An Alzheimer's disease pathway uncovered by functional omics:
the risk gene CELF1 regulates KLC1 splice variant E expression,
which drives Aβ pathology

Masataka Kikuchi1,*, Justine Viet2,*, Kenichi Nagata3, Masahiro Sato4, Géraldine David2, Yann Audic2, Michael A. Silverman5, Mitsuko Yamamoto4, Hiroyasu Akatsu6,7, Yoshio Hashizume8, Kyoko Chiba9, Shuko Takeda10,11, Shoshin Akamine12,13, Tesshin Miyamoto4, Ryota Uozumi4, Shihori Gotoh4, Kohji Mori4, Manabu Ikeda4, Luc Paillard2,#, Takashi Morihara4,14,9

1Department of Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Japan.
2Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000 Rennes, France.
3Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
4Department of Psychiatry, Graduate School of Medicine, Osaka University, Suita, Japan.
5Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, Canada.
6Department of Community-based Medical Education, Graduate School of Medicine, Nagoya City University, Nagoya, Japan.
7Chouj Medical/Neuropathological Institute, Fukushima Hospital, Toyohashi, Japan.
8Institute of Neuropathology, Fukushima Hospital, Toyohashi, Japan.
9Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan.
10Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan.
11Osaka Psychiatric Medical Center, Osaka Psychiatric Research Center, Hirakata, Japan.
12Department of Mental Health Promotion, Graduate School of Medicine, Osaka University, Suita, Japan.
13Health and Counseling Center, Osaka University, Toyonaka, Japan.
14Center for Twin Research, Graduate School of Medicine, Osaka University, Suita, Japan.

*co-first authors
#co-last authors
e-mail: luc.paillard@univ-rennes1.fr, morihara@psy.med.osaka-u.ac.jp
<Abstract>

In an era when numerous disease-associated genes have been identified, determining the molecular mechanisms of complex diseases is still difficult. The CELF1 region was identified by genome-wide association studies as an Alzheimer’s disease (AD) risk locus. Using transcriptomics and cross-linking and immunoprecipitation sequencing (CLIP-seq), we found that CELF1, an RNA-binding protein, binds to KLC1 RNA and regulates its splicing. Analysis of two brain banks revealed that CELF1 expression is correlated with inclusion of KLC1 exons downstream of the CELF1-binding region identified by CLIP-seq. In AD, low CELF1 levels result in high levels of KLC1 splice variant E (KLC1_vE), an amyloid-β (Aβ) pathology-driving gene product. Cell culture experiments confirmed regulation of KLC1_vE by CELF1. Analysis of mouse strains with different propensities for Aβ accumulation confirmed that Klc1_vE drives Aβ pathology. Using omics methods, we revealed the molecular pathway of a complex disease supported by human and mouse genetics.

<Introduction>

The number of disease-associated loci that have been identified by powerful genome-wide association studies (GWASs) is rapidly increasing, but functional analysis of the identified loci and studies of how the risk genes contribute to diseases are still challenging. As a result, there has been precipitous increase in the number of associated loci and genes identified whose function in disease is unknown. Many researchers have suggested that the innovative use of functional omics will be crucial to interpret GWAS results and reveal molecular pathways in complex diseases in the post-GWAS era, but concrete strategies are still being explored.

In Alzheimer's disease (AD), there is a sharp disparity between the criticality of the disease, including the large number of patients and the burden of care, and the availability of treatments. There is also a large gap between the complexity of AD and the paucity of molecular pathogenic mechanisms known to researchers. As a result, the number of target molecules for new drug development is extremely limited. Therefore, there is a strong need to identify new molecular pathways for AD that are supported by genetics, with the added reason that drugs that target genetically supported molecular pathways have a higher success rate in clinical trials. CELF1, studied here, has been identified as a risk locus in four large GWASs, but similar to many other risk loci, the lead single nucleotide polymorphisms (SNPs) differ among genetic studies, and all of these SNPs are in noncoding regions. Therefore, as with many other loci, it is difficult to analyze the function of the CELF1 locus using genomic variation information.

Previously, we identified KLC1 splice variant E (KLC1_vE) as a gene product that drives amyloid-β (Aβ) pathology, a core pathology of AD, by performing an omics study that differed from a GWAS.
We noted that the DBA/2 mouse strain accumulates less Aβ than the C57BL/6 and SJL strains and analyzed the expression profiles of genes specific to DBA/2 mice. We found that the Klc1 allele of DBA/2 mice reduced Aβ accumulation by decreasing Klc1_vE expression. In cultured cells, we confirmed that knockdown of KLC1_vE suppressed Aβ production. In the human brain, we also found that the KLC1_vE level was higher in AD patients than that in control subjects, although the regulatory mechanism of KLC1_vE in the human brain remains to be elucidated. Our unique transcriptomics approach focusing on mouse genetic backgrounds revealed that aberrant splicing of KLC1 drives Aβ pathology.

The goal of this study was to elucidate the function of the CELF1 locus and to uncover new molecular pathways for the development of AD. The impetus for this study originated from the integration of two omics approaches: exon array analysis indicated that CELF1 knockdown resulted in highly altered exon expression of KLC1, while cross-linking immunoprecipitation sequencing (CLIP-seq) revealed binding of the CELF1 protein to KLC1 RNA. Two types of analyses, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNA-seq), of two brain banks, including one with Japanese and one with American Caucasian (AMP-AD Mayo) donors, revealed that CELF1 expression levels are strongly correlated with KLC1 splicing, including KLC1_vE. Cell culture experiments confirmed regulation of KLC1_vE by CELF1. Analysis of seven mouse strains reported to have different propensities for Aβ pathology reconfirmed that the Klc1 allele and Klc1_vE expression levels determine the propensity for development of Aβ pathology. By effectively utilizing such a wide variety of omics approaches, we discovered that decreased expression of the risk gene CELF1 upregulates KLC1_vE expression and promotes Aβ pathology, which is a new molecular pathway for the development of AD.
<Results>

Fig. 1 Regulation of KLC1 splicing by CELF1 in HeLa cells demonstrated by exon array and cross-linking and immunoprecipitation sequencing (CLIP-seq)

a. The top ten SurePrint G3 human exon array probes (Agilent) with the highest splicing indices (in absolute values) following CELF1 knockdown. The splicing index (SI) is the log2 ratio of the normalized probe intensity in depleted cells to the probe intensity in control cells. Three probes for the KLC1 gene are shown in red.

b. Binding of CELF1 protein to KLC1 RNA revealed by CLIP-seq. The genomic location of alternative exon 15, which is present in splice variants A, B, and C of KLC1 RNA (upper), is shown. The CELF1 binding site in exon 15 of KLC1 was revealed by the accumulation of CLIP-seq reads (bottom). Please note the accumulation of reads at the boundary between vB exon 15 and vC exon 15.

c. Sequence of the 3' end of vB exon 15 (purple nucleotides) and the downstream region (black nucleotides, specific for vC exon 15). Cross-link induced mutation sites in CLIP-seq are shown in red boxes.

Integration of two omics approaches unexpectedly uncovered a strong link between CELF1 and KLC1

CELF1 is an RNA-binding protein that regulates the expression and splicing of many genes. CELF1 plays a role in cardiac development, myotonic dystrophy, and cancer12,13, but its function in AD has not been elucidated, even though the CELF1 locus has been associated with AD6,7,8,9. We found a direct relationship between CELF1 and KLC1 in data obtained by integrating two omics studies that we previously conducted14,15. First, transcriptomics data from HeLa cells showed that three of the ten exons most strongly altered by CELF1 knockdown were KLC1 exons (Fig. 1a). Second, CLIP-seq, which comprehensively identifies RNA regions that are bound by RNA-binding proteins, revealed that the CELF1 protein binds to KLC1 RNA in HeLa cells (Fig. 1b). Specifically, a major CELF1 binding cluster (Fig. 1b) was detected on a complex alternative exon of KLC1 labeled as exon 15 in previous
studies16,17. These findings were confirmed by detection of "cross-linking-induced mutation sites", which revealed the positions of nucleotides within exon 15 that interacted with CELF1 protein in CLIP-seq experiments18 (Fig. 1c). These results indicate that the regulation of \textit{KLC1} exon expression by CELF1 observed in Fig. 1a is likely a direct effect of CELF1 binding to \textit{KLC1} RNA. These two omics approaches suggest that CELF1 directly and potently regulates \textit{KLC1}. Because \textit{CELF1} is located in a risk locus for AD6,7,8,9 and \textit{KLC1} regulates amyloid pathology10,19, the core pathology of AD, we considered whether this unexpected discovery might lead to a new understanding of AD pathogenesis in humans.
Fig. 2 Expression levels of CELF1 and KLC1 splice variants in the first human brain bank

The mRNA expression levels of brains of Japanese patients pathologically diagnosed with Alzheimer’s disease (AD) (n=10, shown in red) and those of control subjects (n=14, shown in blue) were measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR)

a. Expression levels of CELF1 in AD and control brains. Long and short green bars indicate the mean and S.E. The mean expression level in the control group was normalized to 100.

b. Expression levels of CELF1 in brains with the risk allele C rs10838725 of CELF1 (TC or CC: n=9) or no risk allele (TT: n=15).

c. Correlation between CELF1 levels and each splice variant of KLC1 in the human brain. P values less than 0.01 (0.05/5 tests) according to Bonferroni correction for multiple testing were considered significant (continuous line).
In the human brain, CELF1 expression levels correlate with those of the major splice variants of KLC1, including KLC1_vE.

To examine whether the regulation of KLC1 by CELF1 observed in cultured cells also occurs in the human brain, we quantified the expression levels of CELF1 and the major splice variants of KLC1 in autopsied brains. A hypothesis-free study identified KLC1_vE as a gene product that drives Aβ pathology in AD10,19. In brains of human AD patients, KLC1_vE levels are elevated, but the molecular mechanisms that regulate KLC1_vE expression in the human brain remain elusive. Thus, the unexpected finding of functional omics analysis that CELF1 regulates expression of KLC1 exons (Fig. 1) prompted us to investigate this issue.

To determine whether CELF1 and KLC1 coexist in the same cells in the brain, which is a prerequisite for the binding to and regulation of KLC1 by CELF1 observed in cultured cells, we examined a single-cell RNA sequencing database20 (PanglaoDB, https://panglaodb.se/), which demonstrated that CELF1 and KLC1 coexist in the same cells, mainly consisting of neurons (Supplementary Fig. 1a).

We then measured the levels of CELF1 and major KLC1 variants in AD (n=10) and control (n=14) brains from Japanese individuals. We found a trend toward decreased CELF1 expression (−24.4%, p=0.090) in AD brains compared with that in control brains (Fig. 2a). The decrease in the CELF1 level was significant (−31.9%, p=0.021) when samples were differentiated by risk SNPs (rs10838725)8 for CELF1 instead of pathological diagnosis (Fig. 2b). Furthermore, we found a strong correlation between the expression levels of CELF1 and those of most major splice variants of KLC1. KLC1_vA (R2=0.21, p=0.023) tended to be positively correlated with CELF1, and KLC1_vB (R2=0.44, p=0.0004) was significantly positively correlated with CELF1 (Fig. 2c). KLC1_vC (R2=0.61, p<0.0001), vD (R2=0.38, p=0.001), and vE (R2=0.64, p<0.0001) were significantly inversely correlated with CELF1. Next, to examine whether secondary effects of AD pathology are involved in these strong correlations between CELF1 and KLC1 splice variants, we analyzed only control brains without AD pathology. Although the statistical significance was reduced because of the lower number of samples, the correlations between CELF1 and KLC1 splice variants were also observed in control brains (Supplementary Fig. 2). Taken together, these observations suggested that the relationship between CELF1 and KLC1 splice variants, including KLC1_vE, may be a direct and fundamental relationship in the brain and not a consequence of AD pathology.
Fig. 3 Expression levels of *CELF1* and *KLC1* exons in the second human brain bank

The American Caucasian RNA-seq dataset from AMP-AD Mayo was analyzed by DEXSeq.
a. Expression levels of CELF1 (ENST00000395290) (X-axis) in Alzheimer’s disease (AD) (n=82, red) and control (n=57, blue) brains analyzed by DEXSeq. CELF1 levels were significantly (p=0.023) lower in AD brains than those in control brains.

b. The data are similar to those in a, but CELF1 levels in samples from AD brains are compared with those from brains of neuropathologically confirmed progressive supranuclear palsy (PSP) patients lacking Aβ pathology (n=37, blue). CELF1 levels were significantly (p=0.0002) lower in AD brains than those in PSP brains.

c–f Relative expression levels of KLC1 exons (feature IDs). The horizontal axis represents the KLC1 exon (indicated by the feature ID used in DEXSeq). "-" indicates an intron spanning region. Red boxes indicate the CELF1 binding region (E077–080). The right end is the 3’ end. The vertical axis indicates the logarithm of the relative expression level (Log2). A dark color indicates an adjusted p<0.2; a light color indicates an adjusted p≥0.2.

c. Expression levels of KLC1 exons (feature IDs) in AD relative to control brains. Red and blue indicate high and low levels, respectively, in AD brains.

d. Expression levels of KLC1 exons (feature IDs) in AD brains relative to those from PSP patients. Red indicates high levels in AD brains; blue indicates high levels in PSP brains.

e. Expression levels of KLC1 exons (feature IDs) in the lower quartile relative to the higher quartile of CELF1 in the combined AD and control samples. Red indicates high levels in the CELF1 lower quantile; blue indicates low levels in the CELF1 lower quantile.

f. Expression levels of KLC1 exons (feature IDs) in the lower quartile relative to the higher quartile of CELF1 in control samples only.

Below, the locations and sizes of the exons of the major KLC1 splice variants are shown with the variants positively (blue) and negatively (red) correlated with CELF1 levels in the human brain (see Fig. 2).

Alternative KLC1 exons downstream of the CELF1 binding region were highly expressed in AD brains and those with low CELF1 levels

To confirm and further elaborate the relationship between CELF1 and KLC1 in the human brain, we examined a large number of autopsied brains of different ethnicities using different methods. RNA-seq data from autopsied brains of American Caucasian AD (n=82), control (n=57), and progressive supranuclear palsy (PSP) groups (n=37) provided by AMP-AD Mayo11 were analyzed. Similar to the RT-qPCR analysis of Japanese autopsied brains (Fig. 2a), we observed lower CELF1 levels in AD brains than those in control brains (Fig. 3a, p=0.023). In addition, the CELF1 level was significantly lower (p=0.0002) in AD brains than in those of patients with PSP (n=37), which is a neurodegenerative disease with no Aβ pathology (Fig. 3b). This suggested that the low CELF1 level observed in AD is not a common molecular mechanism in neurodegenerative diseases.

Because many KLC1 exons have numerous alternative splice sites, we used DEXSeq21 to analyze
RNA-seq data and calculated the expression levels of exons with multiple splice sites by dividing them into multiple feature IDs. The genomic location, expression levels, and statistics of each feature ID are shown in Supplementary Table 1. The expression levels of many exons (feature IDs) at the 3′ end16 (feature IDs E067–E097), where the major alternative exons are concentrated (Fig. 3 bottom), were significantly altered in AD brains compared with those in control brains (Fig. 3c). Feature IDs E084, E093, and E094–096, which are included in $KLC1_vE$, were elevated in AD samples, consistent with a previous report10, indicating that $KLC1_vE$ measured by RT-qPCR was elevated in AD brains. The feature ID expression pattern in AD relative to PSP brains (Fig. 3d) was similar to that in AD relative to control brains (Fig. 3c), suggesting that this $KLC1$ feature ID expression pattern is AD-specific rather than common to neurodegenerative diseases.

To investigate the relationship between this AD-specific KLC1 feature ID expression pattern and CELF1 expression levels, we compared $KLC1$ feature ID expression in brains with low and high CELF1 expression levels (Fig. 3e). The expression of many $KLC1$ feature IDs was significantly different in brains with low CELF1 expression from that in brains with high CELF1 expression, and the pattern was surprisingly similar to the AD-specific pattern. Furthermore, even when only control brains were analyzed, the $KLC1$ feature ID expression pattern was still significantly altered in brains with low CELF1 levels, and the expression pattern was similar to the AD-specific pattern (Fig. 3f).

The control brain results only suggest that the AD-specific expression pattern of $KLC1$ feature IDs in brains with low CELF1 expression is not caused by an AD pathogenic mechanism independent of CELF1 but is caused by a direct relationship between CELF1 and $KLC1$. The low levels of feature IDs E073–076 and high levels of E080–097 caused by low CELF1 levels (Fig. 3e and f) were consistent with the positive correlation of $KLC1_vA$ and vB, levels with CELF1 levels and the inverse correlation of $KLC1_vC$, vD and vE levels with CELF1 levels (Fig. 2c).

Notably, CLIP-seq showed that the CELF1 protein binds to feature IDs E077–E080 (red boxes in Fig. 3c–f), which are immediately upstream of the feature IDs that are elevated in both AD and low CELF1-expressing brains.

In summary, the DEXSeq analysis of RNA-seq data was consistent with the high $KLC1_vE$ levels in AD brains10 and the correlation between major splice variants of CELF1 and $KLC1$ (Fig. 2c) shown by RT-qPCR. The DEXSeq results also showed that the expression pattern of $KLC1$ exons (feature IDs) was highly similar in AD and low-CELF1 brains and suggested that low CELF1 levels upregulated the expression of $KLC1$ exons downstream of the CELF1 binding site, resulting in high $KLC1_vE$ levels.
Fig. 4 CELF1 regulates KLC1_vE expression levels in HEK293 and HeLa cells

a. KLC1_vE mRNA levels in CELF1 knockdown HEK293 cells measured by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Suppression of CELF1 by three siRNAs (n=4/treatment) induced KLC1_vE expression. ** p<0.01, *** p<0.001, **** p<0.0001 Dunnett's multiple comparison test. Error bars indicate S.E.

b. KLC1_vE mRNA levels in HEK293 cells overexpressing CELF1 measured by RT-qPCR. Induction of CELF1 (n=4/treatment) repressed KLC1_vE expression (−27.7%, p=0.0008).

c. Percentage of KLC1_vE mRNA levels relative to all major variants of KLC1 in HeLa cells measured by conventional RT-PCR. Repression of CELF1 decreased KLC1_vE expression (−45.1%, p=0.02, three independent experiments).

d. Changes in the expression of alternative exons of KLC1 by CELF1 knockdown in HeLa cells shown by exon array analysis. Upper, alternative exons on the 3' side of the major splice variants of KLC1 are shown. Note that because of the alternatively spliced donor sites, the size of the left exon differs between vC and vD and those of the other variants. Color code, red and blue bars indicate variants that are positively and negatively correlated, respectively, with CELF1 levels in the human brain (see Fig. 2). Middle, changes in expression of the alternative exons of KLC1 by CELF1 knockdown are shown. The vertical axis shows the splicing index (SI) of exon array probes (CELF1 knockdown samples compared with control samples). The indicated probe IDs are three of the 10 probes most substantially altered by CELF1 knockdown shown in Fig. 1a. Red and blue indicate higher and lower inclusion levels following CELF1 knockdown. Bottom, the CELF1 binding region identified by cross-linking immunoprecipitation sequencing is shown. The major CELF1 cross-linking immunoprecipitation sequencing peak (dotted purple line) delineates the boundary between increased or decreased KLC1 exon expression.
The control of KLC1_vE expression by CELF1 was confirmed in cultured cells

Because CELF1 has been suggested to regulate KLC1_vE expression in the human brain, we performed cell culture experiments to directly confirm the causal relationship between the two molecules. We examined KLC1 in three cell lines using three different methods: RT-qPCR (Fig. 4a and b), conventional RT-PCR (Fig. 4c and Supplementary Fig. 3), and exon arrays (Fig. 1a, b and Fig. 4d). In HEK293 cells, knockdown of CELF1 significantly (37.5%–61.1%, 0.0016<0.0001) increased KLC1_vE expression (Fig. 4a), and overexpression of CELF1 significantly (27.4%, p=0.0008) decreased KLC1_vE expression (Fig. 4b). The relationship between CELF1 and KLC1_vE observed in HEK293 cells was consistent with that observed in the human brain, and the HEK293 cell experiment results confirm that CELF1 expression levels determine KLC1_vE expression levels.

We also examined KLC1_vE regulation in SH-SY5Y (Supplementary Fig. 3) and HeLa cells (Fig. 4c–d) and found that, in contrast to HEK293 cells and the human brain, KLC1_vE was significantly reduced in SH-SY5Y (p=0.0005) (Supplementary Fig. 3) and HeLa cells (p=0.02) (Fig. 4c) by CELF1 knockdown. Therefore, we performed a detailed reanalysis of the exon array of CELF1 knockdown HeLa cells shown in Fig. 1a. Fig. 4d shows the genomic locations and expression levels of KLC1 probes, including the three probes included in the top 10 CELF1 knockdown expression changes (Fig. 1a), and the CLIP-seq results of the CELF1 protein (Fig. 1b). CELF1 knockdown increased KLC1 exon expression in the CELF1 binding region and that of exons immediately upstream of this region and decreased expression of all exons immediately downstream of the CELF1 binding region. Although the direction of CELF1 regulation was opposite to that of the human brain, the switch in the increase and decrease of KLC1 exons upstream and downstream of the CELF1 binding region was consistent with that in the human brain.

Taken together, these results suggest that KLC1_vE expression is not solely determined by CELF1, but that cell- and tissue-specific factors determine the direction of regulation. More importantly, CELF1 regulation of KLC1_vE expression was observed in all cells and tissues examined.
Fig. 5 Mouse strains with enhanced amyloid-β (Aβ pathology share a common Klc1 allele and express higher Klc1_vE levels, while those with suppressed Aβ pathology share a different Klc1 allele and express lower Klc1_vE levels

a. The severity of Aβ pathology in each mouse strain as reported by six groups. In each study, mouse strains with more severe Aβ pathology are shown as “High” in red, those with milder pathology are shown as “Low” in blue, and moderate pathology is indicated as “Mid” in black.

b. Klc1 single nucleotide polymorphisms (SNPs) in seven mouse strains. Color bars indicate 168 SNPs in the Klc1 region (chromosome 12: 111,768,636–111,803,435 bp; build 38) of the seven mouse strains. Mouse strains with high Aβ levels, including C57BL/6, SJL, and 129S1, share a similar Klc1 allele, while those with low Aβ levels, including AJ, DBA/2, C3H, and FVB, share another Klc1 allele.

c. Brain expression levels of KLC1_vE mRNA in the seven mouse strains at 3 months of age. Klc1 mRNA levels in each high Aβ strain (B6, SJL, and 129, shown by red and pink bars) were significantly higher (Tukey-Kramer HSD test, p<0.0001) than those in low Aβ strains (AJ, DBA, C3H, and FVB, shown by blue bars). The expression level of B6 mice was set to 100. Error bars indicate S.E. (n=6–8 for each strain. The total number of animals was 54.)
Klc1_vE expression levels determine the propensity for Aβ pathology in each mouse strain

Current and previous studies\(^\text{10}\) have uncovered novel molecular pathways in AD that involve the risk gene CELF1 in the following pathway: CELF1→KLC1_vE→Aβ pathology. To investigate whether the entire molecular pathway of CELF→KLC1_vE→Aβ pathology can occur within the same cell, we examined a single-cell RNA sequencing database. PanglaoDB\(^\text{20}\) (https://panglaodb.se/index.html) showed that the Aβ precursor protein (APP), CELF1, and KLC1 are co-expressed mainly in neurons (Supplementary Fig. 1b).

In addition to identifying the first half of the pathway (CELF1→KLC1_vE), we also performed additional experiments to reconfirm the previously elucidated second half of the pathway (KLC1_vE→Aβ). Our unique use of transcriptomics focusing on mouse genetic backgrounds, instead of comparing APP transgenic and non-transgenic mice, revealed higher Klc1_vE levels in C57BL/6 and SJL mice than those in DBA/2 mice because of the differences in the Klc1 allele, and the increased Klc1_vE level accelerates Aβ pathology in these two mouse strains\(^\text{10}\).

In addition to our group, six groups have reported differences in Aβ pathology in various mouse strains\(^\text{22-24,25,26,27,28}\). Except for our study, these studies have not identified genes that modulate Aβ pathology. Therefore, we examined whether the mouse strain effects on Aβ found in these studies can be explained by Klc1. Although various AD model mice (Tg2576\(^\text{29}\), APP23\(^\text{30}\), R1.40\(^\text{31}\), TgCRND8\(^\text{32}\), APB (JAX MMRRRC Stock# 034832), and APPPS1\(^\text{13}\)) were used, the order of mouse strain effects (from high to low) on Aβ pathology was consistent in the six research groups (Fig. 5a), except for a single study\(^\text{28}\). Thus, we analyzed seven mouse strains (C57BL/6, SJL, 129S, A/J, DBA/2, C3H, and FVB) used in these consistent studies. We compared Klc1 SNPs in these seven mouse strains using the Mouse Phenome Database\(^\text{34}\) (RRID:SCR_003212, https://phenome.jax.org/). The available Klc1 SNPs for all seven strains are shown in Fig. 5b, and the full SNP set with RefSNP (rs) numbers is shown in Supplementary Table 2. Although these seven mouse strains belong to various phylogenetic groups\(^\text{35}\) (Supplementary Table 3), these SNPs revealed that high Aβ mouse strains (C57BL/6, SJL, and 129S1) share a similar Klc1 allele, while low Aβ mouse strains (A/J, DBA/2, C3H, and FVB) share another Klc1 allele, as previously shown in part\(^\text{10}\). To reconfirm that the Klc1_vE expression level affects Aβ pathology in the mouse brain\(^\text{10}\), we measured the Klc1_vE mRNA level in these seven mouse strains. We observed higher Klc1_vE expression levels in high Aβ mouse strains at 3 months (Fig. 5c) and 12 months of age (Supplementary Fig. 4) than those in low Aβ mouse strains, as expected.

To determine whether Klc1_vE was decreased in DBA/2 mice throughout the lifespan, we examined brains from mice aged 4 to 64 weeks and observed that Klc1_vE levels were lower in DBA/2 mice than those in C57BL/6 mice at all ages (Supplementary Fig. 5). These results reconfirm that the severity of Aβ pathology in mice is determined by the Klc1_vE expression level.
Hypothesis-free omics approaches identified a molecular pathway for Alzheimer’s disease (AD) development, which was confirmed in cultured cells, autopsied human brains, and mouse experiments.

The omics data that identified relationships are shown in color. Green: The CELF1 locus was associated with AD in genome-wide association studies (Ref. 3–6). Red: Transcriptomic studies using CELF1 knockdown revealed strong regulation of KLC1 by CELF1; cross-linking and immunoprecipitation sequencing identified KLC1 RNA as a binding partner of the CELF1 protein and revealed its binding site. Blue: Transcriptomic studies focusing on mouse background genes revealed that Klc1_vE expression and the Klc1 allele are responsible for the differences in Aβ accumulation among mouse strains (Ref. 10).
<Discussion>

This study revealed that CELF1, which is encoded by a gene located at a risk locus for AD, regulates expression of the Aβ pathology-driving gene product \(KLC1_vE \). The connection between CELF1 and \(KLC1 \) was revealed by integrating two functional omics approaches, the marked change in \(KLC1 \) splicing in CELF1 knockdown cells shown by an exon array (Fig. 1a) and binding of CELF1 protein to \(KLC1 \) RNA shown by CLIP-seq (Fig. 1b), which led to subsequent studies (Fig. 6). Analysis of two brain banks, each with a different ethnicity, using different methods revealed strong regulation of \(KLC1 \) splicing by CELF1 (Fig. 2 and 3). The CELF1 level was low in AD brains, and alternative \(KLC1 \) exons on the 3’ side of the gene exhibited high levels, which resulted in high levels of \(KLC1_vE \). These changes were not observed in brains of patients with PSP, another neurodegenerative disease, and may be AD-specific. In addition, the AD-specific expression pattern of alternative \(KLC1 \) exons was similar to that observed in brains with low CELF1 levels, indicating that low CELF1 levels cause AD-specific \(KLC1 \) splicing, resulting in high \(KLC1_vE \) levels. Strikingly, CLIP-seq showed that the CELF1 binding site on \(KLC1 \) RNA is immediately upstream of the exons that are elevated in both AD and low CELF1-expressing brains (Fig. 3c–f). Although the direction of the regulatory effect depended on the cell type, CELF1 regulated \(KLC1 \) splicing, including \(KLC1_vE \), in all three types of cultured cells examined (Fig. 4). Previously reported regulation of Aβ pathology by \(KLC1_vE \) was reconfirmed in our analysis of seven mouse strains, in which the strains prone to Aβ pathology had high \(Klc1_vE \) expression levels and shared a common \(Klc1 \) allele (Fig. 5). Our findings indicate that low expression of the risk gene CELF1 increases the inclusion of \(KLC1 \) exons downstream of the CELF1 binding region, resulting in increased \(KLC1_vE \) expression and consequently driving Aβ pathology as a novel molecular pathway in the development of AD.

Including our previous studies and those of other groups, a total of four different types of omics led to the discovery of the \(CELF1 \rightarrow KLC1_vE \rightarrow \) Aβ pathway (Fig. 6). Two unexpected connections, regulation of \(KLC1 \) splicing by CELF1 and the role of \(KLC1_vE \) in Aβ pathology, were discovered by functional omics, such as transcriptomics and CLIP-seq. The advantage of these functional omics methods over GWASs is that they reveal the identity and interactions of specific genes, suggesting a possible functional relationship. However, functional analysis, especially using mRNA expression levels, has some potential caveats. Regulation of expression and splicing is complex, is modulated by many molecules, and can be tissue- and cell-type-specific. In our experiments, the control exerted by CELF1 over \(KLC1 \) splicing led to opposite effects on expression levels of \(KLC1 \) splice variants in human brains and two of three types of cultured cells. As neuronal splicing is especially complex, factors other than CELF1 may also regulate \(KLC1 \) splicing, and further studies are needed to fully understand the \(KLC1 \) splicing mechanism. In a similar example, the relationship between CELF1 expression and cancer patient survival is variable in different cancer types. When conducting...
functional genomics for disease research, it is important to confirm the final conclusion of the
functional expression analysis at the site of the disease lesion, which in the case of AD is the brain.

KLC1 is part of the Aβ production mechanism10,19,39,40 and is responsible for intracellular trafficking,
including axonal transport19,41,40. A recent analysis of Alzheimer's Disease Neuroimaging Initiative
data reported that an SNP of CELF1 may cause abnormalities in axonal tracts in the hippocampus42.

CELF1, KLC1, and APP, which undergoes proteolysis to form Aβ, coexisted in the same cells, which
mainly included neurons (Supplementary Fig. 1b). KLC1 is an adapter protein that forms a complex
with the motor protein kinesin heavy chain and transports various cargoes to subcellular locations19.

APP is carried by KLC1/Kinesin-I43,44,40, and knockdown of total KLC139,10 or KLC1_vE10 suppresses
Aβ production. However, Aβ pathology is exacerbated in heterozygous Klc1 knockout mice41. Thus,
the expression of Klc1_vE in heterozygous Klc1 knockout mice may explain the worsening of Aβ
pathology.

The complex alternative splicing of the 3' exon of KLC1 results in a variety of splice variants.
Complex splice variants and the exon structure are both highly conserved among species16, suggesting
that splicing of the 3’ exon is functionally important. We found that CELF1 regulates the expression
of these important exons. It is speculated that splicing at the C-terminus of the KLC1 protein regulates
the selection of cargo45 and its transport destination46. For example, calsyntenin-1 (alcadein-α) is
involved in APP transport by binding to KLC1 and APP and consequently affects Aβ production40.

KLC1_vE, unlike other splice variants, has been reported to be unable to bind Calsyntenin-117. Further
studies are expected to elucidate the distinct function of KLC1_vE.

This study not only revealed the function of CELF1 in AD but also confirmed the importance of
KLC1_vE in AD. When a master regulator gene, which trans-regulates the expression of many genes,
is a disease-associated gene, the effect size on the disease is usually small. CELF1 is an RNA-binding
protein that regulates the expression of many genes. Many of the master regulator genes are "peripheral
genes" that are not directly involved in common complex diseases but regulate "core genes" that are
directly involved in disease development48,49. CELF1 regulates the expression of many genes as an
RNA-binding protein and may be a "peripheral gene" that also trans-regulates the splicing of KLC1, a
"core gene" in AD. Understanding the role of the "core gene" KLC1 may lead to the development of
new therapies for AD.

It is noteworthy that a decrease in Aβ pathology was achieved not by genetic manipulation but by
naturally occurring low levels of Klc1_vE that are shared by many mouse strains. Many reports have
described the suppression of AD pathology by genetic manipulation in mice; however, the therapeutic
target genes often have unknown physiological effects in addition to their effects on AD. In the case
of genetically engineered mice, the side effects caused by inhibition of these unknown physiological
effects are often overlooked. In fact, so-called mechanism-based side effects, which are inevitable
when this therapeutic target is used, may go unnoticed until large-scale clinical trials are conducted50,51.
It is highly likely that $KLC1_vE$ also transports other cargo that is yet to be identified. However, marked reductions in Aβ pathology have been achieved via naturally occurring low $Klc1_vE$ levels in commonly used mouse strains. This indicates that the risk of mechanism-based side effects when $KLC1_vE$ is used as a therapeutic target is minimal.

In summary, we found that CELF1, an RNA-binding protein, binds to $KLC1$ RNA. We also demonstrated that low CELF1 levels increase the expression of $KLC1$ exons immediately downstream of the CELF1 binding site, resulting in increased $KLC1_vE$ mRNA levels. These findings revealed a new pathway for the pathogenesis of AD, in which low levels of CELF1, located in a risk locus for the disease, increase $KLC1_vE$ expression and promote Aβ pathology. Importantly, this pathway is supported by human and mouse genetic data and was derived from various types of hypothesis-free omics approaches. This study may be a useful example to elucidate the function of risk genes for many complex diseases.

Acknowledgment

This work was supported by the Strategic Research Program for Brain Sciences (to T.M.), KAKENHI (C) (23591706 and 26461747 to T.M.), Takeda Science Foundation (to T.M.), SENSHIN Medical Research Foundation (to T.M.), Restar Communications Corporation (to M.I. and T.M.), the departmental committees of the Ligue Contre le Cancer du Grand Ouest 22, 29, 35 (to L.P.), the Japanese Brain Bank Network for Neuroscience Research (to H.A.), and the Natural Sciences and Engineering Research Council of Canada (2018-03945 to M.A.S.).
<Materials and methods>

Omic analyses in HeLa cells

We have previously described the results of exon array experiments using Agilent (Santa Clara, California, USA) SurePrint G3 human exon array probes. Hybridized RNA was extracted from HeLa cells previously treated with siRNAs to repress *CELF1*, *ELAVL*, or both proteins or a control siRNA. We examined the control siRNA and *CELF1* siRNA datasets to identify the most highly differentially expressed exons. The CLIP-seq results have been previously published. We used the UCSC genome browser to reveal CELF1 binding to *KLC1* RNA.

Human brains

The same hippocampi that were previously analyzed were reanalyzed. Pathologically diagnosed autopsied brains were obtained from the brain bank of the Choju Medical Institution of Fukushimura Hospital. The RNA Integrity Numbers (RINs) of 10 AD and 14 control mRNAs were all greater than 7. The protocol was independently approved by the local ethics committees of Osaka University and Fukushimura Hospital.

Genotyping of CELF1

An AD risk SNP (rs10838725) in the *CELF1* region was genotyped using a custom TaqMan(R) SNP Assay (Assay ID: AHWSKQD, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Forward primer sequence: TGGAGACTGAGGCACGAGAA, Reverse primer sequence: TGGGTTATAGATAGCATTGGGAAAC, VIC/FAM sequence: AGCCAACAT/CTGCACCAC.

Quantitative PCR

Splice form-specific qPCR assays were designed using Primer Express (Thermo Fisher Scientific), as described previously. The forward primer and TaqMan MGB probe sequences for human *KLC1_ vA*, *vB*, *vD*, and *vE* were TCTCGTAAACAGGGTCTTGACAATG and ATGACCCTGAGAACAT, respectively. The reverse primer sequences were *KLC1_ vA*: ACGGGCGGCTAGGCTTC; *KLC1_ vB*: CGAGCTTCATTTCCTCATTTCC; *KLC1_ vD*: GCCATCCCAGTCCACTC; and *KLC1_ vE*: TTAAAAGTACCGTGCATCTTCC. For human *KLC1_ vC*, the forward primer sequence was ACCAGCCCGAGCTTCATTT, the reverse primer sequence was ACGGAGGGGAGGAAGTGAGT, and the TaqMan MGB probe sequence was TCCTCATCCCGTCTCCA. The total levels of human *KLC1* were measured using a TaqMan(R) Gene Expression Assay (Hs00194316_m1, Thermo Fisher Scientific) via detection of the exon 3 and 4 boundary, where exon usage was stable according to the DEXSeq results. The level of each splice variant was normalized using the total *KLC1* level. Human *CELF1* mRNA levels were measured using a TaqMan(R) Gene Expression Assay (Hs00198069_m1,
For mouse Klc1_vE, the forward primer sequence was GGGTCTTGACAATGTTCACAAAC, the reverse primer sequence was GATCCAGTGCCATCTTCCTCC, and the TaqMan MGB probe sequence was TCCGTAGGGCCACT.

The TaqMan(R) Gene Expression assay (Mm00492936_m1) with primers for exons 3 and 4 was used to detect the total level of mouse Klc1. The expression level of Klc1_vE was normalized to that of total Klc1.

Conventional RT-PCR

Conventional RT-PCR was performed using RNAs from cells previously depleted of CELF1 by siRNA treatment. Reverse transcription was performed with random primers and Superscript II RT (Thermo Fisher Scientific). PCR was performed with the following primers: Forward: AACAGAGGTTGCGAGAAGTG; Reverse R1: GCAGCACTGGAGAGAAGG; Reverse R2: TCCCTTCAGCTTCCTAACCA. Relative amounts of KLC1_vE were determined by calculating the intensity of the vE PCR product divided by the sum of the intensities of the five PCR products.

Single-cell RNA sequencing database

Co-expression of CELF1, KLC1, and APP was analyzed in the PanglaoDB on April 12, 2021 under the following conditions: species: mouse and human, tumor/cancer samples, cell lines were not included, non-adult and non-primary samples were not included.

Analysis of the human temporal cortex RNA-seq data from the AD Knowledge Portal

We analyzed the RNA-seq data using the DEXSeq package to detect differential exon usage. The RNA-seq data were obtained from the AD Knowledge Portal (syn3163039) as BAM files, and the raw sequencing data were mapped to the reference sequence (GRCh38.77) using SNAPR software (arXiv technical report 1111.5572v1, Nov. 2011). These RNA-seq data were obtained from the temporal cortex of subjects (AD patients (n=84), PSP patients (n=84), and controls (n=80)) from the Mayo Clinic Brain Bank and Banner Sun Health Research Institute. Among the subjects, 82 AD patients, 84 PSP patients, and 57 controls with an RIN of 7 or greater were included. We included only PSP patients with Thal amyloid phase 0 (n=37) to exclude patients with AD pathology. Detailed processing and sample quality control are described by Allen et al.

We counted the number of reads that overlapped genes in the reference transcriptome annotations (GRCh38.77) using featureCounts. To quantify exon expression, we first created an exon annotation file (GFF) using the reference transcriptome annotations and dexseq_prepare_annotation2.py script from the DEXSeq package. We then used the aligned RNA-seq BAM files from the gene expression
quantification and featureCounts to count the number of reads overlapping each exon. We estimated relative exon usage fold changes between the corresponding groups using an estimate function (ExonFoldChanges) of the DEXSeq package and output the results using the DEXSeqResults function. The DEXSeq package accounts for the case in which the exon boundaries of multiple transcript variants of a gene do not match and divides the exon into two or more parts. These are called "counting bins" and are identified by the "feature IDs".

We obtained the expression levels of CELF1 (ENST00000395290) from MayoRNAseq_RNAseq_TCX_covariates.csv in the AD Knowledge Portal. SNAPR software, which is an RNA sequence aligner, was used to align sequencing reads from Illumina HiSeq 4000 sequencers to the GRCh38 reference and Ensembl v77 gene models and generate read count data. The read count data were subsequently normalized using edgeR to calculate the counts per million mapped reads.

Cultured cell experiments

We performed three independent CELF1 knockdown experiments. Using the BLOCK-iT RNAi Designer (Invitrogen), we developed three CELF1 Stealth siRNAs. The siRNA sequences and amounts were as follows:

- CELF1 #a siRNA: CACAGACGCUAUCAAGGCAAUGCA (10 pmol/well)
- CELF1 #b siRNA: AGAGAAGCUUCGUAGUGG (3 pmol/well)
- CELF1 #c siRNA: CCACCCAGACCAACCAGAUCUUGAU (10 pmol/well)

One day before transfection, HEK293 cells were plated at 1.0×10⁵ cells/six-well culture plate. CELF1 siRNAs were mixed with RNAiMAX (Invitrogen) and Opti-MEM Reduced Serum Medium (Gibco). RNA was isolated 72 h after transfection (RNeasy Mini Kit, Qiagen).

We also performed three independent CELF1 overexpression experiments. One day before transfection, 5.0×10⁵ HEK293 cells were plated onto a six-well plate. HEK293 cells were transfected with 1.75 µg of human CELF1 (RefSeq NM_001025596) or an empty pTarget plasmid (Promega) using 2.5 µl of lipofectamine LTX and Plus reagent (Invitrogen) according to the manufacturer’s protocol (n=4 per group). RNA was isolated 24 h after transfection (RNeasy Mini Kit, Qiagen).

Klc1 SNPs in seven mouse strains

The SNPs in the Klc1 region (chromosome 12: 111,758,962–111,807,808, GRCm38 mm10) were obtained from the Mouse Phenome Database³⁴ (https://phenome.jax.org/) for SJL mice on August 22, 2011, and for C57BL/6J, 129S1/SvImJ, A/J, DBA/2J, C3H/HeJ, and FVB/NJ mice on February 2, 2020. A total of 1703 KLC1 SNPs that had been shown to vary in one or more of the seven mouse strains are shown in Supplementary Table 2 along with the RefSNP (rs) numbers. Of these, 168 SNPs that were available in all seven strains are shown in Fig. 5b.
Mouse brain samples

Mouse brains were dissected, and RNA was extracted as previously described10. To minimize variability caused by aging, dissections were performed within 3 days of the scheduled time point for dissection. Before dissection, mice were perfused with 15–20 mL of 0.05 M tris-buffered saline (pH 7.2–7.4) containing a Protease Inhibitor Mixture (P2714; Sigma). Dissected brains were snap-frozen in liquid nitrogen, and the hippocampus was analyzed. All animal procedures were performed according to the protocols approved by the Osaka University Animal Care and Use Committee.

Statistical analysis

Statistical analysis other than omics studies was performed using JMP Pro 14.3.0 (SAS Institute Japan, Tokyo, Japan). Data are presented as the mean ± s.e.m., and two-sided p values <0.05 were considered statistically significant, unless otherwise specified.
<References>

49. Liu, X., Li, Y. I. & Pritchard, J. K. Trans Effects on Gene Expression Can Drive Omnigenic...

