationships, and how to increase
independency of healthcare professionals toward their primary interest of treating
patients based on their best knowledge and conscience.[50] Restriction of these personal
payments to the specialists to a certain degree would be a simple and reasonable
solution, but it is equally hard to implement by the professional medical societies when many of the society board members and societies themselves are financially tied to pharmaceutical companies. In the case of the Association, financial COIs self-declared by the board members were not publicly disclosed, and there was no restriction of the financial relationships among pharmaceutical companies and the board-certified specialists as of now.

This analysis has few limitations. As we previously noted, our manual collection of payment data from 92 pharmaceutical companies’ webpages might have included unavoidable human errors, despite our careful cross-checks to exclude duplicate physicians from the data. Second, currently, pharmaceutical companies do not disclose their payments concerning meals, beverages, accommodations, travel and stock ownerships, according to the JPMA guidance. This could have underestimated the extent and prevalence of overall financial relationships among the specialists and industries. Third, the data disclosed by the Association and pharmaceutical companies did not provide us many of detailed demographics of the specialists such as the specialists’ gender, affiliation characteristics, positions within their affiliations, and their academic and clinical performances. Therefore, there would have been influence of
many unavoidable confounders on the personal payments at individual specialist level. However, our robust statistical analysis with GEE modeling has helped nullify effects of such confounders to some extent. Still, further studies should have elucidated the relations among the specialists’ characteristics and the personal payments. Finally, this study was based on the open-access payment data and Japanese board-certified infectious disease specialists. Thus, the payment magnitude and trend may not be exactly replicable to other countries’ specialists. However, this might serve as a pathway for prospective researchers to explore the same in other countries as well.

Conclusion

The majority of the certified infectious disease specialists received substantial personal payments for the reimbursements of lecturing, consulting and writing from the pharmaceutical companies in Japan. These financial relationships with those companies remained stable for the past four years in Japan. Furthermore, high ranked specialists such as those in the executive board had stronger financial ties with the companies. Such personal payments must be restricted to a certain level to avoid potential conflict of interest.
Acknowledgment

The authors thank the Tansa (formerly known as Waseda Chronicle) for providing payment data. Also, we appreciate Mr. Souto Nagano, an undergraduate student from the Faculty of Letters, University of Tokyo; Mr. Kohki Yamada, a medical student at the Osaka University School of Medicine; Mr. Takuto Sakaemura, an undergraduate student from Faculty of Applied Science, Simon Fraser University; and Ms. Megumi Aizawa, a graduate student from the Department of Industrial Engineering and Economics, School of Engineering, Tokyo Institute of Technology, for their dedicated contributions on collecting and cross-checking the payment data.

References

34. Arthur W, Austin J, Wayant C, Vassar M. Association of Conflicts of Interest for Public Speakers
30.

for the Peripheral and Central Nervous System Drugs Advisory Committee of the US Food and

Conflicts of Interest of Speakers at the US Food and Drug Administration’s Pulmonary-Allergy

Speakers at US Food and Drug Administration’s Bone, Reproductive, and Urologic Drugs

37. Cooper CM, Jellison S, Vassar M. Characteristics of Open Public Hearing Speakers of the
Tobacco Products Scientific Advisory Committee meetings. Tob Prev Cessat 2018; 4: 35-.

38. Greenway T, Ross JS. US drug marketing: how does promotion correspond with health value?
Bmj 2017; 357: j1855.

39. Lexchin J. The relation between promotional spending on drugs and their therapeutic gain: a

40. Eichacker PQ, Natanson C, Danner RL. Surviving Sepsis — Practice Guidelines, Marketing

41. Mitchell AP, Winn AN, Dusetzina SB. Pharmaceutical Industry Payments and Oncologists'
Selection of Targeted Cancer Therapies in Medicare Beneficiaries. JAMA Intern Med 2018;

43. Ahlawat A, Narayanaswami P. Financial relationships between neurologists and industry.
Neurology 2019; 92(21): 1006.

44. Putman MS, Goldsher JE, Crowson CS, Duarte-García A. Industry Payments to Practicing US

Management of Financial Conflicts of Interest Between Pharma and Healthcare Sectors? Clin
Pharmacol Ther 2020.

48. Kanter GP, Carpenter D, Lehmann L, Mello MM. Effect of the public disclosure of industry
payments information on patients: results from a population-based natural experiment. BMJ

49. Stein GE, Kamlor JJ, Chang JS. Ophthalmology Patient Perceptions of Open Payments
Table 1. Summary of personal payments from Japanese pharmaceutical companies to infectious disease specialists certified by the Japanese Association for Infectious Disease between 2016 and 2019

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Average per specialist (SD)</th>
<th>Median per specialist (IQR)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payment values, US$</td>
<td>17,784,070</td>
<td>16,857 (45,010)</td>
<td>3,183 (938,11,250)</td>
<td>31,711,965</td>
</tr>
<tr>
<td>Cases, n</td>
<td>21,680</td>
<td>20.5 (41.6)</td>
<td>6.0 (2.0, 19.0)</td>
<td>1.0, 538.0</td>
</tr>
<tr>
<td>Companies, n</td>
<td>78</td>
<td>5.6 (5.2)</td>
<td>4.0 (2.0, 8.0)</td>
<td>1.0, 29.0</td>
</tr>
<tr>
<td>Physicians with specific payments, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any payments</td>
<td>1,055 (65.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$500</td>
<td>930 (57.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$1,000</td>
<td>776 (48.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$5,000</td>
<td>419 (26.0%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$10,000</td>
<td>290 (18.0%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$50,000</td>
<td>82 (5.1%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payments >US$100,000</td>
<td>43 (2.7%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gini index</td>
<td>0.857</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category of payments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment value, US$ (%)</td>
<td>14,607,478 (82.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases, n (%)</td>
<td>18,078 (83.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consulting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment value, US$ (%)</td>
<td>1,981,003 (11.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases, n (%)</td>
<td>2,122 (9.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment value, US$ (%)</td>
<td>797,929 (4.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases, n (%)</td>
<td>1,086 (5.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment value, US$ (%)</td>
<td>397,659 (2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases, n (%)</td>
<td>459 (2.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Trends of personal payments from Japanese pharmaceutical companies to infectious disease specialists certified by the Japanese Association for Infectious Disease between 2016 and 2019

<table>
<thead>
<tr>
<th>Variables</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>Average yearly change (95%CI), %</th>
<th>p-value</th>
<th>Combined total</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pharmaceutical companies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total payments, US$</td>
<td>4,662,217</td>
<td>4,215,566</td>
<td>4,538,520</td>
<td>4,367,767</td>
<td>□</td>
<td>□</td>
<td>17,784,070</td>
</tr>
<tr>
<td>Average payments (SD), US$</td>
<td>6,134 (15,283)</td>
<td>5,775 (13,410)</td>
<td>6,108 (13,324)</td>
<td>6,033 (11,837)</td>
<td>-1.2 (-4.7 to 2.3)</td>
<td>0.49</td>
<td>16,857 (45,010)</td>
</tr>
<tr>
<td>Median payments (IQR), US$</td>
<td>1,604 (511-4,646)</td>
<td>1,430 (511-4,531)</td>
<td>1,737 (642-5,286)</td>
<td>1,554 (662-5,258)</td>
<td>3.183 (938-11,250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment range, US$</td>
<td>92,821,035</td>
<td>92,821,035</td>
<td>95,190,726</td>
<td>91,144,593</td>
<td>□</td>
<td>□</td>
<td>317,119,965</td>
</tr>
<tr>
<td>Physicians with specific payments, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any payments</td>
<td>760 (47.1%)</td>
<td>730 (45.2%)</td>
<td>743 (46.0%)</td>
<td>724 (44.9%)</td>
<td>-1.3 (-2.9 to 0.4)</td>
<td>0.13</td>
<td>1,055 (65.4%)</td>
</tr>
<tr>
<td>Payments > US$500</td>
<td>612 (37.9%)</td>
<td>594 (36.8%)</td>
<td>628 (38.9%)</td>
<td>616 (38.2%)</td>
<td>0.8 (-1.1 to 2.6)</td>
<td>0.43</td>
<td>930 (57.6%)</td>
</tr>
<tr>
<td>Payments > US$1,000</td>
<td>482 (29.9%)</td>
<td>436 (27.0%)</td>
<td>485 (30.0%)</td>
<td>453 (28.1%)</td>
<td>-0.8 (-2.9 to 1.3)</td>
<td>0.45</td>
<td>776 (48.1%)</td>
</tr>
<tr>
<td>Payments > US$5,000</td>
<td>175 (10.8%)</td>
<td>178 (11.0%)</td>
<td>193 (12.0%)</td>
<td>187 (11.6%)</td>
<td>2.8 (-0.8 to 6.5)</td>
<td>0.13</td>
<td>419 (26.0%)</td>
</tr>
<tr>
<td>Payments > US$10,000</td>
<td>106 (6.6%)</td>
<td>94 (5.8%)</td>
<td>113 (7.0%)</td>
<td>103 (6.4%)</td>
<td>1.0 (-3.6 to 5.7)</td>
<td>0.68</td>
<td>290 (18.0%)</td>
</tr>
<tr>
<td>Payments > US$50,000</td>
<td>16 (1.0%)</td>
<td>14 (0.9%)</td>
<td>17 (1.1%)</td>
<td>14 (0.9%)</td>
<td>-1.9 (-15.9 to 14.5)</td>
<td>0.80</td>
<td>82 (5.1%)</td>
</tr>
<tr>
<td>Payments > US$100,000</td>
<td>4 (0.2%)</td>
<td>3 (0.2%)</td>
<td>1 (0.1%)</td>
<td>2 (0.1%)</td>
<td>-2.8 (-52.4 to 8.1)</td>
<td>0.11</td>
<td>43 (2.7%)</td>
</tr>
<tr>
<td>Gini index</td>
<td>0.878</td>
<td>0.881</td>
<td>0.870</td>
<td>0.876</td>
<td>□</td>
<td>□</td>
<td>0.860</td>
</tr>
</tbody>
</table>

Pharmaceutical companies with four-year payment data

<table>
<thead>
<tr>
<th>Variables</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>Average yearly change (95%CI), %</th>
<th>p-value</th>
<th>Combined total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total payments, US$</td>
<td>4,597,653</td>
<td>4,205,920</td>
<td>4,492,988</td>
<td>4,314,421</td>
<td>-1.3 (-4.7 to 2.3)</td>
<td>0.48</td>
<td>16,710,982</td>
</tr>
<tr>
<td>Average payments (SD), US$</td>
<td>6,074 (15,169)</td>
<td>5,562 (13,383)</td>
<td>6,105 (13,312)</td>
<td>5,992 (12,825)</td>
<td>-1.3 (-4.7 to 2.3)</td>
<td>0.48</td>
<td>16,710,982</td>
</tr>
<tr>
<td>Median payments (IQR), US$</td>
<td>1,603 (511-4,642)</td>
<td>1,430 (511-4,531)</td>
<td>1,737 (642-5,286)</td>
<td>1,554 (662-5,258)</td>
<td>3.183 (938-11,250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payment range, US$</td>
<td>92,821,089</td>
<td>92,821,035</td>
<td>95,190,726</td>
<td>91,144,593</td>
<td>□</td>
<td>□</td>
<td>317,099,997</td>
</tr>
<tr>
<td>Physicians with specific payments, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any payments</td>
<td>757 (46.9%)</td>
<td>730 (45.3%)</td>
<td>736 (45.6%)</td>
<td>720 (44.6%)</td>
<td>-1.4 (-3.1 to 0.2)</td>
<td>0.093</td>
<td>1,049 (65.0%)</td>
</tr>
<tr>
<td>Payments > US$500</td>
<td>609 (37.7%)</td>
<td>593 (36.7%)</td>
<td>620 (38.4%)</td>
<td>610 (37.8%)</td>
<td>0.5 (-1.4 to 2.4)</td>
<td>0.60</td>
<td>927 (57.4%)</td>
</tr>
<tr>
<td>Payments > US$1,000</td>
<td>478 (29.6%)</td>
<td>436 (27.0%)</td>
<td>481 (29.8%)</td>
<td>452 (28.0%)</td>
<td>-0.7 (-2.8 to 1.4)</td>
<td>0.51</td>
<td>768 (47.6%)</td>
</tr>
<tr>
<td>Payments > US$5,000</td>
<td>172 (10.7%)</td>
<td>179 (11.1%)</td>
<td>191 (11.8%)</td>
<td>186 (11.5%)</td>
<td>3.1 (-0.6 to 6.8)</td>
<td>0.10</td>
<td>415 (25.7%)</td>
</tr>
<tr>
<td>Payments > US$10,000</td>
<td>106 (6.6%)</td>
<td>94 (5.8%)</td>
<td>112 (7.1%)</td>
<td>103 (6.4%)</td>
<td>0.9 (-3.7 to 5.6)</td>
<td>0.71</td>
<td>289 (17.9%)</td>
</tr>
<tr>
<td>Payments > US$50,000</td>
<td>14 (0.9%)</td>
<td>14 (0.9%)</td>
<td>17 (1.1%)</td>
<td>14 (0.9%)</td>
<td>0.0 (-13.7 to 15.9)</td>
<td>1.0</td>
<td>82 (5.1%)</td>
</tr>
<tr>
<td>Payments >US$100,000</td>
<td>Gini index</td>
<td>IQR: interquartile range</td>
<td>SD: standard deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (0.2)</td>
<td>0.659</td>
<td>2 (0.1)</td>
<td>0.616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (0.2)</td>
<td>0.811</td>
<td>1 (0.1)</td>
<td>0.371</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (0.1)</td>
<td>0.569</td>
<td>-28.3 (-52.4 / 8.1)</td>
<td>0.860</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IQR: interquartile range; SD: standard deviation
<table>
<thead>
<tr>
<th>Company</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSD</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Pfizer</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Daiichi Sankyo</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Astellas Pharma</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Boehringer Ingelheim</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>Teisho Pharma</td>
<td>300</td>
<td>350</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Kyorin Pharmaceutical</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Sumitomo Dainippon Pharma</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>Shionogi</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

Figure 1. Total payment by company
Supplemental Material 1. Distribution of payment values per specialist

![Distribution of payment values per specialist](image-url)
Supplemental Material 2. Payment concentration

![Graph showing cumulative percent of total payments against percent of infectious disease specialists.](image-url)
Supplemental Material 3. Payment category by company
Supplemental Material 4. New and additional indications for infectious diseases in Japan between 2015 and 2019

<table>
<thead>
<tr>
<th>Brand name</th>
<th>Name</th>
<th>Pharmaceutical companies</th>
<th>Approval date</th>
<th>Price per drug unit, US$*</th>
<th>Indication</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZERBAXA</td>
<td>Ceftolozane sulfate/Tazobactam sodium</td>
<td>Manufacturer and distributor: MSD K. K</td>
<td>December 20, 2019</td>
<td>$59 (1.5g/bottle)</td>
<td>Treatment of sepsis and pneumonia caused by Serratia and Haemophilus influenzae</td>
<td>New approval</td>
</tr>
<tr>
<td>LASVIC</td>
<td>Lascufloxacin hydrochloride</td>
<td>Manufacturer and distributor: Kyorin Pharmaceuticals</td>
<td>September 20, 2019</td>
<td>$3 (75mg/pill) $37 (150mg/ intravenous infusion kit)</td>
<td>Treatment of laryngopharyngitis, tonsillitis, acute bronchitis, pneumonia, secondary infection of chronic respiratory disease, otitis media and sinusitis</td>
<td>Additional indication</td>
</tr>
<tr>
<td>MAVIRET</td>
<td>Glecaprevir hydrate/Pibrentasvir</td>
<td>Manufacturer and distributor: AbbVie GK</td>
<td>August 22, 2019</td>
<td>$168/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C</td>
<td>Additional indication</td>
</tr>
<tr>
<td>AZIMYCIN</td>
<td>Azithromycin hydrate</td>
<td>Manufacturer and distributor: Senju Pharmaceuticals</td>
<td>June 18, 2019</td>
<td>$3 (1ml eye-drops)</td>
<td>Treatment of conjunctivitis, blepharitis, hordeolum and dacryocystitis</td>
<td>New approval</td>
</tr>
<tr>
<td>SYMTUZA</td>
<td>Darunavir ethanolate/Cobicistat /Emtricitabine/Tenofovir alafenamide fumarate</td>
<td>Manufacturer and distributor: Janssen Pharmaceutical K. K</td>
<td>June 18, 2019</td>
<td>$44/pill</td>
<td>Treatment of HIV-1 infection</td>
<td>New approval</td>
</tr>
<tr>
<td>INAVIR</td>
<td>Laninamivir octanoate hydrate</td>
<td>Manufacturer and distributor: Daiichi Sankyo</td>
<td>June 18, 2019</td>
<td>$20 (20mg/inhalation kit) $39 (160mg/bottle)</td>
<td>Treatment of influenza A or B virus infection</td>
<td>New approval</td>
</tr>
<tr>
<td>GENVOYA</td>
<td>Elvitegravir/Cobicistat /Emtricitabine/Tenofovir alafenamide fumarate</td>
<td>Manufacturer and distributor: Gilead Sciences</td>
<td>May 22, 2019</td>
<td>$65/pill</td>
<td>Treatment of HIV-1 infection</td>
<td>Additional indication</td>
</tr>
<tr>
<td>BIKTARVY</td>
<td>Bictegravir sodium/ Emtricitabine/Tenofovir alafenamide fumarate</td>
<td>Manufacturer and distributor: Gilead Sciences</td>
<td>March 26, 2019</td>
<td>$65/pill</td>
<td>Treatment of HIV-1 infection</td>
<td>New approval</td>
</tr>
<tr>
<td>ZERBAXA</td>
<td>Ceftolozane sulfate/Tazobactam sodium</td>
<td>Manufacturer and distributor: MSD K. K</td>
<td>January 8, 2019</td>
<td>$59 (1.5g/bottle)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C who have been previously treated. Improvement of viremia in patients with decompensated cirrhosis type C</td>
<td>New approval</td>
</tr>
<tr>
<td>EPCLUSA</td>
<td>Sofosbuvir/Velpatasvir</td>
<td>Manufacturer and distributor: Gilead Sciences</td>
<td>January 8, 2019</td>
<td>$562/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C who have previously been treated. Improvement of viremia in patients with decompensated cirrhosis type C</td>
<td>New approval</td>
</tr>
<tr>
<td>REBETROL</td>
<td>Ribavirin</td>
<td>Manufacturer and distributor: ViV Healthcare</td>
<td>January 8, 2019</td>
<td>$4 (200mg)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C who have previously been treated</td>
<td>Additional indication</td>
</tr>
<tr>
<td>JULUCA</td>
<td>Dolutegravir sodium/Rilpivirine hydrochloride</td>
<td>Manufacturer and distributor: ViV Healthcare</td>
<td>November 26, 2018</td>
<td>$50/pill</td>
<td>Treatment of HIV-1 infection</td>
<td>New approval</td>
</tr>
<tr>
<td>Medicine</td>
<td>Description</td>
<td>Manufacturer and distributor</td>
<td>Date</td>
<td>Price</td>
<td>Indication</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>------</td>
<td>-------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>ODEFSEY</td>
<td>Rilpivirine hydrochloride/Emtricitabine/Tenofovir alafenamide fumarate</td>
<td>Janssen Pharmaceutical K. K</td>
<td>August 21, 2018</td>
<td>$56/pill</td>
<td>Treatment of HIV-1 infection</td>
<td></td>
</tr>
<tr>
<td>ISENTRESS</td>
<td>Raltegravir potassium</td>
<td>MSD K. K</td>
<td>May 14, 2018</td>
<td>$15 (400mg/pill) $15 (600mg/pill)</td>
<td>Treatment of HIV infection</td>
<td></td>
</tr>
<tr>
<td>KAKETSUKEN</td>
<td>Emulsion-adjuvanted cell-culture derived influenza HA vaccine (H5N1)</td>
<td>The Chemo-Sero-Therapeutic Research Institute</td>
<td>March 23, 2018</td>
<td>NA</td>
<td>Prevention of pandemic influenza (H5N1)</td>
<td></td>
</tr>
<tr>
<td>XOFUZA</td>
<td>Baloxavir marboxil</td>
<td>Shionogi</td>
<td>February 23, 2018</td>
<td>$14 (10mg/pill) $22 (20mg/pill)</td>
<td>Treatment of influenza A or B virus infections</td>
<td></td>
</tr>
<tr>
<td>HARVONI</td>
<td>Ledipasvir acetonate/Sofosbuvir</td>
<td>Gilead Sciences</td>
<td>February 16, 2018</td>
<td>$509/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 2</td>
<td></td>
</tr>
<tr>
<td>ZINPLAVA</td>
<td>Bezlotoxumab</td>
<td>MSD K. K</td>
<td>September 27, 2017</td>
<td>$3081 (625mg/25ml bottle)</td>
<td>Prevention of recurrent Clostridium difficile infection</td>
<td></td>
</tr>
<tr>
<td>MAVIRET</td>
<td>Glecaprevir hydrate/Pibrentasvir</td>
<td>AbbVie GK</td>
<td>September 27, 2017</td>
<td>$168/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C</td>
<td></td>
</tr>
<tr>
<td>TAMIFLU</td>
<td>Oseltamivir phosphate</td>
<td>Chugai Pharmaceutical</td>
<td>March 24, 2017</td>
<td>$2 (75mg/pill) $2 (3%/g dry syrup)</td>
<td>Treatment of influenza A or B virus infection</td>
<td></td>
</tr>
<tr>
<td>SOVALDI</td>
<td>Sofosbuvir</td>
<td>Gilead Sciences</td>
<td>March 24, 2017</td>
<td>$395 (400mg/pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in neither Serogroup 1 (genotype 1) nor Serogroup 2 (genotype 2)</td>
<td></td>
</tr>
<tr>
<td>REBETOL</td>
<td>Ribavirin</td>
<td>MSD K. K</td>
<td>March 24, 2017</td>
<td>$4 (200mg/pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in neither Serogroup 1 (genotype 1) nor Serogroup 2 (genotype 2)</td>
<td></td>
</tr>
<tr>
<td>OZEX</td>
<td>Tosufloxacin tosylate hydrate</td>
<td>Fujifilm Toyama Chemical</td>
<td>March 2, 2017</td>
<td>$1.1 (60mg/pill) $0.5 (75mg/pill) $0.6 (150mg/pill) $1.2 (0.3%/ml eye-drops)</td>
<td>Treatment of mycoplasma pneumonia caused by Mycoplasma pneumoniae</td>
<td></td>
</tr>
<tr>
<td>RIAMET</td>
<td>Artemether/Lumefantrine</td>
<td>Novartis Pharma K. K</td>
<td>December 19, 2016</td>
<td>$2/pill</td>
<td>Treatment of malaria</td>
<td></td>
</tr>
<tr>
<td>VAXEM HIB</td>
<td>Hemophilus influenzae type b vaccine adsorbed</td>
<td>Takada Pharmaceutical</td>
<td>December 19, 2016</td>
<td>NA</td>
<td>Prophylaxis of Hemophilus influenzae type b infections</td>
<td></td>
</tr>
<tr>
<td>XIMENCY</td>
<td>Daclatasvir hydrochloride/Asunaprevir/Beclabuvir hydrochloride</td>
<td>Bristol Myers Squibb</td>
<td>December 19, 2016</td>
<td>$99/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td></td>
</tr>
<tr>
<td>Drug Name</td>
<td>Active Ingredients</td>
<td>Manufacturer and distributor</td>
<td>Date</td>
<td>Price (Unit)</td>
<td>Approval Details</td>
<td>Status</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>DESCOVY</td>
<td>Emtricitabine/ Tenofovir alafenamide fumarate</td>
<td>Gilead Sciences</td>
<td>December 9, 2016</td>
<td>$26/pill (LT) $37/pill (HT) $19</td>
<td>Treatment of HIV-1 infection</td>
<td>New approval</td>
</tr>
<tr>
<td>PREZCOBIX</td>
<td>Darunavir ethanolate/ Cobicistat</td>
<td>Janssen Pharmaceutical K. K</td>
<td>November 22, 2016</td>
<td>$223 (50mg/pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td>New approval</td>
</tr>
<tr>
<td>ERELSA</td>
<td>Elbasvir</td>
<td>MSD K. K</td>
<td>September 28, 2016</td>
<td>$4 (200mg/capsule)</td>
<td>Improvement of viremia in patients with chronic hepatitis C in serogroup 2</td>
<td>Additional indication</td>
</tr>
<tr>
<td>VIEKIRAX</td>
<td>Ombitasvir hydrate/ Paritaprevir hydrate/ Ritonavir</td>
<td>AbbVie GK</td>
<td>September 28, 2016</td>
<td>$204/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C in serogroup 2 (genotype 2)</td>
<td>Additional indication</td>
</tr>
<tr>
<td>GRAZYNA</td>
<td>Grazoprevir hydrate</td>
<td>MSD K. K</td>
<td>September 28, 2016</td>
<td>$80 (50mg/pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td>New approval</td>
</tr>
<tr>
<td>REBETOL</td>
<td>Ribavirin</td>
<td>MSD K. K</td>
<td>September 28, 2016</td>
<td>$4 (200mg/capsule)</td>
<td>Improvement of viremia in patients with chronic hepatitis C in serogroup 2</td>
<td>Additional indication</td>
</tr>
<tr>
<td>INAVIR</td>
<td>Laninamivir octanoate hydrate</td>
<td>Daiichi Sankyo</td>
<td>August 26, 2016</td>
<td>$20 (20mg/inhalation kit) $39 (160mg/bottle)</td>
<td>Prophylaxis of influenza A or B virus infections</td>
<td>Additional indication</td>
</tr>
<tr>
<td>GENVOYA</td>
<td>Elvitegravir/Cobicistat/ Emtricitabine/Tenofovir alafenamide fumarate</td>
<td>Gilead Sciences</td>
<td>June 17, 2016</td>
<td>$65/pill</td>
<td>Treatment of HIV-1 infection</td>
<td>New approval</td>
</tr>
<tr>
<td>MALARONE</td>
<td>Atovaquone/Proguanil hydrochloride</td>
<td>GlaxoSmithKline K. K</td>
<td>March 28, 2016</td>
<td>$5/pill (adult) $2/pill (children)</td>
<td>Treatment and prevention of malaria</td>
<td>Additional indication</td>
</tr>
<tr>
<td>PRIMAQUINE</td>
<td>Primaquine phosphate</td>
<td>Sanofi S.A.</td>
<td>March 28, 2016</td>
<td>$21 (15mg/pill)</td>
<td>Treatment of malaria caused by Plasmodium vivax and P. ovale</td>
<td>New approval</td>
</tr>
<tr>
<td>BIKEN</td>
<td>Freeze-dried live attenuated varicella vaccine</td>
<td>The Research Foundation for Microbial Diseases of Osaka University</td>
<td>March 18, 2016</td>
<td>NA</td>
<td>Prevention of herpes zoster in individuals 50 years of age and older</td>
<td>Additional indication</td>
</tr>
<tr>
<td>KITASATO DAIIICHI SANKYO</td>
<td>Adsorbed cell culture-derived influenza vaccine (H5N1)</td>
<td>Daiichi Sankyo Distributor: Kitasato Pharmaceutical Industry</td>
<td>March 18, 2016</td>
<td>NA</td>
<td>Prevention of pandemic influenza (H5N1)</td>
<td>Additional indication</td>
</tr>
<tr>
<td>TRIBIK</td>
<td>Adsorbed diphtheria-purified pertussis-tetanus combined vaccine</td>
<td>The Research Foundation for Microbial Diseases of Osaka University Distributor: Mitsubishi Tanabe Pharma Corporation</td>
<td>February 29, 2016</td>
<td>NA</td>
<td>Prevention of pertussis, diphtheria and tetanus</td>
<td>Additional indication</td>
</tr>
<tr>
<td>VAXEM HIB</td>
<td>Hemophilus influenzae type b</td>
<td>Mitsubishi Tanabe Pharma Corporation</td>
<td>January 22, 2016</td>
<td>NA</td>
<td>Prophylaxis of Hemophilus influenzae type b</td>
<td>New approval</td>
</tr>
<tr>
<td>Vaccine Absorbed</td>
<td>Manufacturer and Distributor</td>
<td>Year</td>
<td>Price</td>
<td>Indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMICADE Infliximab</td>
<td>Takeda Pharmaceutical</td>
<td>2016</td>
<td>$648 (100mg bottle)</td>
<td>Treatment of acute-phase Kawasaki's disease in patients who have not responded sufficiently to conventional therapies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIEKIRAX Ombitasvir hydrate/Paritaprevir hydrate/Ritonavir</td>
<td>Manufacturer and distributor: AbbVie GK</td>
<td>September 28, 2015</td>
<td>$204/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIPROXAN Ciprofloxacin</td>
<td>Manufacturer and distributor: Bayer Yakuhin</td>
<td>September 24, 2015</td>
<td>$0.3 (100mg/pill)</td>
<td>Treatment of sepsis, pneumonia, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARVONI Ledipasvir acetonate/Sofosbuvir</td>
<td>Manufacturer and distributor: Gilead Sciences</td>
<td>July 3, 2015</td>
<td>$509/pill</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIFLUCAN Fluconazole</td>
<td>Manufacturer and distributor: Pfizer</td>
<td>May 26, 2015</td>
<td>$3 (50mg capsule)</td>
<td>Treatment of vaginitis and vulvovaginitis caused by Candida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALDREB Colistin sodium methanesulfonate</td>
<td>Manufacturer and distributor: GlaxoSmithKline K. K</td>
<td>March 26, 2015</td>
<td>$77 (150mg bottle)</td>
<td>Treatment of infections caused by colistin-sensitive Escherichia coli, Citrobacter, Klebsiella, Enterobacter, Pseudomonas aeruginosa and Acinetobacter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNFLORIX Pneumococcal 10-valent conjugate vaccine adsorbed</td>
<td>Manufacturer: GlaxoSmithKline K. K</td>
<td>March 26, 2015</td>
<td>NA</td>
<td>Prophylaxis of pneumonia and pneumococcal invasive diseases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAKETSUKEN Cell culture-derived influenza emulsion HA vaccines (prototype)</td>
<td>Manufacturer and distributor: The Chemo-Sero-Therapeutic Research Institute</td>
<td>March 26, 2015</td>
<td>NA</td>
<td>Prevention of pandemic influenza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOVALDI Sofosbuvir</td>
<td>Manufacturer and distributor: Gilead Sciences</td>
<td>March 26, 2015</td>
<td>$395 (400mg pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 2 (genotype 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPEGUS Ribavirin</td>
<td>Manufacturer and distributor: Chugai Pharmaceutical</td>
<td>March 26, 2015</td>
<td>$6 (200mg/pill)</td>
<td>Improvement of viremia in patients with the concomitant use of sofosbuvir in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 2 (genotype 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAKLINZA Daclatasvir hydrochloride</td>
<td>Manufacturer and distributor: Bristol Myers Squibb</td>
<td>March 20, 2015</td>
<td>$74 (60mg/pill)</td>
<td>Improvement of viremia in patients with chronic hepatitis C or compensated cirrhosis type C in serogroup 1 (genotype 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIUMEQ Dolutegravir sodium, Abacavir sulfate, Lamivudine</td>
<td>Manufacturer and distributor: ViIV Healthcare</td>
<td>March 16, 2015</td>
<td>$64/pill</td>
<td>Treatment of HIV infection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Information:
- The prices listed are for the indicated formulations and may vary by region.
- Some vaccines have additional indications beyond the primary listed use.
- The table includes both new approval and additional indication approvals for each vaccine.

Note: This list is not exhaustive and is based on the provided information.
| VENOGLOBULIN | Polyethylene glycol treated human normal immunoglobulin | Manufacturer and distributor: Japan Blood Products Organization | February 2, 2015 | $347 (5g/100ml bottle) $702 (10g/200ml bottle) | Prevention of acute otitis media, acute bronchitis, or pneumonia caused by Pneumococcus or Hemophilus influenzae in patients associated with a decrease in serum IgG2 levels | Additional indication |

*Price per drug was converted into US dollars using the 2019 average monthly exchange rates of ¥109.0 per $1.

Price per drug was used as of February 19, 2022.

Drug price for vaccines was not determined and was open priced in Japan. So, it was not available.
Supplemental Material 5. Geographical characteristics of payment distribution
5A: The number of infectious disease specialists in 2021; 5B: The number of infectious disease specialists per million population in 2021; 5C: total personal payment values to the infectious disease specialists from 2016 to 2019; 5D: average personal payment values per infectious disease specialist from 2016 to 2019