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Abstract: 14 

Background: Atherosclerosis (AS)-associated cardiovascular disease is an important cause of mortality 15 

in an aging population of people living with HIV (PLWH). This elevated risk of atherosclerosis has been 16 

attributed to viral infection, prolonged usage of anti-retroviral therapy, and subsequent chronic 17 

inflammation.  18 

Methods: To investigate dysregulated immune signaling in PLWH with and without AS, we sequenced 19 

9368 peripheral blood mononuclear cells (PBMCs) from 8 PLWH, 4 of whom also had atherosclerosis 20 

(AS+).  To develop executable models of signaling pathways that drive cellular states in HIV-associated 21 

atherosclerosis, we developed the single-cell Boolean Omics Network Invariant Time Analysis 22 
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(scBONITA) algorithm. ScBONITA (a) uses single-cell RNA sequencing data to infer Boolean rules for 23 

topologically characterized networks, (b) prioritizes genes based on their impact on signaling, (c) 24 

performs pathway analysis, and (d) maps sequenced cells to characteristic signaling states. We used 25 

scBONITA to identify dysregulated pathways in different cell-types from AS+ PLWH and AS- PLWH. 26 

To compare our findings with pathways associated with HIV infection, we used scBONITA to analyze a 27 

publicly available dataset of PBMCs from subjects before and after HIV infection. Additionally, the 28 

executable Boolean models characterized by scBONITA were used to analyze observed cellular states 29 

corresponding to the steady states of signaling pathways 30 

Results: We identified an increased subpopulation of CD8+ T cells and a decreased subpopulation of 31 

monocytes in AS+ PLWH. Dynamic modeling of signaling pathways and pathway analysis with 32 

scBONITA provided a new perspective on the mechanisms of HIV-associated atherosclerosis. Lipid 33 

metabolism and cell migration pathways are induced by AS rather than by HIV infection. These pathways 34 

included AGE-RAGE and PI3K-AKT signaling in CD8+ T cells, and glucagon and cAMP signaling 35 

pathways in monocytes. Further analysis of other cell subpopulations suggests that the highly 36 

interconnected PI3K-AKT signaling pathway drives cell migratory state in response to dyslipidemia. 37 

scBONITA attractor analysis mapped cells to pathway-specific signaling states that correspond to distinct 38 

cellular states.  39 

Conclusions: Dynamic network modeling and pathway analysis with scBONITA indicates that 40 

dysregulated lipid signaling regulates cell migration into the vascular endothelium in AS+ PLWH. 41 

Attractor analysis with scBONITA facilitated pathway-based characterization of cellular states that are 42 

not apparent in gene expression analyses. 43 

Keywords: single-cell RNA sequencing; Boolean networks; HIV; atherosclerosis; pathway analysis; 44 

network modeling 45 
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Background 46 

Human immunodeficiency virus (HIV) infection greatly increases the risk of atherosclerosis (AS) 47 

associated cardiovascular disease (CVD), which is a leading cause of morbidity and mortality in persons 48 

living with HIV (PLWH) (1-4). Several factors contribute to this elevated risk of AS. PLWH have a 49 

higher prevalence of traditional risk factors for AS such as dyslipidemia, diabetes, hypertension, and 50 

smoking (5-9). In addition, the off-target effects of certain classes of antiretroviral drugs lead to an 51 

increase in traditional metabolic risk factors such as dyslipidemia, weight gain, and metabolic syndrome 52 

(9, 10). However, PLWH have an elevated risk of developing CVD even when controlling for these risk 53 

factors (4, 11, 12). Finally, HIV infection itself causes metabolic changes leading to a pro-atherogenic 54 

inflammatory environment in the vasculature (13-16).  55 

HIV infection and long-term antiretroviral therapy modulate signaling dynamics, leading to changes in 56 

the composition of peripheral blood mononuclear cells (PBMCs) and in the expression of functionally 57 

important molecules in these cells (17). HIV infection mediates an array of molecular signaling pathways, 58 

including inflammasome activation, cell migration and apoptosis. These signaling pathways contribute to 59 

immune cell activation and inflammation in the vasculature (18). Biomarker studies also highlight the 60 

importance of these processes in atherogenesis, especially in the context of activated 61 

monocyte/macrophages and T cells (14-16). CD8+ T cells contribute to the atherogenic environment by 62 

cytokine secretion, secretion of cytotoxic granules and formation of the necrotic core of atherosclerotic 63 

plaques (reviewed in (19)). Monocyte/macrophages migrate into the intima and eventually form 64 

apoptotic, atherosclerotic plaques (reviewed in (20)). The interplay between immune signaling pathways 65 

and immune cell activation and inflammation in the context of HIV infection still requires further 66 

investigation. Single-cell measurements of expression profiles allow the investigation of these 67 

perturbations simultaneously. To investigate the mechanistic link between HIV infection and 68 

atherosclerosis, we used the 10X Genomics platform to sequence ~10,000 PBMCs from 8 PLWH, 4 of 69 

whom have atherosclerosis.  70 
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Typically, analysis of single cell RNA sequencing (scRNA-seq) data uses clustering methods to define 71 

cell subpopulations, followed by differential expression and gene set overrepresentation analysis (ORA) 72 

to estimate modulation of molecular pathways in the condition under study. This standard analysis 73 

approach discounts pathway topology and falls short of connecting molecular state to cellular state. 74 

Furthermore, ORA ignores synergistic interactions among genes by, in effect, treating genes as 75 

independent and equal, resulting in a failure to correctly estimate the significance of pathways (21).  76 

Discrete-state network modeling facilitates prioritization of experiments by using simple logic rules such 77 

as ‘AND’ or ‘OR’ to explicitly define signal integration, enabling investigation of crosstalk and 78 

downstream events as shown in our previous studies. Previously, we have extensively used discrete-state 79 

network modeling to investigate virus infections and have experimentally validated the predictions (22, 80 

23). We have also developed an algorithm to perform Boolean rule inference and pathway analysis using 81 

bulk transcriptomic data. This algorithm has been rigorously tested and compared across other widely 82 

used gene-set enrichment methods (24). Here, we expand our discrete-state modeling method and present 83 

single-cell Boolean Omics Network Invariant-Time Analysis (scBONITA) to (a) infer Boolean rules (e.g., 84 

“AND”, “OR”) describing signal integration for gene interactions described by the pathway topologies 85 

from scRNA-seq data and (b) use these inferred regulatory rules to identify condition-specific 86 

dysregulated pathways and to prioritize genes/proteins for further investigation. Instead of simply 87 

returning a list of dysregulated pathways and associated p-values, scBONITA returns precise modes of 88 

dysregulation, captured by node-level impact scores that quantify the contribution of each node (a gene or 89 

protein) to the overall dysregulation of a pathway, measured by in silico perturbation and simulation that 90 

matches experimental conditions. In silico simulation and perturbation of molecular pathways allows the 91 

use of scBONITA as a powerful hypothesis-generating tool. 92 

We demonstrate that scBONITA can infer dysregulated pathways from single-cell RNA sequencing 93 

(scRNA-seq) data upon HIV infection using publicly available data and in the context of HIV-associated 94 

atherosclerosis using data presented in this work. scBONITA identifies dysregulated cell migration and 95 
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lipid metabolism related pathways such as PI3K signaling, leukocyte transendothelial migration, and 96 

AGE-RAGE signaling in the subpopulations of CD8+ T cells and monocytes, known to be implicated in 97 

HIV-associated atherosclerosis. ScBONITA identifies genes, such as the PI3K and PLC genes, which 98 

have high impacts on signal flow through the signaling pathways named above. CD4+ T cells and B cells 99 

are also known to play significant roles in the development of atherosclerosis and cardiovascular disease 100 

(25-35). In both subpopulations, scBONITA identified pathways that were linked to cell migration (such 101 

as proteoglycans in cancer and the regulation of actin cytoskeleton pathways), lipid metabolism (P13K-102 

Akt signaling, phosphatidylinositol signaling) and pathways linked to intercellular communication (such 103 

as the chemokine signaling, apelin signaling, and cytokine-cytokine receptor interaction pathways).   104 

Furthermore, we used a publicly available dataset of PBMCs from persons before and after HIV infection 105 

to show that cell migration pathways are also dysregulated in the early stages of HIV infection, indicating 106 

a role for these pathways in both the antiviral response and in subsequent AS (36). We also present a 107 

novel method for mapping cells to pathway-specific signaling states using rules identified by BONITA. In 108 

conclusion, scBONITA is a powerful tool that can be used for network modeling using single-cell RNA-109 

seq data. In this study, we demonstrate that scBONITA provides an insight into the mechanisms of HIV-110 

associated atherosclerosis at the single-cell level. 111 

Methods 112 

Participant cohort summary, sample collection, and storage 113 

Eight men living with HIV and >= 50 years of age on stable combined antiretroviral therapy (cART) for 114 

at least 1 year and with viral load <= 50 copies/mL were recruited. All methods were carried out in 115 

accordance with University of Rochester guidelines and regulations, and all experimental and study 116 

protocols were approved by the University of Rochester Institutional Review Board (#RSRB00063845). 117 

Informed consent was obtained from all subjects. Individuals were classified as having atherosclerosis 118 
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(AS+) if they had plaques on the carotid arteries on ultrasound imaging. Four of the 8 subjects were 119 

assigned as AS+ and had plaques in both right and left carotid arteries. AS- subjects were aged between 120 

47 and 57 and AS+ subjects were aged between 51 and 66.  AS+ subjects had mean serum cholesterol of 121 

161.5 mg/dl (σ = 40.9) and mean serum high-density lipid HDL of 54.7 mg/dl (σ = 16.3). AS- subjects 122 

had mean serum cholesterol of 167.7 mg/dl (σ =57.2) and mean serum high-density lipid HDL of 51 123 

mg/dl (σ = 7.7). AS- subjects and AS+ subjects had a mean CD4+ T cell count of 518.5 cells/µl (σ =347.8 124 

cells/µl) and 838.7 cells/µl (σ = 514.5 cells/µl) respectively. 30 mls of blood per study participant was 125 

collected in ACD vacutainers and was processed within 2 - 3 hours of collection. Peripheral Blood 126 

Mononuclear Cells (PBMCs) were isolated using Ficoll density gradient centrifugation. 5 million PBMCs 127 

were preserved using RNAlater (Thermo Fisher) and were used for scRNA-seq. De-identified subject 128 

information is available in Supplementary File 1, Supplementary Figure 1.  129 

Single-cell sequencing and data processing 130 

Frozen vials containing cells in RNAlater were thawed quickly in a 37-degree water bath. Cell suspension 131 

was transferred to a 15ml conical tube. 10 ml PBS/2% FBS was slowly added. Samples were centrifuged 132 

at 1600rpm for 6 min. Washes were repeated for an additional 2 times for a total of 3 washes. Using the 133 

MACS Miltenyi Biotec Dead Cell removal kit (PN130-090-101), dead cells were removed using 134 

manufacturer’s recommendations. Cells were counted and cellular suspensions were loaded on a 135 

Chromium Single-Cell Instrument (10x Genomics, Pleasanton, CA, USA) to generate single-cell Gel 136 

Bead-in-Emulsions (GEMs). ScRNA-seq libraries were prepared using Chromium Single-Cell 3’ Library 137 

& Gel Bead Kit (10x Genomics). The beads were dissolved, and cells were lysed per manufacturer’s 138 

recommendations. GEM reverse transcription (GEM-RT) was performed to produce a barcoded, full-139 

length cDNA from poly-adenylated mRNA. After incubation, GEMs were broken, and the pooled post-140 

GEM-RT reaction mixtures were recovered, and cDNA was purified with silane magnetic beads 141 

(DynaBeads MyOne Silane Beads, PN37002D, ThermoFisher Scientific). The entire purified post GEM-142 

RT product was amplified by PCR. This amplification reaction generated sufficient material to construct a 143 
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3’ cDNA library.  Enzymatic fragmentation and size selection was used to optimize the cDNA amplicon 144 

size and indexed sequencing libraries were constructed by End Repair, A-tailing, Adaptor Ligation, and 145 

PCR. Final libraries contain the P5 and P7 priming sites used in Illumina bridge amplification. Sequence 146 

data was generated using Illumina’s NovaSeq 6000. Approximately 2000 cells were sequenced from each 147 

subject.  Cell Ranger (version 2.1.1; 10x Genomics) was used for demultiplexing and alignment with 148 

default parameters. Reads were aligned to the human reference genome GRCh38 (Ensembl 93). The 149 

Seurat R package (37) was used to further process the gene counts obtained from the CellRanger pipeline. 150 

Cells that express < 200 genes, > 2500 genes, and > 5% mitochondrial genes were filtered out. Genes 151 

expressed in < 3 cells were filtered out. Gene counts were per-cell normalized and log2-transformed. 152 

These preliminary filtering and selection procedures yielded a set of 9368 sequenced cells, approximately 153 

equally distributed between subjects (and hence conditions), and 14017 genes. Note that sample 154 

collection, processing and sequencing were performed in one batch, leading to extremely high-quality 155 

data where no subject specific patterns were observed. 156 

Classification into subpopulations using modularity-optimized 157 

Louvain community detection, and cluster labeling 158 

Cells were classified into subpopulations using modularity optimized community detection, implemented 159 

in the Seurat R package (37). 664 highly variable genes were used to identify 10 principal components 160 

that explained the majority of variance in the data. These principal components were used to cluster the 161 

data. Clustering yielded 16 subpopulations. Cluster markers were identified using MAST (38). As 162 

suggested in (39), CIBERSORT (40) was used to "deconvolute" the average gene expression of each 163 

cluster into the constituent canonical cell types. A reference expression set of 22 immune cell types and 164 

547 genes was used (40). Over-representation analysis was performed using the implementation of the 165 

hypergeometric test in the R package clusterprofiler with Kyoto Encyclopedia of Genes and Genomes 166 
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(KEGG) gene sets downloaded from MSigDb (41-43). Gene sets were identified as significantly over-167 

represented if the Bonferroni-adjusted p-value was < 0.05. 168 

scBONITA algorithm for development of discrete-state models of 169 

pathways 170 

Network topologies: ScBONITA infers Boolean regulatory rules/ logic gates for directed 171 

networks wherein nodes represent genes and edges represent the regulatory relationships between those 172 

genes. These networks contain edge annotations denoting activation/inhibition relationships between 173 

nodes, which are exploited by scBONITA to restrict the search space for rule inference to sign-compatible 174 

canalyzing functions. Such network models of biological pathways are commonly obtained from pathway 175 

databases such as KEGG and WikiPathways (43-45). ScBONITA offers an interface to KEGG and 176 

WikiPathways databases that allows automated download and processing of user-specified networks. 177 

Users can also provide custom networks in graphml format. 178 

Boolean rule determination from scRNA seq data: The underlying principle of 179 

scBONITA is that cross-sectional measurements of cells by scRNA-seq data represent states of an 180 

underlying dynamic biological process. scBONITA's rule determination (scBONITA-RD) algorithm, 181 

which has been extended from our previous BONITA algorithm exploits this property to infer Boolean 182 

rules for an input biological network, using a combination of a genetic algorithm (GA) and a node-wise 183 

local search (46). 184 

The global search using GA infer a single candidate rule set that adequately describes the input data with 185 

respect to the network topology with minimum error (24, 47). The function to be minimized is: 186 

∑ 𝑚𝑖𝑛 ( ∑ |𝐸𝑐,𝑛  − 𝐴𝑐,𝑛,𝑎| 

𝑛𝑜𝑑𝑒𝑠

𝑛 = 1

𝑐𝑒𝑙𝑙𝑠

𝑐=1

∀ 𝑎 𝑖𝑛 𝑇𝑐  ) 187 
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Where, c from 1 to cells iterates over  the number of cells in the training dataset, n iterates from 1 to 188 

number of nodes in the network, Ec,n is the binarized expression of node n in cell c, Ac,n,a is the value of 189 

node n in the attractor a reachable from cell c, and Tc is the attractor reachable from c. Note that Tc may 190 

have multiple repeating states in a limit cycle or only one steady state, i.e., it may be a singleton attractor. 191 

Tc is obtained after simulating the network with the candidate rule set for 100 time-steps, which causes 192 

the simulation to reach an attractor state for all tested networks.  193 

The minimum error rule set identified using the above-described genetic algorithm strategy is further 194 

refined by a node-level local search that sequentially optimizes the rule for each node keeping the rules 195 

for all other nodes in the network constant. An optimal set of rules for a node n is obtained by minimizing 196 

the function  197 

∑ 𝑚𝑖𝑛 (|𝐸𝑐,𝑛  −  𝐴𝑐,𝑛,𝑎| ∀ 𝑎 𝑖𝑛 𝑇𝑐)

𝑐𝑒𝑙𝑙𝑠

𝑐=1

 198 

where variables and constants are same as described above.  199 

Several rules may satisfy the termination criteria with equal errors. The local search thus returns a set of 200 

equivalent rules that all satisfactorily explain the observed state in the experimental data. This set of rules 201 

is referred to as the equivalent rule set (ERS) in the text.  202 

Pathway analysis (PA) with scBONITA: scBONITA performs pathway analysis in a two-203 

step process. In the first step, importance scores for each node in the biological network under 204 

consideration are calculated. In the second step, a pathway modulation metric incorporating both 205 

experiment-specific fold changes and the node importance scores calculated in step 1 is calculated.  206 

scBONITA quantifies the influence 𝐼𝑛 of a node 𝑛 over the state of the network by quantifying the overall 207 

effect of its perturbation on that network. This is achieved by simulating knock-in and knock-out of that 208 

node. 209 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.07.22271522doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271522


𝐼𝑛 = ∑ |𝐾𝐼𝑐,𝑛 − 𝐾𝑂𝑐,𝑛| ∗ 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟

𝑐𝑒𝑙𝑙𝑠

𝑐=1

 210 

where KIc,n and KOc,n  are the discrete expression vectors of network nodes in the attractors reached after a 211 

simulation starting from cell c where the node under consideration n is knocked in and knocked out 212 

respectively. The uncertainty factor is defined as follows: 213 

Uncertainty factor =
|𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑅𝑆𝑖| − |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑅𝑆𝑖| + 1

|𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑅𝑆𝑖|
 214 

Where 𝐸𝑅𝑆𝑖 is the ERS for a node i, |𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑅𝑆𝑖 | is the maximum possible size of the ERS for a 215 

node i and |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐸𝑅𝑆𝑖| is the size of the ERS for a node i upon optimization by scBONITA. 216 

The uncertainty factor weighs 𝐼𝑛  relative to the maximum state space for that node, to capture the 217 

uncertainty in the rule determination for that node. The importance scores of the nodes in a network are 218 

scaled to [0, 1] by dividing by the maximum calculated importance score for the network under 219 

consideration.  220 

A pathway modulation metric (𝑀𝑝) is calculated by weighting the node importance score by the 221 

difference between the average gene expression in each group (relative abundance, RA) and the standard 222 

deviation of expression of that gene (σ). A p-value is calculated by bootstrapping, where a contrast-223 

specific distribution of weighted importance scores is generated using randomly resampled RA values. 224 

Pathways are described in the text as being overall upregulated in a given contrast if the sum of fold 225 

changes of all genes in the pathway is positive. Conversely, pathways are described as being 226 

downregulated if the sum of fold changes of all genes in the pathway is negative. 227 

𝑀𝑝 =  ∑ 𝑅𝐴𝑛 ∗  σn ∗ 𝐼𝑛

𝑛𝑜𝑑𝑒𝑠

𝑛=1

 228 
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Pathways are described in the text as being overall upregulated in a given contrast if the sum of fold 229 

changes of all genes in the pathway is positive. Conversely, pathways are described as being 230 

downregulated if the sum of fold changes of all genes in the pathway is negative. 231 

Steady-state analysis with scBONITA: scBONITA assumes that the observed cellular states 232 

are defined by states of multiple dynamic cellular processes or signaling pathways. While observed cells 233 

are samples along a dynamic trajectory of signaling cascades, analyzing attractors upon randomly 234 

sampling the rules from ERS allows us to investigate most common signaling states of a network under 235 

consideration. Hence, we sample ten network specific from the ERS inferred by scBONITA-RD to 236 

identify a set of reachable attractors. This is achieved by simulating the network synchronously as 237 

performed in other studies (48-51) starting from an observed state (i.e., a cell expression vector) until a 238 

steady state (or an attractor cycle) is reached. By starting simulations from expression levels of all cells 239 

(all observed states), we can ensure that these simulations cover a large fraction of available state space 240 

for a given network. In this way, all reachable attractor states, corresponding to observable signaling 241 

states, can be identified. The similarity between cells and attractors is quantified using the Hamming 242 

distance. Cells are assigned to the attractor that is most similar to their expression data. 243 

Implementation and availability: scBONITA is implemented in Python 3 and C. Source code, 244 

documentation, and tutorials are available on https://github.com/Thakar-Lab/scBONITA.  245 

Application of scBONITA on a publicly available data set 246 

A scRNA-seq dataset obtained from four persons living with HIV (PLWH) before and during infection 247 

was selected to demonstrate the utility of the scBONITA pipeline on other datasets and to compare 248 

signaling dysregulations upon atherosclerosis in PLWH with signaling dysregulations upon HIV infection 249 

(36). Log2-transformed TPM data and metadata processed and curated by the study authors was collected 250 

from the Single-Cell Portal database (https://singlecell.broadinstitute.org/single_cell/study/SCP256.). The 251 

complete scBONITA pipeline was used to compare samples collected before infection to samples 252 
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collected 1 year after infection. We retained the cluster labels assigned by the authors of the original 253 

study. A set of 210 KEGG networks was used with the scBONITA pipeline. Dysregulated pathways and 254 

steady states identified by scBONITA were compared to the original analysis, as described in the results. 255 

In silico evaluation of scBONITA 256 

To show that scBONITA-RD is robust to training set size, we selected a cluster of B cells from the 257 

HIV/AS dataset. This subset of the dataset was manipulated to either downsample or augment the size of 258 

the training dataset (number of cells) presented to scBONITA-RD. The training dataset was downsampled 259 

to 1% and 50% of the original number of cells for cluster 0 (“B cells naïve – 1”). To augment the dataset 260 

and thereby introduce heterogeneity, the dataset was increased to 200% of its original size by adding in 261 

cells from a neighboring cluster of B cells. A set of 210 KEGG networks was used to evaluate the sizes of 262 

the ERS obtained by scBONITA-RD using these manipulated training datasets. The size of the ERS is 263 

used as a proxy for scBONITA’s ability to successfully cut down the state space of the possible rules for 264 

each node using cross-sectional scRNA-seq data.  265 

Results 266 

Single-cell sequencing identifies 16 transcriptionally distinct cell 267 

subpopulations in PBMCs derived from AS+ and AS- PLWH 268 

To investigate dysregulated immune signaling in People Living with HIV (PLWH), who are at an 269 

increased risk of atherosclerosis (AS), we recruited a cohort of eight PLWH, four with carotid plaques on 270 

both sides of the arteries (referred here as AS+) and four without carotid plaques (referred as AS-). Lipid 271 

profiles and age, both known risk factors for cardiovascular disease, were matched and were not 272 

significantly different between subject groups (see Methods, Supplementary File 1, Supplementary Figure 273 

1). We used the 10X Genomics platform to profile transcriptional changes in ~1200 peripheral blood 274 

mononuclear cells (PBMCs) per subject. This scRNA-seq data was processed using the Cell Ranger and 275 
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Seurat pipelines (37) as described in the Methods to identify sixteen transcriptionally distinct populations 276 

of immune cells (Figure 1A). These clusters were then annotated using CIBERSORT (40) with a dataset 277 

of sorted immune cells (Supplementary File 1, Supplementary Figure 2) and by using cell-lineage specific 278 

markers (Supplementary Table 1). This scRNA-seq dataset is referred to in the text as the HIV/AS 279 

dataset. 280 

A population of CD8 T cells/NK resting cells was significantly lower in AS- PLWH and a population of 281 

CD14+CD16+ monocytes was significantly higher in AS- PLWH (t-test, p < 0.05) (Figure 1B). The 282 

cluster-specific differentially expressed genes, or cluster markers, for these populations of CD14+CD16+ 283 

monocytes and CD8+ T cells/NK resting cells were involved in pathways linked to cell migration, such as 284 

the leukocyte transendothelial migration, regulation of actin cytoskeleton, adherens junction, and 285 

chemokine signaling pathways (Supplementary Table 1), suggesting that CD8+ T cells/NK resting cells 286 

and monocytes have a migratory phenotype.  Indeed these cells are known to migrate into intima during 287 

the formation of atherosclerotic lesions in the vascular wall (52-58).  288 

Characterization of peripheral blood mononuclear cells in people 289 

living with HIV with and without atherosclerosis 290 

To characterize the expression differences between these cell types in AS+ and AS- PLWH, differentially 291 

expressed (DE) genes were identified using the Wilcoxon test as described in the Methods (selected cell 292 

types are shown in Figure 1C-F and complete list of DE genes presented in Supplementary Table 2). 293 

Genes were reported as being differentially expressed if the adjusted p-value was < 0.05 and the average 294 

absolute log fold-change was > 0.3 (representative cell subpopulations shown in Figure 1C-F). Gene set 295 

enrichment analysis was performed as described in the Methods. We used gene sets obtained from KEGG 296 

and curated in MSigDb. Complete results of the enrichment analysis are presented in Supplementary 297 

Table 2. 298 
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Considered together, differential expression analysis and gene set enrichment analysis provided insights 299 

into the functional differences in cells obtained from AS+ and AS- PLWH. Several genes (and gene sets) 300 

related to cell migration and mobility were upregulated in cells derived from AS+ PLWH. MHC Class 1 301 

genes (HLA-A, HLA-B and HLA-C) and MHC Class II genes (HLA-DP, HLA-DQ, HLA-DB, and HLA-302 

DR) were upregulated in multiple cell subpopulations. Figure 1E shows the expression of HLA-A and 303 

HLA-DRA in B cells naïve -2. Similarly, ITGB2 was upregulated in population a cluster of CD8+ T cells 304 

(“T cells CD8 – 3”) derived from AS+ PLWH. These cell-surface proteins are all involved in cell-cell 305 

interactions and cellular adhesion. ITGB2 interacts with ICAM2 expressed on the surface of endothelial 306 

cells and is involved in leukocyte transendothelial migration. The actin gene ACTB was upregulated in 307 

both populations of naïve B cells and a population of CD8+ T cells derived from AS+ PLWH. Similarly, 308 

CXCR4 was upregulated in cells derived from AS+ PLWH in two populations of naïve B cells, two 309 

populations of CD8+ T cells, and a population of resting NK cells. Both CXCR4 and ACTB play an 310 

important role in the process of leukocyte transendothelial migration. CXCR4 activation is known to 311 

drive both migration and proliferation of vascular cells. Leukocyte transendothelial migration involves 312 

dynamic actin (ACTB) cytoskeleton remodeling, that is in part mediated by the key genes RHOA and 313 

ROCK, which are not themselves differentially expressed between cells derived from AS+ and AS- 314 

PLWH. However, gene sets related to this process were not significantly over-represented in the 315 

differentially expressed genes for any subpopulations, with the exception of a small population of NK 316 

resting cells. 317 

The S100A8/S100A9 genes are upregulated in T cells CD8/NK resting cells (Figure 1C), monocytes 318 

(Figure 1D), T cells CD8/CD4/CD4 naive (Figure 1E) and B cells naive – 2 cluster (Figure 1F) derived 319 

from AS- PLWH. S100B is upregulated in CD8+ T cells populations derived from AS- subjects (Figure 320 

1C, 1F). In monocytes, S100B has been shown to engage RAGE leading to overproduction of reactive 321 

oxygen species, leading to the modulation of genes involved in inflammatory processes and adhesion to 322 

vasculature (59). In addition, several ribosomal genes are upregulated in cells derived from AS- PLWH in 323 
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the B cells naïve –2 cluster (RPL8, RPS10, RPS26, RPS4Y1, RPS9), and upregulated in cells derived 324 

from AS+ PLWH in the T cells CD8/CD4/CD4 naïve cluster (RP11-347P5.1, RPL13, RPL39, RPS14, 325 

RPS27, RPS29, RPS6). The ribosome gene set was over-represented in the DE genes for 12 out of the 16 326 

identified subpopulations (Supplementary Table 2). Ribosomal genes have been associated with cellular 327 

states (60) and with the activity of the mTOR pathway (61-64). 328 

While DE and enrichment analysis indicated some mechanisms of HIV-associated atherosclerosis, a 329 

cohesive understanding of how these multiple genes (DE and non-DE) jointly regulate signaling cascades 330 

did not emerge from the analysis above. Hence, we developed the network-based pathway analysis 331 

algorithm scBONITA to further investigate the importance of specific genes and their role in signaling. 332 

scBONITA algorithm for development of discrete-state models of 333 

pathways 334 

To investigate dysregulated immune signaling, we used a discrete-state modeling approach to develop 335 

executable models of signaling pathways. Specifically, we developed the scBONITA (Single-Cell 336 

Boolean Omics Network Invariant-Time Analysis) algorithm using our previously established and 337 

validated BONITA algorithm for scRNA-seq data (24) (Figure 2). Briefly, scBONITA uses a Boolean 338 

framework where “AND” or “OR” logic gates are optimized to model signal integration and flow through 339 

biological networks. scBONITA requires two inputs: (a) a binarized scRNA-seq dataset, and (b) a prior 340 

knowledge network (PKN) (Figure 2A). PKNs describe pathway topology defined by nodes representing 341 

genes and directed edges representing the activating or inhibitory interactions between nodes. The 342 

optimized logic gates for a PKN are referred to as the rule set for that PKN. scBONITA leverages the 343 

principle that observed states of single cells correspond to the steady states or attractors of dynamic 344 

biological networks to identify regulatory rules for the input PKNs (Figure 2B). A genetic algorithm is 345 

used to perform a global search and identify a minimum-error rule set which is further optimized by a 346 

node-wise local-search. This procedure returns a set of discrete-state models for pathways referred to as 347 
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the equivalent rule set (ERS). A pathway is described in the text as ‘optimized’ if scBONITA-RD 348 

successfully cuts down the state space of the possible rules for at least one node in the pathway. 349 

The discrete-state models learned by scBONITA can be simulated to generate time-course trajectories 350 

that are analogous to signal flow. They can also be perturbed in silico by simulation of gene knock-ins 351 

and knockouts. We quantify the difference between network states after knock-out and knock-in, and 352 

weight the score by the size of the ERS to quantify the uncertainty in rule determination for each node to 353 

calculate a node-importance score that describes the influence of each node over the network. scBONITA 354 

uses these node importance scores and comparison-specific fold changes from the scRNA-seq data used 355 

for training to identify dysregulated pathways in a pre-specified contrast (Figure 2C). The simulation 356 

trajectories of these discrete-state models fall into steady states known as attractors. These attractor states 357 

of biological networks are the cell states with respect to specific pathways and have been hypothesized to 358 

correspond to signaling behavior characteristic of specific cell types. Cells are assigned to the attractor 359 

that is most similar to their expression data (Figure 2D). In this way, cells are matched to characteristic 360 

signaling states for the network under consideration. Thus, scBONITA allows in depth investigation and 361 

simulation of known biological signaling pathways by incorporating network topology. 362 

scBONITA identifies dysregulated pathways in T cell populations in 363 

people living with HIV stratified by atherosclerosis  364 

The scBONITA pathway analysis algorithm identifies dysregulated pathways in all subpopulations 365 

derived from AS+ and AS- PLWH, providing an insight into mechanisms of atherosclerosis development 366 

in PLWH (Supplementary Table 3).  ScBONITA optimized multiple pathways in CD8+ T cells that are 367 

involved in this proinflammatory and anti-viral process (Figure 3A, Supplementary Table 3). These 368 

pathways include the JAK-STAT signaling pathway, the TGFβ signaling pathway, the NFκB signaling 369 

pathway, the AGE-RAGE signaling pathway, and the HIF-1 signaling pathway. In conjunction, cell-370 

migration pathways such as the regulation of actin cytoskeleton and axon guidance, the PI3K-AKT 371 
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signaling pathway and mTOR signaling pathway that modulate apoptosis and cell migration, are 372 

identified as being dysregulated in the HIV+AS+ vs HIV+AS- contrast (Figure 3A). Only the Th17 cell 373 

differentiation pathway was overall upregulated in cells derived from AS+ PLWH. All these pathways 374 

were newly identified by scBONITA, i.e., the corresponding gene sets were not identified as being 375 

enriched in the AS+/AS- contrast by enrichr (Supplementary Table 2).  376 

Pathway analysis with scBONITA identified multiple optimized pathways in subpopulations containing 377 

CD4+ T cells (T cells CD4 memory resting/T cells CD8, T cells naïve, and T cells CD4 -1 clusters, 378 

Figure 1A) as being dysregulated (Bonferroni-adjusted p-value < 0.01) in the HIV+AS+ vs HIV+AS- 379 

contrast (Figure 3B, Supplementary Table 3). CD4+ T cells may exert either an atherogenic or 380 

atheroprotective phenotype, depending on subset and interactions with antigen presenting cells (APCs), 381 

such as B cells in the adventitia or macrophages in plaques (65). Of the dysregulated pathways, herpes 382 

simplex virus 1 infection and MAPK signaling pathways were overall upregulated in T cells CD4 383 

memory resting/ T cells CD8 and T cells CD8/CD4/CD4 naïve cells derived from AS+ PLWH. The 384 

proteoglycans in cancer and mTOR signaling pathways were overall upregulated in T cells CD4 memory 385 

resting/ T cells CD8 from AS+ PLWH. PI3K-AKT signaling and chemokine signaling pathways were 386 

upregulated in the T cells CD8/CD4/CD4 naïve cluster derived from AS+ PLWH. The ‘proteoglycans in 387 

cancer’ signaling pathway is involved in cell adhesion and migration is upstream of processes known to 388 

be dysregulated in atherosclerosis, such as regulation of the actin cytoskeleton, mTOR signaling, and 389 

apoptosis. Similarly, the herpes simplex virus infection process involves activation of the PI3K-AKT 390 

signaling and apoptosis pathways, which are known to be relevant in atherosclerosis. 391 

The AGE-RAGE signaling pathway was further investigated in CD8+ T cells due to their relevance in 392 

atherosclerosis and to demonstrate the additional information obtained from scBONITA in comparison to 393 

other enrichment methods. The AGE-RAGE signaling pathway in a cluster of CD8+ T cells had the 394 

highest pathway modulation score (0.8) amongst all tested pathways for this cluster (Supplementary Table 395 

3). Most of the genes in this pathway were higher in AS+ PLWH (Figure 3C). Furthermore, the 396 
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uncertainty score was used to identify pathways where logic gates for genes could be optimized. 397 

Particularly, scBONITA learned rules for the highly central DIAPH1 node, which has a high influence 398 

over signal flow in this network due to its high connectivity (uncertainty score= 0.5) (Figure 3C). The 399 

combination of scBONITA’s node importance score and a difference in expression between the 400 

HIV+AS+ and HIV+AS- groups was used to identify key genes which may or may not have a significant 401 

difference in expression but whose activity influences the flow of signal through the network and the 402 

signaling behavior in atherosclerosis. These key genes in AGE-RAGE pathway had higher expression in 403 

AS+ PLWH. scBONITA assigns the class 1 PI3K genes (PIK3CA, PIK3CB and PIK3CD genes), the 404 

P13K regulator PI3KR1, and PLC genes (PLCB1, PLCB2) maximal importance scores in this network. 405 

All these genes are highly expressed in AS+ PLWH (Figure 3C). PI3K is known to activate intracellular 406 

pathways involved in the pathophysiology of atherosclerosis, such as lipid accumulation and transport, 407 

macrophage autophagy, phenotypic transition, and the expression of adhesion molecules involved in the 408 

inflammatory response (reviewed in (66)). As noted in the preceding section, P13K is also downstream of 409 

CXCR4, which is significantly upregulated in cells derived from AS+ PLWH. While CXCR4 is not itself 410 

in this network topology, scBONITA nevertheless identifies its downstream effectors PI3K and PLC, 411 

which are not themselves significantly differentially expressed, as playing an important role in the 412 

signaling pathways leading to the expression of atherosclerosis-related genes and hence and 413 

atherosclerotic phenotype. In this manner, pathway analysis with scBONITA revealed that several 414 

pathways and genes associated with atherosclerosis are dysregulated in T cells derived from PLWH. 415 

Many of these pathways have been previously shown to regulate T cell migration during atherosclerosis. 416 

scBONITA identifies dysregulated pathways in monocytes in people 417 

living with HIV, stratified by atherosclerosis  418 

Pathway analysis with scBONITA identified multiple optimized dysregulated pathways in monocytes 419 

(Figure 4A, Supplementary Table 3). Key pathways include the apoptosis, cAMP signaling, leukocyte 420 
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transendothelial migration, PI3K-AKT signaling and cellular senescence pathways, which appear to be 421 

involved in the proinflammatory behavior of proatherogenic monocytes.(53, 67-76). Only the cAMP 422 

signaling pathway and the endocrine resistance pathway are overall upregulated in cells derived from 423 

AS+ PLWH.  424 

The leukocyte transendothelial migration pathway was further investigated as monocyte migration outside 425 

the vascular compartment plays a crucial role in the inflammatory cascade that leads to an atherosclerotic 426 

phenotype (67, 69, 77). In addition, scBONITA was able to learn a limited set of regulatory rules for the 427 

influential, highly connected RHOA gene (uncertainty factor=0.13). This pathway had a pathway 428 

modulation score of 0.45, which is the third-highest pathway modulation score amongst tested pathways 429 

for this cluster (Supplementary Table 3) (Figure 4B). scBONITA also assigned high importance scores to 430 

the NCF genes (NCF1, NCF2, and NCF4), CYBA and CYBB. NCF genes are involved in superoxide 431 

production and are a positive regulator of P13K signaling (78, 79). Once again, PLCG1 and PLCG2 are 432 

assigned high importance scores by scBONITA in this network, underscoring the importance of PLC in 433 

proinflammatory and proatherogenic processes. The upstream regulator of PLCG1, MSN, is involved in 434 

cytoskeletal remodeling during leukocyte migration and is similarly assigned a high importance score 435 

(80). ROCK2 shows only a small change across AS groups, which may be driven by feedback regulation 436 

of mRNAs of ROCK genes but has a high importance score indicating a stronger role in regulating the 437 

signal flow. The G protein GNAI3, which is downstream of CXCR4, is also assigned a high importance 438 

score, possibly indicating a role for CXCR4-mediated activation of this pathway despite the low observed 439 

fold change of CXCR4 between the AS+ and AS- groups. The downstream effectors of these high-440 

importance genes have higher fold changes than the high-importance genes themselves. These genes 441 

include ACTG1 and EZR, which are involved in cytoskeletal remodeling (80-82), and ITGA4, ITGB1, 442 

and ITGB2, which are involved in cell adhesion. As in the case of CD8+ T cells, pathway analysis with 443 

scBONITA identifies several genes known to be associated with atherosclerosis which are also 444 

dysregulated in monocytes derived from PLWH. 445 
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Pathways dysregulated by HIV infection are implicated in 446 

atherosclerosis 447 

To identify the biological mechanisms modulated by HIV infection we analyzed PBMCs from four 448 

individuals before and during acute HIV infection. Specifically, Kazer et al (36) sequenced PBMCs from 449 

4 individuals before and during acute HIV infection and identified gene expression programs activated in 450 

proinflammatory T cells, monocytes, and NK cells during HIV infection. Pre-clustered scRNA-seq data 451 

and the set of KEGG networks used in the above analysis were used with scBONITA to infer Boolean 452 

rules and perform pathway analysis. We compared pathways that were dysregulated pathways after 1 year 453 

of HIV infection (36) to those identified as being dysregulated (𝑝𝑎𝑑𝑗  <  0.1) in the AS+HIV+ vs AS-454 

HIV+ contrast from our dataset described above (Figure 6A). Subpopulations of immune cells in the two 455 

datasets were matched for the purpose of this comparison as shown in Supplementary Table 6, except for 456 

dendritic cells, which did not have a matching subpopulation in the HIV/AS dataset.  457 

scBONITA identified 10 optimized pathways that were dysregulated after 1 year of HIV infection in 458 

cytotoxic T cells (36) (Figure 3A-B, Figure 6A, Supplementary File 1, Supplementary Figure 5, 459 

Supplementary Table 5, Supplementary Table 6). Of these pathways, the 'Axon guidance', 'MAPK 460 

signaling’, 'Proteoglycans in cancer', 'Herpes simplex virus 1 infection', and 'Cytokine-cytokine receptor 461 

interaction' signaling pathways were also dysregulated in PLWH with AS. Similarly, 5 out of 19 462 

optimized pathways were dysregulated in monocytes upon HIV infection and in AS+ individuals (Figure 463 

4A, Figure 6A, Supplementary File 1, Supplementary Figure 5, Supplementary Table 6).  The herpes 464 

simplex virus 1 infection, PI3K-AKT signaling, and cellular senescence pathways were dysregulated 465 

upon HIV infection and in PLWH with AS. While overall dysregulation of the pathways is a crude metric 466 

for activation, we note that 81 and 41 genes from these overlapping pathways were upregulated in both 467 

contrasts in the cytotoxic T cell populations and monocyte population respectively (Figure 6B and 6C, 468 

statistical significance was not tested). Enrichment analysis using KEGG biological pathways suggests 469 

that the genes upregulated after HIV infection and in AS+ PLWH in the CD8+ T cell subpopulation were 470 
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enriched for viral response pathways such as herpes simplex virus 1 infection and human cytomegalovirus 471 

infection (Supplementary File 1, Supplementary Figure 6). Similarly, the genes upregulated after HIV 472 

infection and in AS+ PLWH in the monocyte subpopulation were enriched for cell migration related 473 

pathways such as the PI3K-AKT signaling pathway and the cAMP signaling pathway (Supplementary 474 

File 1, Supplementary Figure 6). In this vein, mTOR signaling was dysregulated in T cells from both 475 

datasets and proteoglycans in cancer, PI3K-AKT signaling, and cellular senescence were dysregulated in 476 

B cells from both datasets. These dysregulated pathways suggest that the modulation of cell migration and 477 

inflammation processes upon HIV infection progresses over time, leading to AS in PLWH.  478 

Attractor analysis reveals PI3K genes driving distinct cellular 479 

signaling states potentially associated with atherosclerosis 480 

We performed attractor analysis for the pathways significantly dysregulated between AS+ and AS- 481 

PLWH in the cluster of CD8+ T cells discussed above (Cluster CD8 T cells -1 in Figure 1A). The 482 

attractor analysis facilitates evaluation of cellular states across subjects and disease groups. The simplest 483 

rules, which have the smallest number of “AND” terms, were chosen to simulate the network and identify 484 

attractors as described in the Methods. The insulin resistance pathway, which is downstream of the AGE-485 

RAGE signaling and the PI3K-AKT pathways, was particularly interesting because more than 50% of the 486 

same cluster of CD8+ T cells mapped to three dominant attractors. scBONITA identified 72 attractors 487 

representing cellular states with respect to the insulin resistance pathway in CD8+ T cells. Of these 72 488 

signaling states, 3 dominant signaling states mapped to 16.5%, 7.5% and 27.4% of cells respectively 489 

(Figure 5A-B). The insulin resistance pathway was found to have a significant association between 490 

identified attractors and subjects (chi-square test, p-value < 0.05) but no significant association between 491 

identified attractors and atherosclerosis status (chi-square test, p-value > 0.05). Notably, attractor analysis 492 

showed that there was significant association between assigned attractors and subject from which cells 493 

were derived for the T cells CD4 - 1and T cells CD8/CD4/CD4 naïve clusters for the chemokine signaling 494 
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pathway (chi-square test, p < 0.01). The attractors of the PI3K-AKT signaling pathway were significantly 495 

associated with subject for the T cells CD8/CD4/CD4 naive cluster (chi-square test, p < 0.01). 496 

These cellular states were characterized by differences in several key genes (Figure 5C), including PI3K 497 

genes (PI3KA, B, and D) and the PI3K regulators (PIK3R1, 2, and 3) that were identified as being highly 498 

influential in the AGE-RAGE signaling pathway (Figure 3B). In addition, the two less abundant attractors 499 

differed in the activity of the key TNFR and TNF genes. Hence, these attractors are referred to as the 500 

PIK3R+ PIK3+, TNFR+TNF- and TNFR-TNF+ attractors. The activity of these PI3K genes and the 501 

activity of AKT genes (AKT1, 2 and 3) was higher in the most common signaling state (PI3KR+ PI3K+ 502 

attractor). However, the activity of the downstream targets of AKT, such as CREB1, CREB3, CREB5, 503 

NFKB1, FOXO1, CREB3L4 and CREB3L42 were lower in the PI3KR+ PI3K+ attractor. TNF, which is 504 

known to be produced at a low level by some subsets of T cells, also mediates a range of pro-505 

inflammatory processes in vascular endothelial cells, particularly leukocyte adhesion and transendothelial 506 

migration (83, 84). TNF-TNFR1 signaling mediates an apoptotic process that is mediated by TRADD and 507 

FADD (85). In addition, TNFR1 is known to activate the PI3K signaling pathway in regulatory T cells in 508 

the context of autoimmune disease (86). These differences may indicate differences in TNF production 509 

and response in the cells that are assigned to these cell states. Significant differences in signaling modes 510 

of cells exist across subjects, suggesting the existence of distinct modes of operation (Figure 5D).  511 

Attractor analysis of the leukocyte transendothelial migration pathway in monocytes revealed 9 attractors 512 

that mapped to cells in the dataset and two dominant signaling modes mapping to 51.04% and 30.73 % of 513 

cells respectively (Figure 6A-B). The two dominant signaling modes of this pathway in monocytes 514 

differed in the activity of the PECAM1 and F11R genes (Figure 6C) and are hence referred to as the 515 

PECAM+ and F11R+ attractors. F11R is required for platelet adhesion to vascular endothelial cells (87), 516 

which occurs prior to infiltration of monocytes into the endothelium and eventual plaque formation (88, 517 

89). PECAM1 has been recognized as an influential signaling molecule with widespread effects on 518 

vascular biology and atherosclerosis in particular (90-92). Attractors for this pathway were significantly 519 
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associated with the subjects (chi-square test, p-value < 0.05, Figure 6 B), but were not significantly 520 

associated with atherosclerosis status (chi-square test, p-value > 0.05). Similarly, the attractor activity of 521 

individual genes was not significantly associated with atherosclerosis status (t-test, p-value > 0.05). 522 

However, we observed significant variation in attractor activity for PECAM1 and F11R across subjects, 523 

reflective of the different states of the cells across subjects. Thus, scBONITA allows us to investigate 524 

cellular states potentially associated with inter-subject variability, driven by molecular signaling. 525 

Evaluation of scBONITA performance in silico 526 

The BONITA algorithm has already been rigorously validated in our previous study (24). Specifically, 527 

comparison with other network-based pathway analysis tools has been performed. Here we evaluate 528 

scRNA-seq specific components of the algorithm. To show that scBONITA rule determination is robust 529 

to training set size, we varied the size of the training data provided to scBONITA. Specifically, the 530 

number of cells in the largest cluster of cells (Naïve B cells -1) were varied by random selection from 1% 531 

of cells from that cluster to 200% by adding cells from neighboring clusters. The reduced size of the ERS 532 

for nodes with in-degree 3 (i.e., the most complex case considered by scBONITA) informs improved 533 

certainty in rule inference by scBONITA. (Figure 7A) While there was a significant decline in 534 

performance when the data was downsampled to 1% of the original cluster, there was no significant 535 

increase in effect once 50% of the cells were used, or when the training dataset was augmented. This 536 

indicates that scBONITA is robust to heterogeneity in the training data set. To show that scBONITA’s 537 

node importance score is not correlated to commonly used measures of node centrality, we compared the 538 

node importance scores calculated by scBONITA for KEGG networks when it is trained on the HIV/AS 539 

dataset as described above to six centrality measures – Katz centrality, degree centrality, current flow 540 

centrality, eccentricity centrality, betweenness centrality, and local reaching centrality. We observed that 541 

scBONITA’s node importance score is not correlated to any of these metrics (Spearman Correlation 542 

Coefficient < 0.15, Figure 6H). To show that network topology also significantly influences the node 543 

importance score, we compared scBONITA’s node importance scores for the same set of KEGG 544 
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pathways, assigned using different training datasets. These node importance scores were compared using 545 

similar cell subpopulations only. We found that the node importance scores between the two datasets 546 

were correlated as shown by a representative comparison between the node importance scores for the 547 

subpopulation of cytotoxic T cells from the Kazer et al dataset and the subpopulations of CD8+ T cells 548 

(Figure 6B, 0.71 < Pearson Correlation Coefficient < 0.91, p < 0.01)  show .Similarly, the node 549 

importance scores for the populations of monocytes were highly correlated (Pearson correlation 550 

coefficient = 0.78, Supplementary Table 4, Supplementary File 1, Supplementary Figure 3). However, the 551 

correlations were relatively lower for other pairs of subpopulations (Supplementary Table 4, 552 

Supplementary File 1, Supplementary Figure 5), indicating that scBONITA learns some characteristic 553 

features of a network topology, but node importance scores are still assigned in a context-dependent 554 

manner.  555 

Discussion 556 

Among people living with HIV, widespread use of cART has significantly reduced overall mortality. 557 

However, the earlier and increased incidence of cardiovascular diseases, including atherosclerosis, 558 

remains the major cause of mortality in an aging HIV+ population. The causes for this are manifold and 559 

include side effects of cART and lower level of HIV proliferation (4, 9-12). We and others have 560 

attempted to identify the immune signaling mechanisms that lead to this increased incidence of 561 

atherosclerosis (93). However, to the best of our knowledge no study has attempted to holistically study 562 

the combined effects of variance in the numbers of specific immune cells and the cell-type specific 563 

signaling dysregulations (93). We found that in accordance with previous studies (19, 94-100), a 564 

population of CD8+ T cells was significantly increased in PBMCs from AS+ PLWH. However, contrary 565 

to our expectations (20, 68, 69, 74, 76, 101-104), a population of monocytes was significantly decreased 566 

in PBMCs from AS+ PLWH. Interestingly, evaluation by our pathway analysis algorithm scBONITA and 567 

differential expression analysis identified differences in the migratory phenotype of these cells, 568 

suggesting to us that these monocytes are migrating into the vascular intima in AS+ PLWH (described 569 
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later in the discussion). Conventional differential expression and gene set enrichment analysis methods 570 

identified genes involved in signaling pathways that are known to be linked to cell migration and cell 571 

aging. Key amongst these identified genes were CXCR4 and ACTB (Figure 1 C-F) which were 572 

upregulated in populations of CD8+ T cells derived from AS+ PLWH. CXCR4 activation by its ligands 573 

leads to the activation of phosphatidylinositol-3-OH kinases (PI3K), which in turn leads to the activation 574 

of the serine-threonine kinase AKT via PIP3 (105). PI3K/AKT signaling leads to multiple processes 575 

involved in plaque formation, such as cell migration, intracellular lipid accumulation, and smooth muscle 576 

cell proliferation (66). S100A8/S100A9 were found to be upregulated in monocytes derived from AS- 577 

PLWH (Figure 1 C-F). In monocytes, S100A8/9 have been shown to increase adhesion, migration, and 578 

production of inflammatory cytokines such as TNF-alpha and IL1β (106, 107).   However, none of these 579 

processes were identified as being significantly enriched in the differentially expressed genes from these 580 

subpopulations. In addition, these methods failed to provide insights into how disparate genes involved in 581 

different pathways regulate cellular states. To characterize signaling dysregulations in HIV-associated 582 

atherosclerosis more effectively, we developed the scBONITA algorithms for regulatory rule inference, 583 

network simulation, pathway analysis, and attractor/steady-state analysis.  584 

scBONITA learns condition-specific logic models using scRNA-seq data in conjunction with published 585 

prior knowledge networks. This study builds on our previously published BONITA method (24) that 586 

inferred logic rules from bulk RNAseq data. scBONITA exploits the bimodal nature of scRNA-seq data 587 

(38, 108) and the cell-level resolution of expression to successfully learn regulatory rules and identify 588 

attractors for prior knowledge networks. We show that scBONITA can successfully learn regulatory rules 589 

for biologically significant signaling pathways and that these rules can be used to perturb and simulate 590 

these pathways in silico. Unlike other tools utilizing Boolean networks, scBONITA is not dependent on 591 

time-series data and in fact hypothesizes that scRNA-seq data represents samples in the state space of a 592 

dynamic Boolean network. In addition, scBONITA uses published network topologies, thereby reducing 593 

the uncertainty in the inferred rules. Other groups have published algorithms to infer logic rules and 594 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.07.22271522doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271522


reconstruct gene-regulatory networks on a small subset of genes from scRNA-seq data (51, 109, 110). 595 

However, scBONITA does not depend on pre-selection of genes. Additionally, scBONITA also identifies 596 

dysregulated signaling pathways in a given context, combining expression information with scBONITA 597 

derived impact score to create a unique metric of pathway dysregulation that considers (a) the dynamic 598 

nature of signaling pathways and (b) the impact of node perturbations.  599 

scBONITA identifies interesting, dysregulated pathways across all cell subpopulations in the HIV/AS 600 

dataset (Supplementary Table 3, Figures 3-4). The AGE-RAGE signaling pathway was significantly 601 

dysregulated in a population of CD8+ T cells (Figure 3A). AGE-RAGE signaling elicits activation of 602 

multiple intracellular signaling pathways such as cell proliferation and apoptosis pathways (111-119). 603 

scBONITA assigned the highest importance scores for this network to the PI3K family of genes 604 

(PIK3CA, PIK3CB and PIK3CD), which promote intracellular lipid deposition leading to the formation 605 

of foam cells and atherosclerotic plaques and can also reduce the expression of lipid transporters and 606 

reduce the efflux of intracellular cholesterol depending on upstream signals (66). PLC (PLCB1 and 607 

PLCB2 genes), which is also assigned a high importance score in this network, facilitates 608 

proinflammatory and proatherogenic processes. PLC activity induced by oxidized low-density lipids 609 

(oxLDL) serves to stimulate proinflammatory IL-8 secretion and promote leukocyte adhesion, promoting 610 

plaque development. PLC also enhances endothelial dysfunction and plaque progression by inducing 611 

VEC apoptosis (80, 120). Of note, both PI3K and PLC genes were upregulated in AS+ PLWH (Figure 612 

3C). 613 

ScBONITA identified several pathways linked to lipid metabolism as being dysregulated in the 614 

population of monocytes. Amongst these pathways were the cAMP signaling pathway, which was overall 615 

upregulated in AS+ PLWH, and leukocyte transendothelial migration pathway, which was overall 616 

upregulated in AS- PLWH, both of which are involved in the infiltration of monocytes into the intima 617 

during the formation of atherosclerotic lesions and hence progression of atherosclerosis (52-57). 618 

Similarly, scBONITA identified genes critical to the atherosclerotic process in the leukocyte 619 
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transendothelial migration pathway trained on the monocyte subpopulation. Specifically, ROCK1 and 620 

ROCK2 are stimulated by atherogenic stimuli, such as oxLDL. ROCK activation leads to various 621 

pathophysiological changes include endothelial dysfunction, migration and angiogenesis, migration, 622 

proliferation and differentiation in SMCs and vascular remodeling (121, 122). ROCK inhibitors such as 623 

statins have been recently shown to attenuate atherosclerosis by inhibiting ROCK1 and ROCK2 and 624 

consequently inhibition of altered chemotaxis of macrophages and its transformation into foam cells 625 

(123). The dysregulation of the glucagon signaling pathway, cAMP signaling, PI3K-AKT signaling and 626 

proteoglycans in cancer pathways indicate that in AS+ PLWH, dysregulations in glucose metabolism 627 

induce expression of adhesion molecules by the vascular endothelium resulting in increased monocyte 628 

transendothelial migration (66, 124). In this manner, scBONITA revealed novel insights into pathway 629 

regulation upon atherosclerosis. 630 

Pathway analysis with scBONITA shows that lipid metabolism and cell migration are dysregulated in 631 

AS+ PLWH across all cell subpopulations. This effect is most clearly seen in the case of the PI3K-AKT 632 

signaling pathway, which is dysregulated in all cell subpopulations (Figures 4 – 5, Supplementary Table 633 

3). The pathways that are upstream and downstream of PI3K-AKT signaling are, however, dysregulated 634 

in different subpopulations, suggesting that the activation and effector mechanisms of this signaling 635 

cascade vary by cell type. While there appears to be no strong evidence for apelin expression in B cells, 636 

the apelin signaling pathway was upregulated in B cells naïve -1 derived from AS+ PLWH and 637 

adipocytokine signaling pathway was downregulated in B cells naïve -2 derived from AS+ PLWH, along 638 

with PI3K-AKT signaling and MAPK signaling. The cardioprotective effect of apelin is modulated by 639 

(amongst other routes) the PI3K-AKT signaling and MAPK signaling pathways (80-82). It is also shown 640 

to be upregulated in human atherosclerotic coronary arteries and colocalized with markers for 641 

macrophages (125, 126). PI3K-AKT signaling is also dysregulated in CD4+ T cells (Figure 4B), as is its 642 

upstream signaling pathway cytokine-cytokine receptor interaction, suggesting a different mechanism of 643 

activation of PI3K-AKT signaling in this cell type.  644 
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We used the scBONITA pipeline to infer pathways involved in the progression of HIV infection from an 645 

independent, publicly available scRNA-seq dataset derived from 4 subjects before and after HIV infection 646 

and compared these pathways to those identified in the progression of atherosclerosis in PLWH. 647 

scBONITA-RD was able to successfully learn regulatory rules for KEGG pathways when trained on this 648 

dataset (Supplementary File 1, Supplementary Figure 4).  Several pathways dysregulated upon HIV 649 

infection were also dysregulated in PLWH with AS (Figure 3A, Figure 4A, Supplementary File 1, 650 

Supplementary Figure 5, Supplementary Table 6). Among the dysregulated pathways, the proteoglycans 651 

in cancer pathway, which is linked to cell migration and adhesion, and the axon guidance pathway, which 652 

is linked to cytoskeletal reorganization and Rho GTPase signaling and has been suggested to be a special 653 

case of cell migration that is active in many cell types, are both also suggestive of changes occurring in 654 

cell migration of cytotoxic T cells due to HIV infection (127-130). Interestingly, both these pathways are 655 

also linked to the cytokine - cytokine receptor interaction pathway. cAMP signaling negatively regulates 656 

the production of PI3K-AKT signaling and hence the transcription of pro-inflammatory cytokines via 657 

PKA, and positively regulates the transcription of anti-inflammatory cytokines via PKA and CREB. 658 

Decreased PI3K-AKT signaling results in decreased cell migration (131). The PI3K-AKT signaling, 659 

cAMP signaling, and cellular senescence pathways were dysregulated in the population of monocytes 660 

derived after one year of HIV infection and in monocytes derived from PLWH with AS, further indicating 661 

an HIV-induced dysregulation in cell migration processes. These conclusions were further borne out by 662 

the enrichment analysis of genes from these pathways that were upregulated after HIV infection and in 663 

atherosclerosis (Figure 7).  664 

To map cells to distinct signaling modes of the pathways described above, we developed scBONITA’s 665 

attractor analysis capabilities. Attractors are regions in the state space of a dynamic system towards which 666 

simulation trajectories are “pulled” or attracted. These attractors and the propensity of simulation 667 

trajectories to end in these attractors (i.e., the size of the attractor basins) are characteristics of a specific 668 

network with a specific set of regulatory rules. Previous works have suggested that these steady states 669 
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correspond to observable cell states, or hallmarks of specific phenotypes such as cell type differentiation, 670 

disease state, or drug treatment (132-137). These studies show that even simple dynamic models capture 671 

rich and nuanced cell behaviors. ScRNA-seq allows the study of these dynamic landscapes and their 672 

steady states or attractors at an unprecedented resolution (137-139). scBONITA uses learned rules to map 673 

cells to characteristic signaling states based on the property of Boolean networks to move towards steady 674 

states or attractors. This attractor analysis allows users to characterize cells based on the dynamic 675 

properties of signaling networks, which dictate their phenotype. scBONITA not only identifies these 676 

attractors, but it also allows identification, of the master regulators or switches that control the changes 677 

between these cell states by evaluating scBONITA’s node importance score. Thus, this attractor analysis 678 

provides complex insights into cellular processes in a variety of conditions. 679 

The importance of cell migration and dysregulated lipid signaling in the development of HIV-associated 680 

atherosclerosis was further underscored by attractor analysis with scBONITA. We identified attractors for 681 

all signaling pathways that were identified as being dysregulated upon AS in PLWH in CD8+ T cells and 682 

monocytes, and mapped cells to these identified signaling states. Furthermore, we identified signaling 683 

pathways in which (a) more than one attractor mapped to a significant proportion of cells from the cluster 684 

under consideration and (b) there was a significant association between the attractor to which cells were 685 

assigned and the subject from which these cells were derived. We note that in most cases, multiple 686 

theoretically possibly signaling modes (attractors) were identified but only one dominant signaling state 687 

existed in the dataset. Using the criteria defined above, we selected the insulin resistance pathway in 688 

CD8+ T cells and the leukocyte transendothelial migration pathway in monocytes for further analysis 689 

(140-144). We also note that the insulin signaling pathway exerts immunomodulatory effects on T cells. 690 

Decreased insulin receptor expression (used as a proxy for insulin resistance) during viral infection has 691 

been shown to downregulate components of the infection response, such as proliferation, cytokine 692 

response and glycolysis (140). The three dominant signaling modes of the insulin resistance pathway 693 

differed in the activity of PI3K and AKT genes, which were identified as key regulators of the pathways 694 
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described in the preceding sections, and their downstream effectors, such as CREB and FOXO1. This 695 

suggests the existence of two distinct modes of operation for this signaling pathway corresponding to a 696 

proliferative cell state (activation of PI3K and AKT) and a senescent cell state (transcription of CREB- 697 

and FOXO1-controlled genes) (141, 142, 145). Similarly, we identified two dominant signaling modes for 698 

the leukocyte transendothelial migration pathway in monocytes. These modes differed in the activity of 699 

F11R and PECAM1 genes, which were active in the most common and second most common attractor 700 

respectively. While there is no significant separation between cells derived from AS+ and AS- PLWH 701 

based on the attractors that they map to, the existence of these two signaling modes suggests variation in 702 

the cell states with respect to this pathway in PLWH.  Dysregulation in insulin signaling promotes 703 

PECAM1-mediated migration of monocytes through endothelial cells (146, 147). Emerging evidence 704 

suggests that PECAM1’s loss contributes to atherosclerosis (92). The presence of a signaling state in 705 

which PECAM1 is deficient may therefore indicate that those cells are contributing to a negative 706 

feedback loop of the inflammatory process. The identification of pathway-specific signaling modes that 707 

can be differentiated based on specific gene activities shows that scBONITA can shed light on signaling 708 

mechanisms that are not apparent by analysis of gene expression differences alone. 709 

Although BONITA algorithm has been rigorously validated in our prior publication (46) here we wanted 710 

to evaluate the scRNA-seq data specific parts of the algorithm. We next assessed whether the provided 711 

network topology also significantly influences the node importance score, and the dependence of the node 712 

importance score on the training data. We demonstrated the influence of network topology on the node 713 

importance score (Figure 7B), which is also an indirect measure of the similarity (though not identity) of 714 

the rules inferred by scBONITA for a given network, using different datasets. Thus, scBONITA can 715 

identify characteristic structural properties of networks and use this in conjunction with expression 716 

information to identify dysregulated pathways in a specified condition. We also show that scBONITA’s 717 

node importance score is not correlated with measures of node centrality (Figure 6H). We also assessed 718 

the dependence of scBONITA on the training data to show that scBONITA-RD can narrow down the vast 719 
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possible state space for a Boolean network (Figure 6A). This ability is dependent on the similarity of the 720 

signaling process operating in the cells of the training dataset. scBONITA’s ability to resolve rules 721 

decreases slightly when the heterogeneity of the training dataset increases (Figure 7E, 200% cells). This 722 

restricts the ability of scBONITA to identify regulatory rules that can be experimentally verified. We 723 

expect that this capability will improve significantly when pure cell populations are sequenced, for 724 

example after flow cytometry or pure cell culture. While scBONITA is not strictly dependent on the 725 

clustering method used to classify scRNA-seq data into subpopulations, we used pre-classified 726 

subpopulations to reduce variability and, additionally, to improve the specificity of scBONITA-PA by 727 

restricting the identification of dysregulated pathways to cell types. This is consistent with the typical 728 

gene set enrichment analysis in the context of scRNA-seq data. Additionally, scBONITA-RD requires a 729 

longer runtime (<12 hours in our tests) and more powerful computational capabilities than a typical 730 

analysis pipeline run on scRNA-seq dataset of typical size; however, these resources are usually available 731 

to academic users on computing clusters.  732 

The biological variability and nonspecific distortions of expression due to the technicalities of scRNA-seq 733 

has been previously identified (148), leading to identification of fewer differences across conditions, as in 734 

studies such as (149). In addition, even differential expression methods that are sensitive to the known 735 

characteristic distributions of scRNA-seq data are prone to false discoveries (recently reviewed in 736 

34584091). Our approach implemented in scBONITA allows analysis of genes in the context of their 737 

function in the signaling pathways and network topology of the interactions. This additional information 738 

minimizes the impact of the caveats in the scRNA-seq technology mentioned above. Thus, our analysis 739 

reveals influential genes in several signaling networks in a context-specific manner, thereby predicting 740 

novel targets for further experimental validation or for therapies.  741 
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Conclusions 742 

To study the cellular and immunological processes involved in HIV-associated atherosclerosis, we used 743 

scRNA-seq to profile PBMCs from 8 PLWH, 4 of whom had atherosclerosis. We developed the 744 

scBONITA algorithm to use this scRNA-seq data to (a) infer regulatory rules for networks with a known 745 

topology, (b) perturb and simulate these networks in silico to identify master regulators of these networks, 746 

(c) combined this topology-specific information with expression information to identify dysregulated 747 

pathways in this condition, and (d) grouped cells into characteristic signaling states based on the dynamic 748 

properties of these networks. We validated scBONITA on a publicly available dataset of PBMCs from 749 

persons before and after HIV infection. scBONITA identified key dysregulated pathways that drive 750 

inflammation in people living with HIV. The scBONITA source code, along with documentation and 751 

tutorials, is freely available on https://github.com/Thakar-Lab/scBONITA.  752 
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Supplementary Material 1165 

1. Supplementary File 1:  1166 

 Filename: supplementary_file_1.pdf 1167 

 Description: Contains Supplementary Figures 1 – 6 and corresponding captions.  1168 

2. Supplementary Table 1: 1169 

 Filename: supplementary_table_1.txt 1170 

 Description of Supplementary Table 1: Cluster markers for each subpopulation 1171 

identified in PBMCs derived from AS+ and AS- PLWH are listed in the file 1172 

“supplementary_table_1.csv”. Cluster markers were identified using methods 1173 

implemented in the Seurat R package, as described in the methods.  1174 

3. Supplementary Table 2: 1175 

 Filename: supplementary_table_2.xlsx 1176 

 Description of supplementary table 2: supplementary_table_2 contains 2 worksheets, 1177 

“DE genes in AS+ vs AS-” and “enrichr_kegg”. “DE genes in AS+ vs AS-” contains a 1178 

table of genes differentially expressed between cells derived from AS+ and AS- PLWH 1179 

for each subpopulation in the HIV/AS dataset. The sheet “enrichr_kegg” contains a table 1180 

of KEGG gene sets enriched (identified using the enrichr R package) in the DE genes 1181 

from “DE genes in AS+ vs AS-“.   1182 

4. Supplementary Table 3: 1183 

 Filename: supplementary_table_3.txt 1184 

 Description of Supplementary Table 3: scBONITA infers biologically meaningful 1185 

dysregulated pathways for subpopulations of PBMCs derived from AS+ and AS- PLWH 1186 

in the HIVAS/HIVAS- contrast. The table of dysregulated pathways identified by 1187 

scBONITA in the HIV+/AS+ - HIV+/AS- contrast in all cell clusters is presented in the 1188 

CSV file titled “supplementary_table_3.txt”. 1189 
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5. Supplementary Table 4 1190 

 Filename: supplementary_table_4.txt 1191 

 Description: Pearson correlation coefficients between importance scores for networks 1192 

trained on subpopulations of PBMCs from the Kazer et al dataset and trained on the 1193 

corresponding subpopulations from the HIV/AS dataset. All p values are < 0.01. 1194 

6. Supplementary Table 5 1195 

 Filename: supplementary_table_5.txt 1196 

 Description: scBONITA infers biologically meaningful dysregulated pathways for 1197 

subpopulations of PBMCs derived from HIV- subjects and subjects after 1 year of HIV 1198 

infection (Kazer et al). The CSV file supplementary_table_5.txt lists the dysregulated 1199 

pathways and p-values from scBONITA for every subpopulation. 1200 

7. Supplementary Table 6 1201 

 Filename: supplementary_table_6.txt 1202 

 Description: Comparison of dysregulated pathways, as identified by scBONITA, 1203 

between subpopulations of PBMCs derived from HIV- subjects and subjects after 1 year 1204 

of HIV infection (Kazer et al) and subpopulations of PBMCs derived from HIV+ subjects 1205 

with and without atherosclerosis. The file supplementary_table_6.txt lists the 1206 

dysregulated pathways for subpopulations from the Kazer et al dataset and the 1207 

corresponding subpopulations from the HIV/AS dataset, along with the intersections 1208 

between the pathways dysregulated in the two contrasts. We speculate that intersecting 1209 

pathways and the pathways dysregulated in the HIV/AS contrast are driven by HIV-1210 

associated inflammatory processes. Similarly, pathways that are dysregulated only in the 1211 

HIV-/HIV+ contrast are assumed to be driven by the immediate antiviral response to HIV 1212 

infection. 1213 
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Figures 1214 

 1215 

Figure 1: Characterization of PBMC subpopulations in people living with HIV (PLWH) with (AS+) or 1216 

without atherosclerosis (AS-) (A) t-SNE projection of 16 transcriptionally distinct cell subpopulations, 1217 

shown in distinct colors. Cell clusters are characterized and labeled based on the expression of canonical 1218 

markers, using CIBERSORT.  (B) Subpopulation-level differences between AS+ and AS- PLWH are 1219 

identified using a t-test. Panels C - F show the expression of genes that are differentially expressed (DE) 1220 

between cells derived from AS+ and AS- subjects. DE genes were identified using the Wilcoxon test 1221 

(Bonferroni-adjusted p-value < 0.1, absolute log2 fold change > 0.3.) DE genes between AS+ and AS- 1222 

cells in (C) CD8 T cells/NK resting cells, (D) monocytes, (E) naïve B cells referred to as "B cells naïve - 1223 

2" in panels A and B, and (F) T cells referred to as "T cells CD8/CD4/CD4 naïve" in panels A and B.   1224 
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 1225 

Figure 2: scBONITA pipeline to infer Boolean rules and perform pathway analysis using single cell 1226 

expression measurements (A) Input: scBONITA requires a binarized single-cell RNA-seq dataset as a 1227 

text file, and a prior knowledge network (PKN) describing the activating or inhibitory relationships 1228 

between genes (B) Rule determination: scBONITA infers logic rules that describe the regulatory 1229 

relationships between nodes in the PKN by a global search followed by node-level rule refinement (C) 1230 

Pathway analysis: scBONITA calculates a gene importance score calculated by simulating network 1231 

perturbations with inferred rules and combines these scores with fold-changes from scRNA-seq to 1232 

identify dysregulated pathways in a specified contrast (D) Steady-state analysis: scBONITA simulates 1233 

networks using learned rules to identify steady states which correspond to observed cellular states. 1234 
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 1235 

Figure 3: scBONITA identifies dysregulated pathways in T cells derived from AS+ and AS- PLWH. (A) 1236 

Pathways (y-axis) dysregulated in the AS+ vs AS- contrast in PLWH in clusters of CD8+ T cells. Clusters 1237 

are differentiated by point shape, as shown in the legend. Pathways that have Bonferroni-corrected p-1238 

value < 0.01 (x-axis) and a reduced ERS (see Methods for details) are shown. Pathways labeled with 1239 

“***” were also significantly dysregulated between cytotoxic T cells derived from HIV- subjects and 1240 

subjects after 1 year of HIV infection (36) (B) (Pathways (y-axis) dysregulated in the AS+ vs AS- 1241 

contrast in PLWH in clusters of CD4+ T cells and naïve T cells. Clusters are differentiated by point 1242 

shape, as shown in the legend. Pathways that have Bonferroni-corrected p-value < 0.01 (x-axis) and a 1243 

reduced ERS (see Methods for details) are shown. Pathways labeled with “***” were also significantly 1244 

dysregulated between T cells derived from HIV- subjects and subjects after 1 year of HIV infection (36) 1245 

(C ) Network representation of the AGE-RAGE signaling pathway (Bonferroni-corrected p-value < 0.01) 1246 

in a cluster of CD8+ T cells referred to as CD8 T cells -1 in Figure 1A. Small black intermediate nodes 1247 

indicate that the downstream nodes are controlled by an AND function of the upstream nodes. The size of 1248 

nodes corresponding to genes is proportional to their importance score calculated by scBONITA. Nodes 1249 

are colored according to the magnitude of their fold change between the HIV+AS+ and HIV+AS- groups. 1250 

Violet edges indicate inhibition edges and black edges indicate activation edges.  1251 
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 1253 

Figure 4: scBONITA identifies dysregulated pathways in monocytes derived from AS+ and AS- PLWH: 1254 

(A) Pathways (y-axis) dysregulated in the AS+ vs AS- contrast in monocytes derived from PLWH. Only 1255 

pathways that have Bonferroni-corrected p-value < 0.01 (x-axis) and which have a reduced ERS (see 1256 

Methods for details) are shown. Pathways labeled with “***” were also significantly dysregulated in 1257 

monocytes after one year of HIV infection (36) (B) Network representation of the leukocyte 1258 

transendothelial migration pathway. Small black intermediate nodes indicate that the downstream nodes 1259 

are controlled by an AND function of the upstream nodes. The size of nodes corresponding to genes is 1260 

proportional to their importance score as calculated by scBONITA. Nodes are colored according to the 1261 

magnitude of their fold change between the HIV+AS+ and HIV+AS- groups. Violet edges indicate 1262 

inhibition edges and black edges indicate activation edges. 1263 
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 1265 

 1266 

Figure 5: CD8+ T cell states with respect to the insulin resistance pathway identified by attractor analysis 1267 

with scBONITA. (A) UMAP representation of a cluster of CD8+ T cells (CD8+ T cells – 1 in Figure 1A) 1268 

colored by the attractor to which they are assigned, based on their similarity. The three dominant states 1269 

(PI3KR+ PI3K+, TNFR1+TNF- and TNFR1-TNF+ attractors) are represented by green, blue and orange. 1270 
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All other attractors are collectively labeled in grey. (B) Percentages of CD8+ T cells derived from each 1271 

subject, mapping to the three dominant and all other attractors. (C ) Gene activity (ON- red, OFF- light 1272 

blue) in the three dominant attractors. Only genes that are different between these states are shown. (D) 1273 

Attractor gene values ranging from 0 (blue) to 1 (red) averaged for each individual subject. The top bar 1274 

indicates AS+ (grey) and AS- (black) subjects. 1275 
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 1277 

Figure 6: Monocyte states with respect to the leukocyte transendothelial migration pathway identified by 1278 

attractor analysis with scBONITA. (A) UMAP representation of the cluster of monocytes colored by the 1279 

attractor to which they are assigned, based on their similarity. The two dominant modes (F11R+ and 1280 

PECAM+ attractors) are represented by blue and orange. All other attractors are collectively labeled in 1281 

grey. (B) Percentages of monocytes derived from each subject, mapping to the two dominant attractors 1282 

and all other attractors for the leukocyte transendothelial migration pathway. (C ) Attractor gene values 1283 

for the for the leukocyte transendothelial migration pathway trained on monocytes, ranging from 0 (blue) 1284 

to 1 (red), averaged for each individual subjects. The top bar indicates AS+ (grey) and AS- (black) 1285 

subjects. The genes that differ between the two dominant attractors F11R+ and PECAM+ are highlighted 1286 

by a violet box. 1287 
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 1289 

Figure 7: Performance of scBONITA rule determination. (A) The number of pathways identified as 1290 

significantly dysregulated (Bonferroni-adjusted p value < 0.05) one year upon HIV infection(36), 1291 

between AS+ and AS- PLWH, and the intersections between these sets. Subpopulations from the two 1292 

datasets were matched as shown in Supplementary Table 5. (B) Effects of number of cells on the ERS 1293 

size evaluated by downsampling and augmentation using the largest cluster (“B cells naïve – 1”) from the 1294 

HIV/AS dataset (C) Relation between importance scores in 130 KEGG networks evaluated using CD8+ T 1295 

cells from AS+ and AS- PLWH and from persons before and one year after HIV infection (36). (D) 1296 

Spearman correlations (p < 0.01 for all comparisons) between scBONITA’s node importance score 1297 

(labeled as ‘scBONITA score’) and 6 measures of node centrality (along x and y axis). Correlation 1298 

coefficients are depicted by colors ranging from blue (-1) to red (+1). 1299 
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