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Supplementary Information 

Supplementary Notes 
Experimental Participants 
All studies were approved by the Ethics Committee of the Newcastle University Faculty of Medical 
Sciences; participants provided written informed consent to take part. 

A total of 39 people with pCF, and 53 controls who were not suffering from pCF were initially recruited 
to the study. Inclusion criteria were age 18-65 years with no history of neurological disease and 6-26 
weeks after infection. Prior to attending the laboratory, volunteers with post-covid fatigue (pCF) 
underwent a structured telephone interview, which checked details of their medical history and 
possible exclusion criteria. They also completed the 40 questions of the Fatigue Impact Scale (FIS)1 via 
a web-based survey tool. Further measurements were then made during a single laboratory visit 
lasting around four hours. Two participants with pCF were discovered during the course of the study 
to be under clinical investigation for neurological symptoms and signs not part of the typical long 
COVID syndrome. One additional participant from the control group was found to have an exaggerated 
startle response even to weak stimuli, which precluded gathering meaningful data on many of the 
protocols. These three individuals were excluded from the database, leaving 37 pCF (27 female, 73%) 
and 52 controls (37 female, 71%). The two cohorts were well matched for age, as illustrated by the 
cumulative distribution plots in Supplementary Fig. 1A. Full demographic information about the two 
cohorts is shown in Supplementary Table 1. 

The FIS score for people with pCF was 83±26 (mean±SD; range 42-135; Supplementary Fig. 1B). The 
interval between diagnosis with SARS-CoV-2 and attending the laboratory was 121±37 days 
(mean±SD, range 42-179 days). There was no correlation between the severity of fatigue measured 
by FIS score and time since infection (Supplementary Fig. 1C; r2=0.009, P=0.59). 

General Electrophysiological Methods 
Electromyogram (EMG) was recorded with surface electrodes (Kendall H59P, Covidien, Dublin, 
Ireland) using an isolated amplifier (D360, Digitimer, Welwyn Garden City, UK; gain 500, bandpass 
30 Hz-2 kHz). Where a measurement required a constant contraction, the amplitude of smoothed, 
rectified EMG was fed back to the subject via a display of coloured bars on a computer screen, 



calibrated to the individual’s maximum voluntary contraction (MVC). Subjects were asked to maintain 
these bars in the zone corresponding to 10% MVC. Stimuli to peripheral nerves (0.2 ms pulse width) 
were given with either a Digitimer DS7AH or DS5 isolated, constant current stimulator. Transcranial 
magnetic brain stimulation (TMS) was given with a Bistim 2002 stimulator and figure-of-eight coil (7 
cm diameter of each winding; Magstim Company Limited, Whitland, UK), with the coil held tangential 
to the head at around 45° to the parasagittal plane, inducing current in the brain from posterior to 
anterior. Coil position relative to the head was maintained using a Brainsight neuronavigation system 
(Brainbox, Cardiff, UK). Stimulus timing was controlled by a Power1401 intelligent laboratory interface 
running Spike2 software (Cambridge Electronic Design, Cambridge, UK), which also sampled EMG and 
other task-related signals to hard disc (sampling rate 5 kSamples/s). All measurements were made on 
the self-reported dominant side. Offline analysis was performed with custom scripts written in the 
Matlab programming environment. 

Thirty-three measures were chosen to provide non-invasive assessments of a wide range of cortical, 
brainstem and spinal neural circuits, as well as the function of the autonomic and peripheral nervous 
system. In addition, blood oxygen saturation and tympanic temperature were recorded, giving 35 
measures in all. In the following, full details of each test and the measures derived from it are given. 
Measures are referred to in bold font with the same abbreviations used in Figs 1&2.  

Repetitive Nerve Stimulation 
This test measured the function of the neuromuscular junction. The median nerve was stimulated at 
the wrist, and EMG was recorded from the abductor pollicis brevis (AbPB) muscle. Stimulus intensity 
was set to produce a supra-maximal M wave. Trains of ten stimuli were given (3Hz), with ten 
repetitions (inter-train interval 10s). The peak-to-peak amplitude of the M wave elicited by the first 
and last stimulus in the train was measured from averaged traces. The size of the first response (Mmax) 
was used for subsequent normalisation of other measures (see below). The ratio of the last to the first 
response was calculated (repetitive nerve stimulation, measure RNS). In healthy subjects this is 
around unity; low values indicate a failure of neuromuscular transmission. 

TMS Recruitment Curve and Cortical Silent Period 
The increase in response with increasing stimulus intensity was used to measure motor cortical 
excitability2; the duration of the cortical silent period assessed intracortical inhibition3,4. EMG was 
recorded from the AbPB muscle. The TMS coil was moved to locate the hot spot for motor evoked 
potentials (MEPs). The active motor threshold (measure TMS_AMT) was determined, with an accuracy 
of 1% of maximum stimulator output (MSO), as the intensity which produced a MEP > 100 µV 
amplitude on 3/6 stimuli. We then delivered sets of ten stimuli at AMT, and successive increments of 
10% MSO, until 100% MSO, while the subject maintained an active contraction. Offline analysis 
measured the peak-to-peak of MEPs from single trials, and plotted this versus stimulus intensity. A 
sigmoid curve was fitted (using the MATLAB function fminsearch; fit repeated 200 times with random 
initial values and the best fit used) to the relationship5, according to: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

1 + exp �𝐼𝐼50 − 𝐼𝐼
𝑘𝑘 �

 

 
Where MEP is the MEP amplitude at intensity I, MEPmax is the asymptote of the sigmoid relationship, 
I50 is the intensity with a response of MEPmax/2 (measure TMS_I50), and k relates to the slope of the 
sigmoid curve (measure TMS_slope). MEPmax was normalised as a percentage of Mmax to yield the 
measure TMS_asymptote.  



Averages of rectified EMG were used to assess the duration of the cortical silent period, determined 
as the first time where the average returned to the pre-stimulus baseline level. Because silent period 
increases with stimulus intensity6,7, the duration was plotted against stimulus intensity, and a straight 
line fitted. The slope of this line yielded measure TMS_CSP_slope. The estimated silent period 
duration at the active motor threshold gave measure TMS_CSP_AMT, and at the intensity I50 gave 
measure TMS_CSP_I50. 

Short-latency Afferent Inhibition 
This test assessed the activation of cortical inhibitory circuits following stimulation of peripheral 
afferents8. EMG was recorded from the AbPB muscle, and the TMS coil was held over the same 
location as for the recruitment curve. The resting motor threshold (RMT) was determined. TMS 
stimulus intensity was then set to produce a MEP peak-to-peak amplitude around 1mV, or to 1.2xRMT, 
whichever was lower.  The median nerve was stimulated at the wrist, and the intensity adjusted to be 
at motor threshold, judged from the appearance of an M wave in the EMG. We then measured 
responses to TMS alone, and TMS preceded by median nerve stimulation at intervals of 20.8 to 
25.8 ms in steps of 1ms. Twenty repetitions of each condition were given, in pseudo-random order, 
with the subject at rest. Offline analysis found the peak-to-peak amplitude of responses to TMS 
conditioned by nerve stimulation, as a percentage of TMS alone. The stimulus interval with greatest 
short-latency afferent inhibition yielded measure TMS_SAI. 

Paired-Pulse TMS 
This test assessed intra-cortical excitatory and inhibitory circuits. EMG was recorded from the first-
dorsal interosseous (1DI); the TMS coil was moved to locate the hot spot for this muscle. The RMT was 
determined, as the intensity required to generate MEPs of amplitude greater than 100 µV on 3/6 
sweeps, and used as measure TMS_RMT. The test stimulus intensity was set to generate an MEP 
amplitude of 1 mV, or to 1.2xRMT, whichever was lower. The conditioning stimulus intensity was 
0.8xRMT. We then measured the responses to the test stimulus alone, and when preceded by the 
conditioning stimulus at intervals of 3 and 10 ms, corresponding to short-interval intracortical 
inhibition (SICI) and intracortical facilitation (ICF) respectively9. Twenty repetitions of each condition 
were given, in pseudo-random order, with the subject at rest. Offline analysis measured the peak-to-
peak amplitude of the conditioning stimuli as a percentage of the responses to test stimulus alone, 
yielding measures TMS_SICI and TMS_ICF. 

Stop-Signal Reaction Time 
The stop-signal reaction time (SSRT) is a measure of response inhibition10. Here we followed a 
recently-developed modified procedure, which uses a portable device and Bayesian statistical analysis 
to improve the reliability of the measure11. Participants held a battery-powered microprocessor-
controlled box, and pressed a button to initiate a trial. When a green LED illuminated, they were 
required to respond by releasing this button as quickly as possible. On 25% of trials, a red LED 
illuminated at 5, 65, 135 or 195 ms after the green LED; subjects were asked not to respond on these 
trials. Three blocks of 64 trials were recorded, with a 60 s break in between blocks; each block 
consisted of 48 Go trials, and 16 Stop trials (4 at each delay). The room lights were dimmed for this 
test. Using the distribution of reaction times on the Go trials, and the proportion of successfully 
inhibited responses, the algorithm calculated the SSRT as described in full in our previous work11, 
producing measure SSRT. 

Temporal Difference Threshold 
The temporal difference threshold (TDT) measures the ability to detect temporal offsets in timing of 
two stimuli, and is thought to reflect both cortical and subcortical function12. We implemented this 



measure using a portable box and Bayesian algorithm, similar to that used for SSRT. The TDT box 
contained two red LEDs and two response buttons. On each trial, the LEDs flashed for 1 ms, with a 
time separation between flash onset of d ms; participants were asked to press the left button if they 
saw simultaneous flashes, or the right button if they saw asynchronous flashes. The room lights were 
dimmed for this test. We assumed that the probability of the subject reporting asynchronous flashes 
followed a sigmoid curve: 

𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑 |𝑑𝑑50,𝑘𝑘) = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒(((𝑑𝑑50−𝑑𝑑)/𝑘𝑘)  

Where d50 is the separation at which subjects report asynchronous flashes 50% of the time, and k 
relates to the slope of the curve. The probability of the subject reporting a simultaneous flash is then 
simply: 

𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 |𝑑𝑑50,𝑘𝑘) = 1 − 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 |𝑑𝑑50,𝑘𝑘) 

From Bayes’ rule: 

𝑃𝑃(𝑑𝑑50,𝑘𝑘 |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 |𝑑𝑑50,𝑘𝑘)
𝑃𝑃(𝑑𝑑50,𝑘𝑘)

𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
 

The terms P(d50,k) and P(Subject response) correspond to priors in a Bayesian framework, here 
assumed uniform. This formula allows us to compute the probability of parameters d50 and k assuming 
certain values, given the observed response of the subject. The parameter d50 is the measure of 
interest in this test (corresponding to the TDT); the slope parameter k is a nuisance parameter, which 
may be removed by marginalisation: 

𝑃𝑃(𝑑𝑑50|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =  � 𝑃𝑃(𝑑𝑑50,𝑘𝑘 |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑑𝑑
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

 

Where the limits of integration kmin and kmax were chosen based on prior expectation of slopes (here 
we used kmin=0.6ms, kmax=6ms). 

The portable box implemented this algorithm iteratively in real time. Initially, a uniform prior 
distribution was assumed for P(d50). Two trials were delivered, with d=0 and 120 ms, and the 
estimated probability distribution P(d50|Subject response) was then calculated. Two values of d to be 
tested next were determined as either the 1% and 50%, 50% and 75%, or 50% and 99% points of this 
distribution (which of these three options was used determined at random). This ensured that some 
‘easy’ trials, which were clearly simultaneous/asynchronous, were mixed in with more ambiguous 
trials; we found this important to maintain subject motivation. The value of P(d50|Subject response) 
was then used as the prior P(d50) for the next two trials. The test continued until either 75 pairs of 
trials had been tested, or the interval between the 2.5% and 97.5% points of the P(d50) distribution 
(corresponding to the 95% confidence limits on the TDT estimate) was smaller than 3 ms. The box 
then reported the mean of the P(d50) distribution, which was used as the measure TDT. 

Cutaneomuscular Reflex 
The different components of the cutaneomuscular reflex assess the excitability of spinal and cortical 
excitatory and inhibitory circuits13. EMG was recorded from the 1DI muscle. Ring electrodes were 
placed on the middle and proximal phalanges of the index finger; stimulus intensity was increased 
gradually until just perceived by the subject (perceptual threshold, PT). Stimuli were then given at 
3xPT, in ten blocks. Each block began with a brief sound cue, which instructed the subject to contract 
1DI at 10% MVC. Two seconds after the beep, stimuli commenced (inter-stimulus interval chosen 



randomly 0.1250-0.1762 s, uniform distribution, n=100 stimuli). At the end of the stimulus block, the 
subject rested for 30 s before the next block, to avoid fatigue. Analysis used averages of rectified EMG. 
The amplitude of the E1, I1 and E2 components of the response13 were measured as the maximum 
(for E1/ E2) or minimum (I1) level above or below baseline, expressed as a percentage of the baseline, 
yielding measures CMR_E1, CMR_I1 and CMR_E2. Reflex amplitudes were assessed from averages of 
all 1000 stimuli.  

Sensory Attenuation with Movement 
Sensory inputs are markedly attenuated during voluntary movement, due partly to descending control 
of feedback gain14. Deficits in this process have been previously hypothesised to be related to fatigue 
after stroke15. In this test, we obtained a quantitative estimate of sensory attenuation. EMG was 
recorded from the 1DI muscle. Stimuli were given to the digital nerves of the index finger, using 
adhesive surface electrodes placed on the proximal and middle phalanges. Subjects were required to 
report whether they detected a stimulus, in two conditions. The rest condition began when an 
automated voice cue ‘Rest Trial’ was played to the subject. A stimulus was then given (P=0.8) or not 
(P=0.2). A voice cue ‘Respond’ than asked the subject to report verbally if the stimulus was felt 
(yes/no). The movement condition began with a voice cue ‘Movement Trial’. The subject then made 
a rapid index finger abduction movement. The time of 1DI muscle EMG rising above a threshold was 
determined; the threshold was set to avoid noise triggers, but reliably to detect movements. Fifty 
milliseconds after this threshold crossing, a stimulus was given (P=0.8) or not (P=0.2). A voice cue 
‘Respond’ then asked the subject to report detection (yes/no) as before. Rest and movement trials 
(n=50 of each) were given alternately. Stimulus intensity was decreased or increased for the next trial, 
depending on whether the stimulus was detected or not, with intensities for movement and rest trials 
being controlled independently. 

Analysis consisted of fitting the probability of detection at intensity I to a sigmoid curve: 

𝑃𝑃(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼 |𝐼𝐼50,𝑘𝑘) =
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(((𝐼𝐼50 − 𝐼𝐼)/𝑘𝑘) 

Where I50 is the intensity with 50% detection, and k determines the slope of the curve. Catch trials, 
where no stimulus was given, typically had very low or zero detection probabilities, validating this 
model. The ratio of I50 determined from movement to rest trials was used as the measure SAT. 

Galvanic Skin Response Habituation 
The galvanic skin response (GSR) is a change in the resistance of the skin generated by sweat 
production from sympathetic system activation16; its habituation may be a relevant measure in 
assessing cognitive states17. We measured the GSR by placing two metal plates on the lateral and 
medial surfaces of the index finger. With the subject sitting quietly at rest, five loud sounds were 
played through loudspeakers placed in front of the subject chair (115 dB, C weighting, 500 Hz, 50 ms, 
6-6.8 s inter-stimulus interval, chosen randomly from a uniform distribution). The ratio of the GSR 
amplitude following the last stimulus compared to the first was used as measure GSR_Hab. 

StartReact Effect 
The StartReact effect is the shortening of voluntary reaction time by a loud (startling) sound; this has 
previously been used to assess connections from the reticulospinal system18-20. EMG was recorded 
from the 1DI and biceps muscles. Participants viewed a red LED, placed around 0.5 m in front of them. 
When this LED flashed (50 ms), they were instructed to perform an elbow flexion movement, 
combined with a clench of the fist, as quickly as possible. This generated a robust activation of the two 
EMG channels. A total of 60 trials were tested. For 20 trials, the LED flashed alone (visual reaction 



time, VRT); for 20 trials, the LED was combined with a quiet sound (81 dB, C weighting, 500 Hz, 50 ms; 
visual auditory reaction time, VART); for 20 trials, the LED was combined with a loud sound (115 dB, C 
weighting, 500 Hz, 50 ms; visual startle reaction time, VSRT). Trials were separated by 6-6.8 s, chosen 
randomly from a uniform distribution; the different trial types were delivered in random order. 
StartReact measurements were performed immediately after the GSR Habituation test, ensuring that 
any overt startle reflex had been habituated by the five loud sounds given in that test. The room lights 
were dimmed for this test. Offline analysis measured the reaction time on single trials as the point 
where EMG exceeded the baseline ± 7 SD; all trials were visually inspected, and automatically detected 
times corrected if they had resulted from noise or movement artifacts. Average VRT, VART and VSRT 
were calculated for each subject and muscle, together with the amplitude of the StartReact effect, 
equal to VSRT-VART. This yielded measures VRT_1DI, VRT_Bic, STR_1DI and STR_Bic. 

Grip Force 
Grip force is a well-validated measure of physical strength, which is reduced in conditions as varied as 
sarcopenia21 and cognitive decline22. Participants were seated, and held a hand grip dynamometer 
(model G200, Biometrics Ltd, Newport, UK) in their dominant hand, with the elbow flexed to 90° and 
the shoulder slightly abducted to position the dynamometer away from the body. They were asked to 
perform a maximal grip three times, with 60 s breaks in between. The largest force exerted over these 
three trials was taken as the grip strength, measure Grip. 

Twitch Interpolation 
The twitch interpolation (TI) procedure allows assessment of an individual’s ability to activate muscle 
maximally; in this study, we also measured changes after a sustained (fatiguing) contraction23. The 
protocol followed previous work from this laboratory24. Subjects sat with their arm and forearm 
strapped into a dynamometer to measure torque about the elbow; the shoulder was flexed, and the 
elbow at a right angle, so that the upper arm was horizontal and the forearm vertical. The forearm 
was supinated. Thin stainless-steel plate electrodes (size 30x15 mm) were wrapped in saline-soaked 
cotton gauze and taped over the belly of the biceps muscle and its distal tendon. Electrical stimuli 
were delivered through these electrodes while monitoring the evoked twitch response recorded by 
the dynamometer, and the intensity increased until the response grew no further. This supramaximal 
stimulus was used for all subsequent measurements. 

The following recordings were then made in sequence. A brief tone cued the subject to make and hold 
a maximal voluntary contraction; 2 s after the tone, a stimulus was given to the biceps. After 1 s, a 
second tone indicated that the subject should relax. Five seconds later, a further biceps stimulus was 
given, followed by a further 55 s rest period. This sequence was repeated three times. A long tone 
then cued the subject to make a sustained maximal voluntary contraction. This was continued either 
for 90 s, or until the force exerted fell to 60% of the initial maximal level. During this sustained 
contraction, the biceps was stimulated every 10 s. After the contraction ended, a final three biceps 
stimuli were given at rest (inter-stimulus interval 5 s).  

Averages of twitch response were compiled from these stimuli, and the force at the peak of the twitch 
relative to the pre-stimulus baseline measured. From the three stimuli delivered at rest at the start, 
we measured the maximal twitch at rest, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. From the three stimuli delivered during MVC at the 
start, we measured the maximal twitch during contraction,  𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. From the final three stimuli 
delivered during the sustained contraction, we measured 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. From the three stimuli delivered at 
rest after the sustained contraction, we measured 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 



If a subject truly performs a maximal voluntary contraction, a superimposed electrical stimulus should 
not be capable of generating extra force. The size of any elicited twitch thus measures a central 
activation deficit. Accordingly, we calculated central activation before fatigue (measure 
TI_CA_baseline) as: 

𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �1 −
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �100% 

Central activation after fatigue (measure TI_CA_fatigued) was likewise calculated as: 

𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �1 −
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �100% 

Peripheral fatigue (measure TI_PeriphFatigue) was calculated as: 

𝑇𝑇𝑇𝑇_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  100% 

This describes the reduced ability of the muscle to generate force after fatigue, even when activation 
is performed independent of the central nervous system by an electrical stimulus to the muscle. 

Heart Rate and Heart Rate Variability 
Heart rate and its variability can provide important insights into autonomic function25,26. A single 
channel ECG recording was made, using a differential recording from either left shoulder and right leg, 
or left and right shoulders (bandpass 0.3-30 Hz, gain 500).  The ECG was processed offline to extract 
the time of each QRS complex. From these times, we computed the mean heart rate (measure Mean 
HR), and the pNN50. This is a measure of heart rate variability27 defined as the proportion of 
successive intervals which differ by >50 ms. Heart rate measures were made during the SSRT test (see 
above), which ensured that the subject was sitting quietly, while engaged in a consistent behaviour. 

Motoneuron Physiology 
Motoneurons have active channels, which can amplify and modulate responses to synaptic input28. 
This test was designed to derive measures of motoneuron function, using high density surface EMG 
recordings to extract the activity of single motor units. Participants sat in a chair, with the leg on the 
dominant side outstretched and the knee straight. The foot was strapped into a rigid device which 
resisted movement around the ankle joint; the leg was also strapped down. A surface EMG grid 
electrode (13x5 electrodes, 8 mm inter-electrode spacing, part number GR08MM1305, OT 
Bioelettronica, Turin, Italy) was placed over the tibialis anterior muscle, and connected to a custom 
preamplifier (based on RHD2164 integrated circuit and RHD 512 channel recording system, Intan 
Technologies, Los Angeles, USA; bandwidth 10 Hz – 5 kHz, sampling rate 10 kSamples/s). Reference 
and ground electrodes were standard adhesive electrodes as used in other tests, placed on the patella 
and nearby skin respectively. The output of a single channel of EMG data was routed in real time to 
the Power1401 system and Spike2 software used for all other recordings. A custom script within this 
system presented subjects with a desired triangular activity profile, comprising 5 s rest, a linear 
increase to 30% MVC over 10 s, a linear decrease to rest over 10 s, and 5 s rest. At the start of a trial 
(signalled by an auditory cue), an overlain line was displayed on the desired profile, corresponding to 
the smoothed rectified EMG; subjects were instructed to track the target profile as closely as possible 
and to avoid sudden trajectory corrections. We measured a total of 15 trials, separated by 30 s rests 
to avoid fatigue. Finally, the subject performed a further 4 trials, with steady contractions at 10% MVC 
for 20 s.  



Motor unit Decomposition and Analyses 
The signals from the high density surface EMG grid over the TA muscle were decomposed into motor 
unit spike trains with a blind source separation algorithm29.  The motor unit spike trains were visually 
inspected and corrected by experienced examiners, according to the guidelines described 
elsewhere30. Motor units with high inter-spike variability (i.e., mean coefficient of variation above 40% 
and a silhouette measure below 0.92)29 were discarded since they are typically associated with 
intermittent activation. The extracted MU spike trains were subsequently used to estimate several 
parameters relating to motoneuronal physiology.  
 
Delta F: We used paired motor unit analysis to quantify the level of hysteresis (also known as ∆F) in 
the recruitment and derecruitment of the recorded MUs during the ramp contractions only, as this 
can provide a measure of persistent inward currents and the neuromodulatory drive to the muscle. 
∆F was calculated as the difference in the activity of a lower threshold ‘control’ MU at the times of 
recruitment and derecruitment of a higher threshold MU. MU firing is variable and non-stationary 
during the ramp; to smooth the activity profile a third order polynomial was fitted for each MU and 
rate and onset measurements were taken from smoothed firing rates. We excluded ramp trials with 
sudden changes in muscle activity, where the EMG gradient during the ascending and descending 
phases of the ramp were significantly different. This was determined by fitting a linear regression line 
in the rectified TA EMG through the ascending and descending ramp phases; if the 95% CI of the 
gradient overlapped, they were assumed not to be different. Using the criteria specified31 for the 
selection of suitable pairs of MUs, we extracted multiple ∆F measures for each subject - the median 
of those values was selected as representative across the TA motor pool, and used as measure 
SMU_deltaF. 
 
Peak F: For each decomposed motor unit, the maximum value of the smoothed instantaneous firing 
rate profile was taken across all ramps that the motor unit was decomposed for. The median value 
across all MUs for a given subject was selected as representative for the TA motor pool for that subject, 
and gave measure SMU_peakF. 
 
After-Hyperpolarisation potential estimate (AHP): The inter-spike interval histogram of a spike 
train can be transformed to provide a measure of the time course of the cell membrane trajectory 
after a spike, and this can be used to infer several of the physiological properties of the cell. Of 
particular interest is the AHP duration: this is correlated with the motor unit twitch time32, so that 
motoneurons with long AHPs tend to innervate slow-contracting motor units33. Differences in the AHP 
duration between pCF and control could suggest changes in the properties of motoneurons.  
 
AHP trajectories were extracted following the procedure described in detail previously34-36. This began 
with the inter-spike interval histogram (1ms bin width), from which was calculated the death rate - 
this is the probability that an interval will end at a given time delay after the previous spike. The death 
rate profile was then converted to a distance to threshold trajectory by using a random walk model of 
a neuron responding to noisy input. Distance to threshold trajectories were formed for inter-spike 
intervals selected, on the basis of adjoining intervals, to come from a period of homogenous firing 
rate; these trajectories were then combined to generate a compound AHP trajectory. Once the shape 
of the AHP was calculated, it was fitted with a first order exponential curve. In most cases the 
Spearman’s correlation coefficient between the AHP and the fitted exponential was > 0.9; units were 
excluded if they had correlation values lower than this. From the fitted exponential the time constant 
of the AHP could be measured. This process was applied to the spiking data collected during the ramp 
contractions. For each subject the median time constant of the AHP across all available units was used 
as measure SMU_AHP. 
 



Common input measurement: Motoneurons show synchrony in moment-by-moment fluctuations 
in firing because they receive common inputs. To estimate the strength of common input across the 
pool of TA units, we measured the time-domain cross correlation between units in the pool during the 
steady contraction period37. The spike trains were randomly divided into two equally sized groups, 
summed and convolved with a 25ms Hanning window; the cross-correlation between the two spike 
trains was then estimated. This was repeated 25 times and the cross-correlation strength (R) for the 
pool of units was taken as the maximum value of the average cross-correlogram across the iterations.  
Any units with mean rates < 5Hz during the hold period were excluded from this analysis. The square 
of the cross-correlation was used as measure SMU_R2. 

Biometric Data 
In addition to the neural and behavioural measures, we also made biometric measurements. These 
included blood oxygen saturation (pO2), tympanic temperature (Temp), height and weight; the latter 
two measures were used to calculate the body mass index (measure BMI)38.  

Statistical Methods 
Each of the measures had different units and scales. To allow easy comparison of differences between 
measures, and to avoid a metric with large values dominating the classification algorithm (see below), 
the data were normalised as a Z score for each feature. This was done by finding the difference 
between the mean of a measure between the pCF and control cohorts; this difference was then 
divided by the standard deviation of the control cohort. Figure 2A presents these normalised measures 
as a spider plot39, ordered so the greatest difference is located at the top of the figure; the shading 
indicates the standard error of the mean difference (calculated by dividing the standard deviation of 
each metric by the square root of number of data points available). 

The significance of differences between the pCF and control cohorts was assessed using unpaired t-
tests. As a discovery study, we highlight the ten measures which had uncorrected P<0.05 with 
coloured boxes on Fig. 2A. To correct for multiple comparisons, we used the Benjamini-Hochberg 
procedure40. Four of the measures had differences so great, that they were assessed as significantly 
different even after this correction; these are indicated with thicker lines in Fig. 2A. 

The normalised measures and statistical test values are listed in Supplementary Table 2. 

Multivariate Classification  
Although we found a significant difference in several individual measures between the fatigue and 
control cohorts, the redundancy between such high dimensional data can be difficult to measure. To 
ascertain how useful our high dimensional neurophysiological features were in distinguishing between 
the two cohorts, we carried out linear classification analysis (routine fitclinear in MATLAB). We utilised 
the least absolute shrinkage and selection operator (lasso) for regularising our dataset, and to decide 
the best features to use for classification and hence avoid overfitting our model. The strength of the 
regularisation (or how strict the classifier was) was specified by the ‘lambda’ parameter. This analysis 
used normalised Z scores as described above. 

We first estimated the most common number of features required for classification. To do this we 
implemented 5000 iterations of the classifier; each run used a different random choice to replace any 
missing data values (see section below). For each iteration, 40 logarithmically spaced lambda values 
were used, and cross-validation was carried out through multiple folds (parameter kfold=10 in the 
fitclinear routine). The average classification accuracy for each value of lambda across all the folds was 
obtained via the kfoldLoss method, and the lambda with the highest classification accuracy was 
selected for that iteration. For the chosen lambda value, the number of ‘useful’ features was counted 



as those whose weights were not reduced to zero. Across the 5000 iterations we compiled a histogram 
of the number of features (Fig. 2C) and chose the modal value, which for our dataset was 6. We then 
determined which features made the strongest contributions to the classification by retraining a 
classifier (5000 iterations) but with the number of significant features locked to 6. This was done (for 
each iteration) by adjusting the value of lambda so that 6 features had non-zero weights - the identity 
and weight of the surviving features was noted. The fraction of times that a given measure survived 
this selection process is shown in Fig. 2D. 

Cluster Analysis 
Although our two cohorts were significantly different in multiple measures, there were many possible 
schemata for the distribution of the measures within the pCF cohort - it could be that the significant 
differences were concentrated to a subset of the pCF participants, or that each measure was different 
only in a small separate sub-group of participants. To tease these possibilities apart we carried out 
clustering analysis (K-means clustering) in order to find the optimal number of clusters that would fit 
our dataset. For a given number of pre-defined clusters, k-means clustering initially chooses cluster 
centres randomly and data points are assigned to their closest cluster, based on their Euclidian 
distance from each cluster centroid. By then taking the mean of all data points within each cluster, a 
new set of clusters centres is determined and the process is repeated until the cluster centres stop 
moving between iterations. K-means clustering however cannot determine the optimal number of 
clusters. To do this we used the Gap Evaluation criterion41 which uses the biggest change in within-
cluster distance between different cluster sizes to determine the optimal number of clusters. We 
tested for cluster numbers from 1 to 10. 

We ran 100 iterations and for each iteration we extracted the Gap Distance for each cluster size (using 
the evalcluster function in MATLAB, with the ‘kmeans’ and ‘gap’ options selected). The mean and 
standard error across these iterations was plotted in Fig. 2B for each cluster number. We ran the 
cluster analysis by using only the four metrics that were most significant from our dataset, but also by 
using all of our measures. In both cases (Fig. 2B) the change in Gap value was largest in going from 1 
to 2 clusters, suggesting that a cluster size of 1 is optimal, and that the metric differences were 
homogeneously distributed across the pCF cohort in this study. 

Missing Data 
All participants underwent the same battery of tests, but it was not possible to obtain all measures in 
all subjects (these are shown as blank spaces in Supplementary Table 1). For example, the measures 
of motoneuron physiology rely on the decomposition of sufficient numbers of motor units; this is not 
always possible, especially in subjects with substantial subcutaneous fat. For the paired analyses 
between pCF and control cohorts for individual metrics, missing values were excluded prior to 
comparison. For the classification analysis this was not possible, as it would severely limit the size of 
the cohorts. There are various approaches for imputing missing data42, but most rely on using values 
from other available features for a given subject to predict the missing datum. In this case, because 
we wished to make comparison between the different features, this approach could compromise our 
classification. Instead, for each cohort, missing data from a given feature was filled in by randomly 
selecting data from the subjects within that cohort for whom the data were available. 

Variant distribution in fatigue cohort. 
Although we do not have any way of definitively knowing the virus variant that our fatigue participants 
were infected with, we can estimate the likely proportions based on the known distribution of variants 
at the time. The weekly proportion of the six main variants circulating in England since Nov 2020 (A, 
Alpha, B, B.1.177, Delta & Omicron) was downloaded from the Sanger Institute COVID 19 Genomic 



Surveillance website (https://covid19.sanger.ac.uk/lineages/raw). For each subject in the pCF cohort 
we randomly assigned a variant 100 times, with a probability based on the relative proportions of 
variants at the time of their week of infection. By collating all the data across all pCF subjects, we could 
then estimate the expected proportions of each variant across our fatigue cohort (shown in 
Supplementary Fig. 1D). 
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Supplementary Figure 

 

Supplementary Figure 1. A, cumulative age distribution plots for pCF and control subjects. B, 
distribution histogram of FIS scores reported by pCF subjects. C, lack of correlation of FIS score with 
time since SARS-CoV-2 infection (r2=0.009, P=0.59). D, proportions of the most common SARS-CoV-2 
variants in circulation in England since October 2020 and the estimated expected proportion of each 
variant across our cohort. 

Supplementary Table 
Supplementary Table 1. Participant information and values of the 35 measures, for the two cohorts, 
pCF and control. This table shows the biometric data, FIS scores, and neurophysiological 
measurements for each individual participant – neurophysiological values have been Z-normalised (as 
described above). Each row corresponds to a single participant and each column corresponds to a 
specific measure. 
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Supplementary Table 2.  Normalised and statistical test values for the 35 measures sampled in this 
study, for each cohort pCF and control. This table shows the summary values for each metric we 
measured for the two cohorts separately. The mean, standard deviation and standard error of the 
mean are shown for each cohort, and for the pCF cohort we also show the Z-normalised values 
(relative to the control cohort). The column before last shows the statistical significance of an unpaired 
– test for each metric (with coloured rows indicating p<0.05). The final column shows the p-values 
adjusted for multiple comparisons (using the Benjamini-Hochberg approach described above) and 
rows with an asterisk (*) indicate those that cross the significance threshold adjusted for multiple 
comparisons.  
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