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Abstract 
 
Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment 

alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial 

electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in 

digital trials to overcome methodological barriers and increase equity of access. We convened 61 highly-

productive specialists and contacted 8 tES companies to assess 71 issues related to tES digitalization 

readiness, and processes, barriers, advantages, and opportunities for implementing tES digital trials. 

Delphi-based recommendations (>60% agreement) were provided. Device appraisal showed moderate 

digitalization readiness, with high safety and possibility of trial implementation, but low connectivity. 

Panelists recognized the potential of tES for scalability, generalizability, and leverage of digital trials 

processes; although they reached no consensus about aspects regarding methodological biases. We 

further propose and discuss a conceptual framework for exploiting shared aspects between mobile-Health 

tES technologies with digital trials methodology to drive future efforts for digitizing tES trials. 

 

 

Keywords 

Mobile Health, non-invasive neuromodulation, digital health, systematic review, Delphi panel.  
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Graphical Abstract. Consensus Roadmap. 

 
(A) Recruitment process. The study procedure started with defining the components of the research problem by the core research team. After 

defining the problems, two different sets of participants (the steering committee (SC) including key leaders of the field identified by the core 

team and the expert panel (EP) as a more diverse group of experts identified based on the number of publications based on a systematic 

review) were identified and were invited to participate in a Delphi study. The study facilitators (first and last authors) led the communications 

with the SC to design the initial questionnaire through an iterative approach. (B) Evidence synthesis: To collect the available evidence, 

companies producing portable tES (ptES) devices were contacted, based on the companies suggested by the SC and EP to provide details about 

the available devices. For mapping methodological processes of digitizing tES trials, two distinct strategies were performed and embedded into 

the questionnaire, namely SIPOC (Suppliers, Inputs, Process, Outputs and Customer) and SWOT (Strengths, Weaknesses, Opportunities, and 

Threats) assessment were performed and embedded into the questionnaire. (C) Consensus development: In the next phase, the questionnaire 

was validated and finalized via collecting and summarizing opinions. Afterwards, the SC and EP responded to the final questionnaire and results 

were analyzed providing a list of recommendations for running tES digital trials based on a pre-registered consensus threshold. 
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1. Introduction  

 
Transcranial electric stimulation (tES) is a non-invasive neuromodulation intervention that uses electric 

currents applied over the scalp to modify cortical activity and treat neuropsychiatric disorders, and has high 

safety and tolerability 1. Notwithstanding, due to its low-to-moderate efficacy for several conditions, the 

consensus of its readiness for clinical use across indications varies 2,3, and regulatory approvals across 

regions are mixed 4,5, warranting larger-scale clinical trials 6. However, these trials are hampered by the 

need for daily visits to the research center to deliver the necessary number of tES sessions, which limits 

recruitment, harms adherence, increases costs 6, and restricts diversity 7,8. 

 

Unlike other non-invasive neuromodulation modalities, tES devices, by virtue of being affordable and 

battery-powered 9, are portable, making the intervention an appealing brain stimulation modality for patients 

who do not tolerate pharmacotherapy 10 or have difficulty attending for treatment at a clinical centre, In fact, 

several companies have been designing highly-deployable tES devices that could be used to address 

issues of scale, access, and patients’ burden in the context of digital trials - i.e., trials that leverage aspects 

such as recruitment, assessment, and data analyses through the implementation of digital technologies 11. 

These approaches could be further integrated with mobile Health devices, apps and wearables, allowing for 

several new implementations, such as simultaneous combination with cognitive and psychological 

interventions, ecological momentary assessment of behaviors, passive data collection, and digital 

phenotyping 12,13.  

   

However, since protocols and standards for digital trials using mobile tES are still emerging, the challenges 

and opportunities of their implementation processes have not yet been systematically examined. Moreover, 

issues on rigor and reproducibility - for instance, best practices to perform randomization, allocation 

concealment, and sham stimulation - and generalizability - how to fully explore their potential for scalability 

while ensuring adherence and representativeness - have only been discussed in non-digital contexts 7,8,14. 

Finally, implementation challenges are different in low-/middle- income countries, which present lower digital 

literacy, fluence in non-native languages, and wireless connectivity 15; conversely, scalable mobile Health 

interventions have even higher impact potential in such countries 16. 

 

Considering these challenges, we systematically identified non-invasive neuromodulation specialists to 

elaborate and discuss issues related to the extent, processes, and methodological characteristics of 

digitizing non-invasive neuromodulation trials. These findings, supplemented by a systematic scoping 

review of tES clinical research articles and an assessment of the digitalization degree of commercially 

available tES devices, provided a key summary of Delphi-based recommendations for enhancing the 

implementation of digital tES trials.          
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2. Methods 

 

Our protocol was pre-registered at the Open Science Framework (OSF) 17 and is depicted in figure 1. Minor 

deviations occurred (Sup. Material - Appendix 1).     

 

(Figure-1) 

 

Specialist panel 

 

We used a Delphi technique, in which comments and feedback are iteratively discussed 18, for addressing 

challenges and proposing recommendations for digitizing tES trials. Following recent papers 19,20, we initially 

convened a steering committee (SC) group, formed based on the collaborative network of the leading 

authors, to develop structured questionnaires with items using Five-point Likert scales or open questions 

(Supplementary Material - Appendix 2). The SC also provided qualitative feedback on several topics that 

was analyzed by the leading authors and qualitatively described here. Afterwards, the SC interacted with a 

larger expert panel (EP) to rate each item. The EP members were selected among the most productive 

authors in the field, identified through a systematic review of recent tES clinical trials in a 10-year span 

(Sup. Material - Appendix 3). Several interactions were performed between the EP and SC until a final 

manuscript version was assembled. Consensus was achieved by a >60% agreement of all panelists. 

Electronic questionnaires were used in all steps of this process. All members of the SC and the EP 

consented to have their names listed and identified in the manuscript.  

 

Systematic scoping review  

 

A systematic scoping review21 was performed to identify tES reviews, consensus papers, and guidelines to 

select characteristics for composing the questionnaires used in the rating phase (Sup. Material - Appendix 

4). 

 

tES digitalization readiness 

 

Companies producing tES devices were identified through specialist referrals and web search and surveyed 

using structured questionnaires to assess their digitalization readiness, according to connectivity, readiness 

for digital trials, parameter space flexibility, ecological footprint, front-end interface, and data security (Sup. 

Material - Appendix 5). 

 

Process mapping and methodological assessment 
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We used SWOT (Strengths, Weaknesses, Opportunities and Threats) and SIPOC (Suppliers, Inputs, 

Process, Outputs, Customers) approaches to respectively identify external and internal negative and 

positive aspects for digitizing tES trials and map and compare processes related to standard and digital tES 

trials. The methodological assessment was based on perceived challenges and advantages, identified 

through questionnaires, of conducting such trials (Sup. Material - Appendix 2). 

 

Role of the funding source 

This work received no specific funding from any source. 

 
3. Results 

 
 
Specialist panel 
 
For the SC, 34 authors were invited and all agreed to participate. For the EP, out of 43 authors who were 

identified, 14 did not reply to our contacts, and 2 declined to participate. Finally, 27 participants constituted 

the EP (Sup. Material - Appendix 6). Most panelists were men (70%), experienced (78% with > 10 years of 

experience in the field) and between 40 to 49 years-old (44% and 33% of the SC and the EP). They resided 

in the US (SC n=11, EP n=3), Brazil (SC n=6, EP n=5), Germany (SC n=5, EP n=4), and 13 other countries 

(Sup. Material - Appendix 7). Only 15% and 18% of the SC and EP members, respectively, were not 

conducting at least one tES trial with digital features; most were actually principal investigators (83%) of 

such trials. 

 

Systematic scoping review 
 
Our initial search yielded 443 references, and 34 articles met the inclusion criteria of our scoping review, 

including 9 recommendation articles 4,7,22–28, 10 guidelines 3,8,14,29–35, 10 critical reviews 36–45, and 5 expert 

consensus articles 6,7,35,46,472,48–51, which were used for elaborating the study questionnaires (Sup. Material - 

Appendix 8). 

 
tES digitalization readiness 
 

Eight of 13 companies contacted provided feedback. Digitization readiness varied according to their 

wireless connectivity, readiness for digital trials, flexibility of parameter space, ecological footprint, front-end 

interface, and data security. Markedly, current systems have limited wireless connectivity, which is a barrier 

for device-to-device communication with wearables and third-party apps that could enhance portability 

potential (eg, apps collecting biological data, and mobile mental Health apps). Conversely, most systems 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2022. ; https://doi.org/10.1101/2022.03.03.22271837doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

currently present good data security protocols (reported HIPAA or GDPR compliance), flexibility of tES 

parameter space, and readiness for digital trials (figure 2). 

 
(Figure-2) 
 
SWOT assessment  
 
The identified characteristics and quantitative agreement rating composing the SWOT assessment is 

displayed in figure 3. Qualitative aspects are briefly discussed here and detailed in the Sup. Material - 

Appendix 9. 

 

(Figure-3) 

 

Regarding strengths, the panelists agreed on four features: a) high safety, considering previous evidence 

from non-digital trials and studies in humans 35,47,52,53; b) feasibility of self-application, owing to recent 

developments of devices in which electrode placement is fixed, methods for easy strap positioning, and 

friendly end-user interface of mobile tES devices 8; c) being a non-pharmacological intervention; and d) 

affordability, as tES devices are simple to be built in terms of electric engineering 9, costs of high-end 

features (e.g. microprocessors, bluetooth and wireless connectivity, miniaturization) are decreasing over 

time, and self-application saves human resources.  

 

Regarding weaknesses, panelists agreed on two aspects: a) difficulties in remote supervision, raising 

concerns regarding patients themselves manipulating tES devices, which could lead to misuse, diversion of 

the device, or its use outside of medical contexts, further impacting on reproducibility of findings; b) and  

difficulties in obtaining accurate placement of electrodes, as deviations in electrode positioning and 

orientation might affect outcomes 9. Therefore, companies should develop and test new methods for 

assuring correct placement of electrodes 26. Other potential weaknesses did not reach consensus, such as 

concerns related to bioethics, particularly regarding equity to access; increased (compared to on-site tES 

trials) risks of common and serious adverse events 31; and relatively low evidence of clinical efficacy for 

most conditions 3. 

 

Regarding opportunities, six aspects reached agreement: a) scalability, as, compared to on-site tES trials 

that need physical space, staff to apply sessions and commute of participants, digital trials using mobile tES 

devices do not have such constraints, allowing research assistants to monitor several participants at once, 

at any distance from the study centers; b) telemedicine, which has been widely adopted during the COVID-

19 pandemic, facilitating its adoption in digital trials; c) employment of combined mobile Health 

technologies, permitting digital phenotyping 13 and combination with digital interventions when using paired 

wearables and smartphone applications; d) automatization of procedures (see SIPOC below); e) 5G / 
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Internet of Things, which can boost connectivity and data processing, leveraging data collection 13 and 

eventually allowing the development of mobile closed-loop tES systems 38; and f) use of design thinking 

approaches, i.e., customizing mobile tES devices around the patients´ perspectives 54, for instance, to 

accommodate those with physical or cognitive impairments. 

 

Finally, two threats reached consensus: a) recreation and do-it-yourself misuse, which could lead to 

unexpected adverse events and safety issues 24; and b) regulatory status, as medical devices require formal 

regulatory approval in the US 55 and Europe 56, although some tES devices are marketed as wellness 

devices, have regulatory device exemptions 5, or can be approved by similarity 5. Further, mobile tES 

devices could have additional regulations, if framed as mobile Health systems 57. Additionally, two potential 

threats were identified by most of the panel, but did not reach the 60% consensus threshold: a) risks related 

to hacking and cyber-security, as observed in mobile Health devices 58, and b) risks related to confidentiality 

and anonymity. 

 

SIPOC  

 

We identified 4 main processes (recruitment, pre-screening, screening, and participation) in which 

digitization and automatization procedures can leverage mobile tES trials (Table 1). The panelists noted that 

trials might not be purely digital or analog, and different degrees of digital features can occur at each 

process. For instance, participants can be recruited through social media, but screened onsite. Moreover, 

digital processes can provide enhanced metrics to adjust processes, recruit faster, and follow participants 

for longer periods. Finally, digitization processes provide scalability due to the use of digital assessments 

and telemedicine.  (Table 1).  

 

(Table-1) 

 

Methodological aspects 

 
 

The panelists examined 24 methodological aspects of digital trials using mobile tES devices, reaching 

consensus in 12 of them (figure 4). They are briefly discussed here and detailed in the Sup. Material - 

Appendix 10. 

 

(Figure-4) 

 

Of the 12 aspects that reached consensus, 10 were perceived as advantages of digital trials, which included 

a) the adoption of different study designs, including b) adaptive designs, as adaptation rules can be 
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performed automatically and remotely whether data are collected and analyzed by mobile tES systems. 

Panelists also considered that c) tES devices are already sufficiently developed to be used remotely, which 

allows for d) longer follow-up periods and e) higher recruitment rates, being f) faster and more efficient than 

on-site trials. Also, g) greater external validity compared to on-site trials were perceived. Finally, other 

advantages were the potential for h) collecting more data than on-site trials, i) combination with other 

therapies, and j) scalability. The 2 disadvantages / challenges that reached consensus were: a) the 

necessity of validating new tES parameters, methodologies, and indications first in on-site studies, and b) 

the need of developing better remote assessment methods, such as behavioral clinical scales properly 

designed and validated to be employed remotely.   

 

The items that did not reach consensus mostly pertain to internal validity issues. Interestingly, a significant 

portion of panelists were undecided on these issues (figure 5). Of note, interesting remarks (detailed in Sup. 

Material - Appendix 10) were made for: a) randomization-allocation procedures that are done using either 

specific devices or apps/softwares, but can be vulnerable to contamination biases due to hacking and 

exposure of the randomization list; b) study blinding, as blinding breaking can occur if devices are 

manipulated; c) sham stimulation, which can also be revealed due to device manipulation. 

 

Recommendations 

 
The panelists recommended that teams performing tES digital trials should have members specialized in: a) 

digital marketing strategies, to enhance online recruitment; b) data science and visualization, for data 

collection and analysis; c) front-end interfaces, to enhance user experience; d) back-end programming; e) 

issues related to data security, integrity, anonymity, and replicability 25,26. Also, they suggested that f) a team 

member should be always (“24/7”) available (figure 5). 

 

(Figure-5) 

 

Regarding further research, most panelists recommended that better methods for (a) randomization / 

allocation, and (b) sham should be explored. Also, further research was recommended to develop or refine 

methods to enhance (c) adherence and (d) external validity of the trials. Also, more research should be 

devoted to aspects such as (e) combination of interventions, (f) biobehavioral data collection, (g) enhanced 

data security, and methods to assess (h) serious and (i) unexpected adverse events (details in Sup. 

Material - Appendix 11). 
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4. Discussion 
 
 
By convening a diverse group of 61 worldwide specialists in the field of non-invasive neuromodulation, we 

performed the first systematic assessment and Delphi-based validation of perceived challenges, 

opportunities, methodological issues, and recommendations on digitizing non-invasive neuromodulation 

trials. We used several strategies to organize and describe these assessments, such as processing 

mapping strategies, a systematic scoping review of the literature, iterative rating and validation of structured 

questionnaires by specialists, and assessment of the digital readiness of commercial tES devices. Taken 

together, our findings show that performing digital trials using mobile tES devices has complementary 

advantages and can overcome major on-site tES trial challenges, namely the intensive treatment schedules 
23, transportation costs, accessibility, and scalability 8. By performing trials remotely, dislocation burdens are 

decreased, as well as the need for space at the research center, and of trained staff for delivering tES 

sessions, aspects that increase trial duration 6,59. Additionally, tES devices are highly scalable, as a single 

team member can monitor several people at once, provided that tES devices are easy to manipulate, 

handle, and can be self-delivered. Such scalability gains could be leveraged in faster trials with larger 

sample sizes, longer follow-up periods, and employing digital recruitment strategies. Considering our 

results, we propose and further discuss a conceptual framework for digitizing neuromodulation, combining 

concepts of digital clinical trials with mobile tES (figure 6). 

 

(Figure-6) 

 

Mobile tES devices 

 

To the best of our knowledge, the term “mobile tES” has not been used yet to describe the combination of 

highly-deployable neuromodulation devices paired with other wearables or apps. This terminology frames 

tES in the context of mobile Health devices 57, encouraging the exploitation of contact points between these 

two growing fields. However, even though several issues for deployable and remote use have already been 

addressed (eg, decreasing prices, rechargeable batteries, tailored sponges, sham stimulation, easiness of 

electrode positioning and of programming session stimulation parameters), our findings showed that no 

commercial tES devices have been fully digitized yet, presenting different degrees of online, wired, or 

wireless connectivity. Also, especially for offline devices, methods for restricting the number of sessions 

allowed per day were not identified. Additionally, most systems neither collect active or passive data, nor 

present friendly-user interfaces.  

 

The panelists agreed on several opportunities; however, most are distant from immediate implementation. 

For instance, device-to-device communication ("Internet of Things") would need pairing with third-party apps 
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or wearables, which is not yet available. This limits other perceived opportunities such as digital 

phenotyping, combination with psychological or cognitive app interventions, and seamless automatization 

with other platforms and digital processes. 

 

Methodological challenges, advantages, and processes of digital trials 

 

The impact of digitizing neuromodulation trials on external validity seems mostly positive, considering that 

subjects who would not be enrolled in on-site trials are reached. In fact, on-site trial samples are likely to be 

composed by those with free time and/or living near the clinical center to receive the sessions. 

Notwithstanding, it is still possible that those younger, richer, more educated, with higher digital literacy, and 

living in urban areas are preferentially enrolled in digital trials. Also, if recruitment strategies are performed 

solely using social media, the trial results would have restricted generalizability for people that do not use 

such media. This could be overcome by using segmented digital marketing campaigns. Likewise, attrition 

rates might not necessarily be lower in digital trials - although not needing to return daily to the clinical 

center could decrease burden and minimize dropouts, samples from digital trials might face less 

engagement and more difficulties in self-delivering the sessions. The lack of daily contact with the clinical 

staff could also decrease motivation and increase dropouts. In addition, direct social contact, social support 

and social connectedness outside the digital environment can influence attrition rates of clinical trials. 

Therefore, tele-monitoring and proper interaction with participants, managing their expectations and 

credibility of the team, and reinforcing the need to abide by the study protocol, could avoid dropouts. 

 

Panelists also emphasized that methodological issues that have not been completely addressed in on-site 

trials can be magnified in digital trials 14,26. For instance, if the process of randomization - allocation 

concealment - is hacked from the server and publicly exposed, the entire trial can be lost (or, at least, 

suspended until a new list is generated). Moreover, blinding and sham stimulation issues are not completely 

resolved issues in on-site trials 60, and biases arising from these steps are more likely to occur (eg, sham 

stimulation can be unconcealed by measuring the voltage between electrodes 9) and harm the entire study 

(for example, by exposing methodological vulnerabilities on the Web). Additionally, issues that would be 

minor in on-site trials might be more relevant in online trials. For instance, stimulation sessions can be 

performed in on-site trials appropriately and guarantee adherence 9, but, in digital trials, some degree of 

remote monitoring would be necessary for ensuring these aspects. 

 

Finally, there are unique new challenges for digitizing neuromodulation. Even though cyber-hacking is not 

usually discussed in the environment of clinical trials, government and big company systems are being 

increasingly hacked. Data anonymity and confidentiality are additional aspects of vulnerability more relevant 

than in on-site trials, if, for instance, information is also recorded in the devices, smartphones, or is 
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transmitted remotely. Data collection using standard behavioral scales (for instance, scales for depression) 

and adverse events need to be further validated to be used online and remotely to avoid instrumental 

biases. Finally, even open pre-publication of study protocols, which enhances transparency and 

reproducibility, cannot be fully detailed in digital trials, as a complete description of the groups, blinding 

methods, and sham stimulation of the protocols could be harmful to the internal validity of digital trials 8,14.   

 
Limitations  

 

Although we systematically reviewed the literature for selecting the most productive authors in 

neuromodulation, experts publishing in non-English databases might not have been selected. In addition, 

most of the panelists are from high-income countries, limiting the experience, feedback, and number of 

votes of panelists from low-/middle- income countries, where 85% of the world population lives, and with 

probably additional issues on digitalization, including availability. Moreover, our search might not have 

identified emerging young experts as we have established a threshold based on the number of publications. 

Although we considered different methods for composing the EP, such as “snowball sampling” based on 

recommendations from the SC members, and search of other databases such as clinicaltrials.gov, preprints 

and conference publications, these processes would be non-systematic or involve gray areas in the 

literature. We also did not assess other stakeholders besides people from industry and academia that could 

have been relevant for our work, such as patients, governmental and nongovernmental organizations. 

Moreover, only 8 of 13 companies replied to our contacts, despite several emails that were sent to reach 

them, and even offering the possibility of online meetings to discuss this work. Although we could have 

extracted company information based on public information, we opted for not doing that as some 

information could have been inaccurate. Finally, no large tES digital trials have been finished and published 

yet; therefore, the processes and challenges described here are mostly theoretical and should be iteratively 

updated as the field develops. Interestingly, the lack of consensus on issues related to its disadvantages, 

risks, and biases, with many specialists remaining undecided, indicates that the field is still in its infancy.  

 

Future directions   

 

The recommendations for teams conducting digital neuromodulation trials markedly diverge from on-site 

trials that are centered on clinical specialists and staff trained in performing biomedical procedures. The 

feasibility of these recommendations should be further debated, as they would require more resources. In 

fact, most recommendations fit with companies and for pivotal studies, and not necessarily for teams 

running pilot studies that would not have all the capabilities recommended above. For instance, third-party 

services could be contracted to do specific tasks related to software and hardware development, or such 

aspects could be developed together by researchers and companies. Moreover, recommendations such as 
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a support team being always available for medical urgencies, although optimal, might be unrealistic even 

with large resources. Such issues would need to be carefully discussed with internal review boards and 

ethics committees to guarantee patient safety without harming trial feasibility.  

 

The recommendations for further research in some aspects specifically related to internal validity, and also 

external validity, were largely convergent, reaching 70-80% agreement rates. Taken together, these 

recommendations call for new standards and best practices of fundamental pillars of tES clinical research, 

such as methods for sham stimulation, randomization, allocation and assessment of adverse events. In fact, 

these methodologies have been steadily built over the last decade 6,7,10 and, although challenged in certain 

aspects such as sham and blinding 60,61, they have been largely used in clinical trials 26. Although several 

approaches could be used, in a first step relatively simple randomized studies involving healthy participants 

could use parameters such as blinding efficacy and rate of adverse events as outcome measures, 

comparing whether they are different in those receiving on-site vs. online tES. Pilot studies using mobile tES 

in clinical samples are also encouraged to report their methodological approaches and challenges 62,63.      

 
5. Conclusion 

 
In this first Delphi Panel evaluating opportunities, risks, and methodological issues regarding digitizing tES 

trials, we provided a landscape of this new approach and reached consensus on several recommendations 

that should be evaluated in further studies. The panel of specialists agreed on advantages associated with 

the implementation of tES trials; however, considering the fast-growing digitalization in Medicine and 

Biotechnology, there is a pressing need to better understand how to adapt tES trials to be performed 

remotely, with a clearer knowledge regarding its positive and negative aspects.     
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Table 1. Comparison of SIPOC processes of trials in which digital features are present and absent. 

Digital features Suppliers Inputs Outputs Clients 

Process: Recruitment 

Absent 
Traditional 

Media 
Telephone call or email 

Pool of volunteers 
constrained due to 

geographical barriers 

Pre-screening / 
screening onsite 

teams 

Present 

Targeted Social 
Media and 

Google Ads, 
public 

segmentation 

Electronic forms, ChatBots 
Larger pool of 

volunteers 
Online pre-screening 

/ screening teams 

Process: Pre-screening 

Absent Volunteers 
Onsite checklist of eligibility 

criteria 
Potential Participants 

Onsite screening 
team 

Present Volunteers 
Online assessments, AI 
techniques can increase 

likelihood of inclusion 
Potential Participants 

Online screening 
team 

Process: Screening 

Absent 
Potential 

participants 
Onsite clinical interview; 

written consent 
Participants Onsite clinical team 

Present 
Potential 

participants 

Clinical interviews aided by 
digital assessments; digital 

consent 
Participants Online clinical team 

Process: Participation in the trial 

Absent Participants 
Staff delivers tES sessions 

and assessments 

Completers and 
patients who 
dropped out 

Trial complete; 
possibly follow-up 

studies 

Present Participants 

tES devices shipped to 
participants; online videos 

and telesupport to guide self-
applied tES; digital 

assessments via online 
interviews and mHealth 

technologies 

Completers and 
patients who 
dropped out 

Trial complete; 
possibly follow-up 

studies 

 

The table illustrates how processes of clinical trials can be leveraged using digital approaches. In a) recruitment, volunteers, 

unconstrained by geographical barriers, can fill out electronic forms and be automatically excluded according to eligibility criteria; b) 
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pre-screening, potential participants can be scheduled and contacted automatically for online screening (a step that can be enriched 

by using machine learning algorithms); c) screening, enrolled participants can provide digital consent, have transcranial electric 

stimulation (tES) devices shipped to their homes, and being instructed how to use them via videos and/or augmented reality 

techniques; and d) participation in the trial, interaction with the staff can be mediated by psychiatric chatbots for filtering between 

simple questions, reporting of adverse events and need of medical care. 
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Figure 1: Study workflow. First, the steering committee (SC) was formed, including prominent researchers in the field

supplemented by the results of a systematic review conducted on tES trials, the SC developed the questionnaire, which w

to all participants of the study (SC and expert panel (EP)) to answer it. Simultaneously, companies producing tES device

contacted, based on the companies known by the SC and EP, to provide details about the available devices. Finally,

analyzed the data received from the questionnaire and all participants took part in reporting the results. 
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Figure 2: Digitalization readiness of tES devices. Based on the feedback of 8 out of 13 major transcranial e

current stimulation (tES) companies, we evaluated the readiness of these systems for digital trials, considerin

connectivity (capability of communicating with other devices and the Web, due to presence of Bluetooth, 

3G/4G/5G, and communication with third-party apps), methodological aspects (randomization, sham, blinding, 

data collection, optional data collection, and optional research dashboard), parameter space flexibility (c

intensity, session duration, number of sessions, electrode positioning), ecological footprint (rechargeabilit

replaceability of batteries, recyclability and reusability of sponges, and recyclability of devices), front-end int

(smartphone app, touch screen, device itself, no interaction), and data security (compliance to laws such as G

mention of encryption and anonymization procedures, and option for not collecting sensitive data). The question

and rating systems are described in the Sup.Material-Appendix 5. 
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Figure 3: SWOT (Strengths, Weaknesses, Opportunities and Threats) assessment for digital tES trials. This figure depicts the ratin

participants (24 from the steering committee and 31 from the expert panel) for the ptES clinical trials strengths and opportunities

threats and weaknesses (B). Each item was rated from strongly disagree to strongly agree. In ratings for the potential streng

opportunities of tES clinical trials (A), all of the items have reached the 50% threshold of agreement (rated as either agree or strongly a

more than 50% of the respondents). These items have also reached a more stringent threshold of 60%. However, in ratings for the p

threats and weaknesses of ptES clinical trials (B), two of the items (2.4. Skin burns as a relevant side effect, and 2.6. Higher rates of

adverse events) did not reach the 50% threshold. Items are represented by their summary in the figure. Full text of the items is pro

Supplementary Tables 1 and 2. tDCS=transcranial direct current stimulation. ptES=portable transcranial electrical stimulation. D

yourself.. 
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Figure 4: Ratings for advantages and challenges of conducting tES digital trials. This figure depicts the ratings of 55 raters (24 f

steering committee and 31 from the expert panel) for methodological aspects of tES. Each item was rated from strongly disagree to 

agree. In ratings for the advantages of transcranial electric stimulation (tES) digital trials from a methodological perspective, only one it

Greater internal validity) did not reach the agreement threshold of 50% (rated as either agree or strongly agree by more than 50%

respondents). All of the other items in this category also reached a more stringent threshold of 60%. However, in ratings for challenge

digital trials from a methodological perspective, 9 items (2.3. Increased risk for suicidality, 2.4. Increased risk for manic switch, 2.5. In

risk for cognitive effects, 2.6. Increased risk for SAEs, 2.7. ptES will substitute on-site, 2.8. More dropouts, 2.9. More selection biase

More randomization biases, and 2.13. More assessment biases) did not reach the 50% threshold of agreement. With a more stringent th

of 60%, two additional items (2.11. More blinding biases and 2.12. More sham biases) dropped out from the agreement. Items are repr

by their summary in the figure. Full texts of the items are provided in Supplementary Table 3. ptES=portable transcranial electrical stim

SAE=serious adverse event. 
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Figure 5: Ratings of the tES clinical trials team features and general recommendations on digitizing tES trials. This figure depicts the r

55 participants (24 from the steering committee and 31 from the expert panel) for the ptES clinical trials team features (A) and

recommendations for digitizing ptES clinical trials (B). Each item was rated from strongly disagree to strongly agree. In ratings for t

clinical trials team features (A), all of the items have reached the 50% threshold of agreement (rated as either agree or strongly agree 

than 50% of the respondents). These items have also reached a more stringent threshold of 60%. Similarly, in ratings for the 

recommendations for digitizing ptES clinical trials (B), all of the items have reached the 50% threshold of agreement. However, with

stringent threshold of 60%, one item (8. Develop methods to assess AEs) dropped out from the agreement. Items are represented 

summary in the figure. Full text of the items is provided in Supplementary Tables 4 and 5. ptES=portable transcranial electrical stim

AE=adverse event. SAE=serious adverse event. 

 

 
  

27 

atings of 

 general 

the ptES 

by more 

general 

h a more 

by their 

mulation. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2022. ; https://doi.org/10.1101/2022.03.03.22271837doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 

Figure 6: A conceptual framework for digitizing neuromodulation. As depicted on the left side of the figure, transcranial electric 

stimulation devices had been relatively simple, essentially using batteries connected to electrodes to deliver constant currents, 

and contain few (micro) electronic components. Although portable and safe, they had not been specifically designed for use 

outside hospital or academic center settings. New and future generations of tES will be mobile Health tES systems using digital 

technologies for improving health outcomes. They are and will be smaller and lighter than previous generations, possessing 

wireless connectivity. Such devices are already used at home and are self-delivered, usually with some degree of remote 

supervision. Their use will be supported by proprietary or third-party apps and wearables. Resulting together with the 

aforementioned concept as digitizing neuromodulation, the right side of the figure shows digital trials as clinical trials that use 

digital features to enhance recruitment, assessment, and data analysis and could unleash the full potential of tES regarding 

scalability and equity of access. There are many similarities between the assumptions of digital trials and the capabilities of mtES, 

which are discussed in this work. EMA=Ecological momentary assessment. mtES=mobile transcranial electrical stimulation. 
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