Does the Heart Fall Asleep? – Diurnal Variations of Heart Rate Variability in Patients with Disorders of Consciousness

Monika Angerer ^{1,2*}, Frank H. Wilhelm ³, Michael Liedlgruber ³, Gerald Pichler ⁴, Birgit Angerer ⁵, Monika Scarpatetti ⁴, Christine Blume ^{6,7†} and Manuel Schabus ^{1,2†*}

- ¹ University of Salzburg; Department of Psychology; Laboratory for Sleep, Cognition and Consciousness Research; Salzburg, Austria
- ² University of Salzburg; Centre for Cognitive Neuroscience Salzburg (CCNS); Salzburg, Austria
- ³ University of Salzburg; Department of Psychology; Division of Clinical Psychology and Psychopathology; Salzburg, Austria; <u>frank.wilhelm@plus.ac.at</u> (F.W.); <u>michael.liedlgruber@plus.ac.at</u> (M.L.)
- ⁴ Geriatric Health Care Centres of the City of Graz; Graz, Austria; <u>gerald.pichler@stadt.graz.at</u> (G.P.); <u>monika.scarpatetti@stadt.graz.at</u> (Mo.S.)
- ⁵ Private Practice for General Medicine and Neurology; Leibnitz, Austria; <u>leibnitz@braindoc.at</u>
- ⁶ Centre for Chronobiology; Psychiatric Hospital of the University of Basel; Basel, Switzerland; <u>christine.blume@unibas.ch</u>
- ⁷ Transfaculty Research Platform Molecular and Cognitive Neurosciences; University of Basel; Basel, Switzerland
- ⁺ Christine Blume and Manuel Schabus contributed equally to this work.
- * Correspondence: monika.angerer@plus.ac.at (M.A.), manuel.schabus@plus.ac.at (Ma.S.)

Missing Data

Table S1. Amount of missing data from each subject separately for time (i.e., forenoon [8am-2pm], afternoon [2pm-8pm], night [11pm-5am]).

	Forenoon		Afternoon		Night	
Patient ID	Frequency	Percentage	Frequency	Percentage	Frequency	Percentage
P1	0	0	0	0	0	0
P2	23	6.39	0	0	0	0
Р3	6	1.67	0	0	0	0
P4	7	1.94	0	0	0	0
P5	0	0	0	0	0	0
P6	0	0	21	5.83	0	0
P7	0	0	10	2.78	0	0
P8	0	0	0	0	26	7.22
Р9	0	0	0	0	0	0
P10	1	0.28	0	0	0	0
P11	2	0.56	0	0	0	0
P12	0	0	0	0	0	0
P13	0	0	0	0	0	0
P14	0	0	0	0	0	0
P15	0	0	0	0	0	0
P16	0	0	0	0	0	0
P17	0	0	0	0	0	0
P18	0	0	0	0	0	0
P19	0	0	0	0	0	0
P20	0	0	0	0	0	0
P21	0	0	0	0	0	0
P22	0	0	0	0	0	0
P23	0	0	0	0	0	0
P24	0	0	0	0	0	0
P25	0	0	0	0	0	0
P26	0	0	0	0	0	0

Frequency refers to the amount of one-minute segments that are missing. Percentage describes the amount of missing one-minute segments in its relation to the total file length of six hours (i.e., 360 one-minute segments). Missing data is highlighted in grey.

Normality Test Results

Table S2. Shapiro-Wilk tests (*p*-values) for normality for each variable separately for time (i.e., forenoon [8am-2pm], afternoon [2pm-8pm], night [11pm-5am]).

Variable	Forenoon	Afternoon	Night
Interbeat interval	.436	.551	.729
Heart rate	.054	.061	.025
RMSSD	.013	.003	.194
Very low frequency	.012	.075	.281
Low frequency	.005	.017	.497
High frequency	.001	.008	.004
Approximate entropy	.907	.162	.193

DfaAlpha		.067	.002	.352
Hurst exponent		.162	.056	.061
Sample entropy 1		.001	< .001	<.001
Sample entropy 2		.212	.703	.469
Sample entropy 3		.054	.693	.603
Sample entropy 4		.092	.687	.705
Sample entropy 5		.079	.652	.916
EEG permutation entropy			.219	.681
CRS-R sum score	< .001			
CRS-R auditory subscale score	<.001			
CRS-R visual subscale score	<.001			
CRS-R motor subscale score	<.001			
CRS-R oroverbal subscale score	<.001			
CRS-R communication subscale score	<.001			
CRS-R arousal subscale score	<.001			
Age	<.001			

P-values for EEG permutation entropy refer to day (i.e., 8am-8pm) and night (i.e., 11pm-5am). *P*-values for CRS-R scores, age and time since injury refer to all time conditions (i.e., forenoon, afternoon, and night). Significant *p*-values (i.e. p < .05), which indicate that the data is not normal distributed, are marked in grey. Abbreviations: RMSSD = root mean square of successive differences between adjacent heartbeats, DfaAlpha = detrended fluctuation analysis scaling exponent.

Results

Heart Rate

Analyses of the heart rate (HR) of 26 patients revealed a trend towards a main effect for *time* (*FwTs*(2)=7.28, p=.053) and a significant effect for *diagnosis* (*FwTs*(1)=5.1, p=.039), but no significant *time* × *diagnosis* interaction (*FwTs*(2)=1.42, p=.515). Specifically, patients showed a lower HR during night as compared to forenoon (*FwTs*(1)=8.26, p=.021) and afternoon (*FwTs*(1)=6.64, p=.024). No differences could be observed in the patients' HR between fore- and afternoon (*FwTs*(1)=0.002, p=.967; cf. *Figure S1a*). Further, patients with UWS showed a lower HR as compared to patients with (E)MCS (*FwTs*(1)=5.1, p=.039; cf. *Figure S1b*). This effect was also visible when correlating HR and CRS-R sum scores of 25 patients, showing that lower CRS-R sum scores were associated with lower HR during forenoon ($r\tau$ (23)=0.34, p=.02; cf. *Figure S2a*), afternoon ($r\tau$ (23)=0.38, p=.009; cf. *Figure S2b*) and night ($r\tau$ (23)=0.28, p=.056; b= 1.41, 95% CI = [0.10, 2.72]; cf. *Figure S2c*).

Figure S1. Heart rate (HR) separately for time and diagnosis contrasts. **(a)** While patients' HR was lower during the night as compared to the day (i.e., forenoon, afternoon), it did not differ between fore- and afternoon. **(b)** Patients with UWS showed a lower HR than patients with (E)MCS. Error bars represent the mean and 95% confidence

interval. *p < .05, ns = not significant. Abbreviations: (E)MCS = (emergence from) minimally conscious state, UWS = unresponsive wakefulness syndrome, beats/min = heartbeats per minute.

Figure S2. Correlation between heart rate (HR) and CRS-R sum score separately for time. A higher HR was associated with a higher CRS-R sum score throughout the (**a**, **b**) day (i.e., forenoon, afternoon) and (**c**) night. **p < .01, *p < .05, * $p \leq .1$. Abbreviations: (E)MCS = (emergence from) minimally conscious state, UWS = unresponsive wakefulness syndrome, beats/min = heartbeats per minute.

Etiology

Table S3. Wald-type statistic (WTS) of the different HRV parameters separately for the main effects 'time' (i.e., forenoon [8am-2pm], afternoon [2pm-8pm], night [11pm-5am]) and 'etiology' (i.e., traumatic vs. non-traumatic brain injury), and the 'time × etiology' interaction (*N*=26).

Variable	Time	Etiology	Time × Etiology
Interbeat interval	Fwrs(2)=7.37, p=.050	Fwrs(1)=0.08, p=.778	<i>Fwrs</i> (2)=5.58, <i>p</i> =.088
Heart rate	Fwrs(2)=7.82, p=.041	<i>Fwrs</i> (1)=0.00, <i>p</i> =.949	<i>Fwts</i> (2)=3.33, <i>p</i> =.220
RMSSD	Fwrs(2)=0.50, p=.789	Fwrs(1)=0.00, p=.961	<i>Fwrs</i> (2)=1.51, <i>p</i> =.502
Very low frequency	Fwrs(2)=7.47, p=.046	Fwrs(1)=0.22, p=.648	Fwrs(2)=2.19, p=.368
Low frequency	<i>Fwrs</i> (2)=6.59, <i>p</i> =.065	Fwts(1)=0.02, p=.893	<i>Fwrs</i> (2)=2.90, <i>p</i> =.268
High frequency	Fwrs(2)=4.08, p=.178	Fwrs(1)=0.24, p=.619	<i>Fwrs</i> (2)=2.16, <i>p</i> =.382
Approximate entropy	Fwrs(2)=20.74, p=.001	<i>Fwts</i> (1)=0.30, <i>p</i> =.575	Fwrs(2)=2.90, p=.277
DfaAlpha	Fwrs(2)=0.44, p=.816	Fwrs(1)=4.59, p=.043	<i>Fwrs</i> (2)=1.29, <i>p</i> =.552
Hurst exponent	Fwrs(2)=2.36, p=.335	Fwrs(1)=0.09, p=.772	Fwrs(2)=2.01, p=.400
Sample entropy 1	<i>Fwrs</i> (2)=0.41, <i>p</i> =.830	Fwrs(1)=4.36, p=.049	Fwrs(2)=1.22, p=.579
Sample entropy 2	Fwrs(2)=3.79, p=.193	Fwrs(1)=0.51, p=.477	<i>Fwrs</i> (2)=2.04, <i>p</i> =.396
Sample entropy 3	Fwrs(2)=3.4, p=.226	<i>Fwts</i> (1)=1.03, <i>p</i> =.316	<i>Fwrs</i> (2)=1.34, <i>p</i> =.543
Sample entropy 4	Fwrs(2)=3.26, p=.239	Fwrs(1)=1.07, p=.304	<i>Fwrs</i> (2)=0.68, <i>p</i> =.734
Sample entropy 5	Fwrs(2)=2.43, p=.338	<i>Fwrs</i> (1)=1.09, <i>p</i> =.300	Fwrs(2)=0.78, p=.701

Significant *p*-values (i.e. p < .05) are marked in grey. Abbreviations: RMSSD = root mean square of successive differences between adjacent heartbeats, DfaAlpha = detrended fluctuation analysis scaling exponent.

Sex

Table S4. Wald-type statistic (WTS) of the different HRV parameters separately for the main effects 'time' (i.e., forenoon [8am-2pm], afternoon [2pm-8pm], night [11pm-5am]), 'sex' (i.e., male vs. female), and the "time × sex" interaction (*N*=26).

Variable	Time	Sex	Time × Sex
Interbeat interval	<i>Fwrs</i> (2)=4.66, <i>p</i> =.156	<i>Fwrs</i> (1)=2.36, <i>p</i> =.143	<i>Fwrs</i> (2)=3.89, <i>p</i> =.205

Heart rate	Fwrs(2)=6.06, p=.099	<i>Fwrs</i> (1)=1.96, <i>p</i> =.176	Fwrs(2)=3.82, p=.217
RMSSD	<i>Fwrs</i> (2)=0.18, <i>p</i> =.920	<i>Fwrs</i> (1)=0.44, <i>p</i> =.514	Fwrs(2)=1.41, p=.547
Very low frequency	Fwrs(2)=12.21, p=.014	<i>Fwrs</i> (1)=0.09, <i>p</i> =.773	Fwrs(2)=0.11, p=.950
Low frequency	Fwrs(2)=12.08, p=.015	<i>Fwrs</i> (1)=0.53, <i>p</i> =.478	Fwrs(2)=0.05, p=.977
High frequency	Fwrs(2)=1.1, p=.622	<i>Fwrs</i> (1)=1.45, <i>p</i> =.242	Fwrs(2)=1.82, p=.310
Approximate entropy	Fwrs(2)=22.29, p=.002	<i>Fwrs</i> (1)=0.26, <i>p</i> =.607	Fwts(2)=2.27, p=.383
DfaAlpha	<i>Fwrs</i> (2)=0.05, <i>p</i> =.975	<i>Fwrs</i> (1)=3.92, <i>p</i> =.062	Fwrs(2)=4.89, p=.135
Hurst exponent	Fwrs(2)=1.59, p=.495	<i>Fwrs</i> (1)=0.45, <i>p</i> =.507	Fwrs(2)=8.47, p=.044
Sample entropy 1	<i>Fwrs</i> (2)=0.3, <i>p</i> =.883	<i>Fwrs</i> (1)=1.45, <i>p</i> =.253	Fwrs(2)=2.78, p=.325
Sample entropy 2	Fwrs(2)=4.51, p=.159	<i>Fwts</i> (1)=0.00, <i>p</i> =.985	Fwrs(2)=2.17, p=.394
Sample entropy 3	Fwrs(2)=3.57, p=.229	<i>Fwrs</i> (1)=0.04, <i>p</i> =.858	Fwrs(2)=1.89, p=.443
Sample entropy 4	<i>Fwrs</i> (2)=3.19, <i>p</i> =.268	<i>Fwrs</i> (1)=0.05, <i>p</i> =.824	Fwrs(2)=1.41, p=.537
Sample entropy 5	<i>Fwrs</i> (2)=2.01, <i>p</i> =.428	<i>Fwrs</i> (1)=0.08, <i>p</i> =.792	Fwrs(2)=1.39, p=.541

Abbreviations: RMSSD = root mean square of successive differences between adjacent heartbeats, DfaAlpha = detrended fluctuation analysis scaling exponent.

Entropy Parameters

Table S5. Wald-type statistic (WTS) of the different entropy parameters separately for the main effects 'time' (i.e., forenoon [8am-2pm], afternoon [2pm-8pm], night [11pm-5am]) and 'diagnosis' (i.e., E/MCS vs. UWS), and the 'time × diagnosis' interaction (*N*=26).

Variable	Time	Diagnosis	Time × Diagnosis
DfaAlpha	Fwts(2)=0.48, p=.807	<i>Fwts</i> (1)=1.53, <i>p</i> =.228	<i>Fwts</i> (2)=0.71, <i>p</i> =.721
Hurst exponent	<i>Fwts</i> (2)=3.05, <i>p</i> =.257	Fwrs(1)=0.22, p=.646	Fwrs(2)=1.08, p=.604
Sample entropy 1	<i>Fwts</i> (2)=0.40, <i>p</i> =.841	Fwrs(1)=0.44, p=.518	Fwrs(2)=0.24, p=.901
Sample entropy 2	Fwts(2)=4.27, p=.161	Fwrs(1)=0.07, p=.791	<i>Fwts</i> (2)=0.05, <i>p</i> =.980
Sample entropy 3	Fwts(2)=3.97, p=.178	<i>Fwts</i> (1)=0.01, <i>p</i> =.941	<i>Fwts</i> (2)=0.06, <i>p</i> =.972
Sample entropy 4	Fwts(2)=3.71, p=.197	Fwrs(1)=0.12, p=.737	<i>Fwts</i> (2)=0.09, <i>p</i> =.958
Sample entropy 5	<i>Fwts</i> (2)=2.93, <i>p</i> =.271	<i>Fwts</i> (1)=0.21, <i>p</i> =.650	<i>Fwts</i> (2)=0.01, <i>p</i> =.996

Abbreviation: DfaAlpha = detrended fluctuation analysis scaling exponent.

EEG Entropy

Analyses of the EEG permutation entropy (PE) of 14 patients revealed a significant main effect for *time* (*F*_{WTS}(2)=9.79, *p*=.011) with patients showing higher PE during the day (i.e., 8am-8pm) as compared to the night (i.e., 11pm-5am), and a significant *time* × *diagnosis* interaction (*F*_{WTS}(2)=5.39, *p*=.041), but no significant main effect for *diagnosis* (*F*_{WTS}(1)=0.12, *p*=.733). Specifically, while patients with (E)MCS showed a lower PE during the night than during the day (*F*_{WTS}(1)=21.87, *p*=.002), no such day-night difference was observed in patients with UWS (*F*_{WTS}(1)=0.25, *p*=.631). This has already been shown in [25]. We ran the analyses again as we only use a subsample of the dataset here.