Mapping the human genetic architecture of COVID-19: an update

COVID-19 Host Genetics Initiative

Abstract

The Coronavirus Disease 2019 (COVID-19) pandemic continues to pose a major public health threat especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity we formed the COVID19 Host Genetics Initiative. Here we present GWAS meta-analysis of up to 125,584 cases and over 2.5 million controls across 60 studies from 25 countries, adding 11 new genome-wide significant loci compared to those previously identified. Genes in novel loci include SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.

Main text

The Coronavirus Disease 2019 (COVID-19) pandemic continues to pose a major public health threat especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity we formed the COVID19 Host Genetics Initiative. Here we present GWAS meta-analysis of up to 125,584 cases and over 2.5 million controls across 60 studies from 25 countries, adding 11 new genome-wide significant loci compared to those previously identified. Genes in novel loci include SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.

Additional genomic regions identified for COVID-19 severity and SARS-CoV-2 infection

Here we present meta-analyses bringing together 60 studies from 25 countries (Figure 1; Supplementary Table 1) for three COVID-19 related phenotypes: (1) individuals critically ill with COVID-19 based on either requiring respiratory support in hospital or who died as a consequence of the disease (9,376 cases - of which 3,197 new in this data release - and

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
(1,776,645 controls), (2) cases with moderate or severe COVID-19 defined as those hospitalized due to symptoms associated with the infection (25,027 cases – 11,386 new - and 2,836,272 controls), and (3) all cases with reported SARS-CoV-2 infection regardless of symptoms (125,584 cases – 76,022 new - and 2,575,347 controls). An overview of the study design is provided in Supplementary Figure 1. We found a total of 23 genome-wide significant loci (P < 5 × 10\(^{-8}\)) of which 20 loci remain significant after multiple testing corrections (P < 1.67 × 10\(^{-8}\)) to account for the number of phenotypes examined (Figure 2; Supplementary Figure 2; Supplementary Table 2). We compared the effects of these loci between the previous analysis and the current analysis and found that only one locus did not replicate (rs72711165). All the other loci showed the expected increase in statistical significance (Supplementary Figure 3).

Heterogeneity in genetic effects across phenotypes, studies, and ancestry groups

Across the genome-wide significant loci, we observed clear patterns of association to the different phenotypes under study. Thus, we developed a two-class Bayesian model for classifying loci based on the patterns of association across the two better-powered phenotypes (COVID-19 hospitalization and SARS-CoV-2 reported infection). Intuitively, loci that are associated to susceptibility will also be associated to severity as to develop COVID-19, SARS-CoV-2 infection needs to first occur. In contrast, those genetic effects that solely modify the course of illness should be associated to severity to illness and not show any association to reported infection except via preferential ascertainment of hospitalized cases in a cohort (Supplementary Methods). We identified 16 loci that are substantially more likely (> 99% posterior probability) to impact the risk of COVID-19 hospitalization and 7 loci that clearly influence susceptibility to SARS-CoV-2 infection (Supplementary Table 3; Supplementary Figure 4).

We observed that several loci had a significant heterogeneous effect across studies (6/23 loci with P-value for heterogeneity < 2.2x10\(^{-3}\); Supplementary Table 2). Thanks to an increased diversity in our study population (Supplementary Figure 5) we were able to explore if such heterogeneity was due to effect differences across continental ancestry groups. Only one locus (FOXP4) showed a significantly different effect across ancestries (P-value heterogeneity < 7x10\(^{-5}\); Supplementary Table 4 and Supplementary Figure 6), though even at this locus all ancestry groups showed a positive effect estimate. This confirms that factors related to between-study heterogeneity (e.g., variable definition of COVID-19 severity due to different thresholds for testing, hospitalization, and patient recruitment) rather than differences across ancestries are a more likely explanation for the observed heterogeneity in the effect sizes across studies.

Biological insights from novel loci
For the 23 genome-wide significant loci, we explored candidate causal genes and performed a phenome-wide association study to better understand their potential biological mechanisms (Supplementary Table 2,5,6; Supplementary Figure 7). Several of these loci with prior and direct connections to lung disease and SARS-CoV-2 infection mechanism are highlighted here.

Several loci involved in COVID-19 severity implicate lung surfactant biology. A missense variant rs721917:A>G (p.Met31Thr) in SFTPD (10q22.3) confers risk for hospitalization (OR [95% confidence interval [CI]] = 1.06 [1.04, 1.08]; \(P = 1.7 \times 10^{-8} \)) and has been previously associated with increased risk of chronic obstructive pulmonary disease (OR = 1.08; \(P = 2.0 \times 10^{-8} \)), and decreased lung function (FEV1/FVC; \(\beta = –0.019; \ P = 2.0 \times 10^{-15} \)). SFTPD encodes the surfactant protein D (SP-D) that participates in innate immune response, protecting the lungs against inhaled microorganisms. The recombinant fragment of SP-D binds to the S1 spike protein of the SARS-CoV-2 and potentially inhibits binding to ACE2 receptor and SARS-CoV-2 infection. Another missense variant rs117169628:G>A (p.Pro256Leu) in SLC22A31 (16q24.3) also conferring risk for hospitalization (OR [95% CI] = 1.09 [1.06, 1.13]; \(P = 2.6 \times 10^{-8} \)). SLC22A31 belongs to the family of solute carrier proteins that facilitate transport across membranes and is co-regulated with other surfactant proteins. We found a variant rs35705950:G>T located in the promoter of MUC5B (11p15.5) to be protective against hospitalization (OR [95% CI] = 0.83 [0.86, 0.93]; \(P = 6.5 \times 10^{-9} \)). This well-studied promoter variant increases expression of MUC5B in lung in GTEx (\(P = 6.7 \times 10^{-16} \)) and is the strongest known variant associated with increased risk of developing idiopathic pulmonary fibrosis (IPF) but also improves survival in IPF patients carrying this mutation.

Finally, we identified rs190509934:T>C, located 69 bp upstream of ACE2 (Xp22.2) to be associated with decreased susceptibility risk (OR [95% CI] = 0.69 [0.63, 0.75]; \(P = 3.6 \times 10^{-18} \)). ACE2 is the SARS-CoV-2 receptor and functionally interacts with SLC6A19 and SLC6A20, one of which also showed a significant association with susceptibility (rs73062389:G>A at SLC6A20; OR [95% CI] = 1.18 [1.16, 1.20]; \(P = 2.5 \times 10^{-74} \)). Notably, rs190509934 is 10 times more common in South Asians (MAF = 0.027) than in Europeans (MAF = 0.0024), demonstrating the importance of diversity for variant discovery. Recent results have shown that rs190509934:T>C variant lowers ACE2 expression, which in turn confers protection from SARS-CoV-2 infection.

We applied Mendelian randomization to infer potential causal relationships between COVID-19 related phenotypes and their genetically correlated traits (Supplementary Methods; Supplementary Tables 7,8,9; Supplementary Figure 8). A novel causal association was observed between genetic liability to type II diabetes (T2D) and SARS-CoV-2 reported infection (OR [95% CI] = 1.02 [1.01, 1.03]; \(P = 1.6 \times 10^{-3} \), and COVID-19 hospitalization (OR [95% CI] = 1.06 [1.03, 1.1]; \(P = 1.4 \times 10^{-4} \)). Multivariable MR (MVMR) was used to estimate the direct effect of liability to T2D on COVID-19-related phenotypes that was not mediated via BMI. This analysis indicated that the observed causal association of liability to T2D on COVID-19 phenotypes is mediated by BMI (Supplementary Table 10).
Discussion

We have substantially expanded the genetic analysis of SARS-CoV-2 infection and COVID-19 severity by doubling the case size, identifying 11 novel loci. We developed a new approach to systematically assign the 23 discovered loci to either disease susceptibility (7 loci) or disease severity (16 loci). While distinguishing the two phenotypes is challenging because progression to a severe form of the disease requires susceptibility to infection in the first place, it is now evident that the genetic mechanisms involved in these two aspects of the disease can be differentiated. Among the new loci associated with disease susceptibility, *ACE2* represents an expected, yet interesting finding. *MUC5B*, *SFTPD*, and *SLC22A31* are the three most interesting novel loci associated with COVID-19 severity. Their relationship with lung function and lung diseases is consistent with loci previously associated with disease severity. The SPs secreted by alveolar cells, representing an emerging biological mechanism, maintains healthy lung function and facilitates the clearance of pathogens\(^2\). The protective effect of the *MUC5B* variant is unexpected given the otherwise risk-increasing, concordant effect between IPF and COVID-19 observed for other variants\(^8\). Nonetheless, this result aligns with the *MUC5B* promoter variant association that shows a twofold higher survival rate among IPF patients\(^9\). In mice, *Muc5b* appears essential for effective mucociliary clearance and for controlling infection\(^13\) supporting therapies to control mucin secretion to be of potential benefit in COVID-19 patients.

Expanding genomic research to include participants from around the world enabled us to test if the effect of COVID-19 related genetic variants was markedly different across ancestry groups. We didn't detect obvious heterogeneity between ancestry groups, and we attribute the observed heterogeneity in the effect of COVID-19 related genetic variants to the diverse inclusion criteria across studies in terms of COVID-19 severity. However, we also note that ascertainment differences across studies might mask true underlying differences in effect sizes between ancestry groups.

The novel biological insights gained by this expansion of the COVID-19 Host Genetic Initiative showed that increasing sample size and diversity remain a fruitful activity to better understand the human genetic architecture of COVID-19.

Data Availability

Summary statistics generated by COVID-19 HGI are available at https://www.covid19hg.org/results/r6/. The analyses described here utilize the freeze 6 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for 23 loci lead variants are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (http://www.nealelab.is/uk-biobank/), Finucane lab (https://www.finucanelab.org), FinnGen Freeze 4.
cohort (https://www.finngen.fi/en/access_results), and eQTL catalogue release 3 (http://www.ebi.ac.uk/eqtl/).

Code Availability
The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses are available on GitHub (https://github.com/covid19-hg/) and the code for the Mendelian randomization and genetic correlation pipeline is available on GitHub at https://github.com/marcoralab/MRcovid. Code for implementing the MVMR analysis is available at: https://github.com/marcoralab/multivariate_MR ; and subtype analyses at: https://github.com/mjpirinen/covid19-hgi_subtypes

Competing Interests
A full list of competing interests is supplied as Supplementary Table 11.

Author contributions
Detailed author contributions are integrated in the authorship list.

References

Figure Legends

Figure 1 | Panel A: Geographical overview of the contributing studies to the COVID-19 HGI and composition by major ancestry groups. Populations are defined as Middle Eastern (MID), South Asian (SAS), East Asian (EAS), African (AFR), Admixed American (AMR), European (EUR). **Panel B. Principal components analysis** highlights the population structure and the sample ancestry of the individuals participating to the COVID-19 HGI. This figure is an updated version of the figure published by the COVID-19 Host Genetics Initiative 1.

Figure 2 | Genome-wide association results for COVID-19. A. Top panel shows results of genome-wide association study of hospitalized COVID-19 (n=25,027 cases and n=2,836,272 controls), and bottom panel the results of reported SARS-CoV-2 infection (n=125,584 cases and n=2,575,347 controls). Loci highlighted in yellow (top panel) represent regions associated with severity of COVID-19 manifestation. Loci highlighted in green (bottom panel) are regions associated with susceptibility to SARS-CoV-2 infection. Lead variants for the loci newly identified in this data release are annotated with their respective rsID. **B.** Results of gene prioritization using different evidence measures of gene annotation. Genes in linkage disequilibrium (LD) region, genes with coding variants and eGenes (fine-mapped cis-eQTL variant PIP > 0.1 in GTEx Lung) are annotated if in LD with a COVID-19 lead variant (r^2 > 0.6). V2G: Highest gene prioritized by OpenTargetGenetics’ V2G score. The * indicates SARS-CoV-2 infection susceptibility and + indicates COVID-19 severity. The transparent loci were reported in the previous freeze (data release 5), and loci in bright blue were identified in the current freeze (data release 6). This figure is an updated version of the figure published by the COVID-19 Host Genetics Initiative 1.
COVID-19 Host Genetics Initiative

Leadership

Leadership
Gita A. Pathak¹,
Juha Karjalainen²,
Christine Stevens³,
Benjamin M Neale⁴,
Mark Daly²,³,⁵,
Andrea Ganna²,³,⁵

Writing group

Writing group lead
Gita A. Pathak¹,
Shea J. Andrews⁶,
Masahiro Kanai³,
Mattia Cordioli⁷,
Andrea Ganna²,³,⁵

Analysis group

Manuscript analyses team lead
Juha Karjalainen²

Manuscript analyses team members: phewas
Gita A. Pathak¹,
Renato Polimanti¹

Manuscript analyses team members: mendelian randomization
Shea J. Andrews⁶,
Nadia Harerimana⁸

Manuscript analyses team members: methods development
Mattia Cordioli⁷,
Matti Pirinen⁷

Manuscript analyses team members: PC projection, gene prioritization
Masahiro Kanai³

Project management group
Project management lead
Christine Stevens³,
Rachel G. Liao³

Project management support
Karolina Cwialkowska⁹,
Amy Trankiem³,
Mary K. Balaconis³

Website development
Website development
Huy Nguyen³,
Matthew Solomonson³

Scientific communication group
Scientific communication lead
Kumar Veerapen³,
Brooke Wolford⁴⁰

AncestryDNA COVID-19 Research Study
Analysis Team Lead
Genevieve Roberts¹¹

Data Collection Lead
Danny Park¹¹

Admin Team Lead
Catherine A. Ball¹¹

Analysis Team Member
Marie Coignet¹¹,
Shannon McCurdy¹¹,
Spencer Knight¹¹,
Raghavendran Partha¹¹,
Brooke Rhead¹¹

Data Collection Member
Michel Georges13, Michel Moutschen20,21, Benoit Misset20,21, Gilles Darcis20,21, Julien Guiot20,21, Samira Azarzar20,21, Stéphanie Gofflot15, Sabine Claassen14, Olivier Malaise20, Pascale Huynen20, Christelle Meuris22, Marie Thys22, Jessica Jacques22, Philippe Léonard22, Frederic Frippiat22, Jean-Baptiste Giot22, Anne-Sophie Sauvage22, Christian Von Frenckell22, Yasmine Belhaj13, Bernard Lambermont22

Biobanque Quebec COVID19

Analysis Team Lead
Tomoko Nakanishi23,24,25,26

Data Collection Lead
David R. Morrison24

Admin Team Lead
Vincent Mooser27, J. Brent Richards24,28,29

Analysis Team Member
Guillaume Butler-Laporte24,30, Vincenzo Forgetta24, Rui Li27

Data Collection Member

Admin Team Member
Erwin Schurr, Pierre Lepage, Jiannis Ragoussis, Daniel Auld, Michaël Chassé, Daniel E. Kaufmann, G. Mark Lathrop, Darin Adra

CCHC COVID-19 GAWS

Analysis Team Lead
Caroline Hayward, Joseph T Glessner, Douglas M Shaw

Data Collection Lead
Archie Campbell, Marcela Morris

Admin Team Lead
Analysis Team Lead
Paul RHJ Timmers56,57,
James F Wilson56,57,
Albert Tenesa56,58

Admin Team Lead
Shona M Kerr56

Analysis Team Member
Kenton D'Mellow58

Egypt hgCOVID hub

Analysis Team Lead
Mari E.K. Niemi12

Data Collection Lead
Doaa Shahin59,
Yasser M. El-Sherbiny59,60

Admin Team Lead
Kathrin Aprile von Hohenstaufen61,
Ali Sobh62,
Madonna M. Eltoukhy63

Analysis Team Member
Mattia Cordioli7,
Lindokuhle Nkambul17,64

Data Collection Member
Tamer A. Elhadidy65,
Mohamed S. Abd Elghafar66,
Jehan J. El-Jawhari59,60,
Attia A.S. Mohamed63,
Marwa H. Elnagdy67,
Amr Samir58,
Mahmoud Abdel-Aziz69,
Walid T. Khafaga70,
Wala M. El-Lawaty71,
Mohamed S. Torky71,
Mohamed R. El-shanshory72

Admin Team Member
Amr M. Yassen73,
Mohamed A. F. Hegazy68,
Kamal Okasha74,
Mohammed A. Eid75,
Hanteera S. Mohamed71

EraCORE

Analysis Team Lead
Carolina Medina-Gomez76

Data Collection Lead
M. Arfan Ikram77

Admin Team Lead
Andre G. Uitterlinden76,77

Estonian Biobank

Analysis Team Lead
Reedik Mägi78

Data Collection Lead
Lili Milani78

Admin Team Lead
Andres Metspalu78

Analysis Team Member
Triin Laisk78,
Kristi Lää78,
Maarja Lepamets78

Data Collection Member

Admin Team Member
Catherine E Bee, Emma L Adams

FinnGen

Admin Team Lead
FinnGen

Analysis Team Member
Samuli Ripatti, Sanni Ruotsalainen

Data Collection Member
Kati Kristiansson, Sami Koskelainen, Markus Perola, Kati Donner, Katja Kivinen, Aarno Palotie

Admin Team Member
Mari Kaunisto

Functional Host Genomics in Infectious Diseases (FHoGiD)

Analysis Team Lead
Carlo Rivolta

Data Collection Lead
Pierre-Yves Bochud¹⁰⁰,
Stéphanie Bibert¹⁰¹,
Noémie Boillat¹⁰⁰,
Semira Gonseth Nussle¹⁰²,
Werner Albrich¹⁰³

Analysis Team Member
Mathieu Quinodoz⁹⁸,⁹⁹,
Dhryata Kamdar⁹⁸,⁹⁹

Data Collection Member
Noémie Suh¹⁰⁴,
Dionysios Neofytos¹⁰⁵,
Véronique Erard¹⁰⁶,
Cathy Voide¹⁰⁷,
FHoGID¹⁰⁸,
RegCOVID¹⁰⁹,
P-PredictUs¹¹⁰,
SeroCOVID¹¹¹,
CRiPSI¹¹²

GCAT. Genomes For Life.

Analysis Team Lead
Rafael de Cid¹¹³

Data Collection Lead
Anna Carreras¹¹³,
Victor Moreno¹¹⁴,
Manolis Kogevinas¹¹⁵,¹¹⁶,¹¹⁷,¹¹⁸

Analysis Team Member
Iván Galván-Femenía¹¹³,
Natalia Blay¹¹³,
Xavier Farré¹¹³,
Lauro Sumoy¹¹³

Data Collection Member
Beatriz Cortés¹¹³,
Josep Maria Mercader¹¹⁹,
Marta Guindo-Martinez¹²⁰,
David Torrents¹²⁰,
Judith Garcia-Aymerich¹¹⁵,¹¹⁷,¹¹⁸,
Gemma Castaño-Vinyals¹¹⁵,¹¹⁶,¹¹⁷,¹¹⁸,
Carlota Dobaño¹¹⁵,¹¹⁸

GEN-COVID Multicenter Study

Analysis Team Lead
Marco Gori¹²¹,¹²²
Mari E.K. Niemi¹²

Data Collection Lead
Alessandra Renieri, Francesca Mari, Mario Umberto Mondelli, Francesco Castelli, Massimo Vaghi, Stefano Rusconi, Francesca Montagnani, Elena Bargagli, Federico Franchi, Maria Antonietta Mazzel, Luca Cantarini, Danilo Tacconi, Marco Feri, Raffaele Scala, Genni Spargi, Cesira Nencioni, Maria Bandini, Gian Piero Caldarelli, Anna Canaccini, Agostino Ognibene, Antonella D’Arminio Monforte, Massimo Girardi, Andrea Antinori, Daniela Francisci, Elisabetta Schiaroli, Pier Giorgio Scotton, Sandro Panese, Renzo Scaggiante, Matteo Della Monica, Mario Capasso, Giuseppe Fiorentino, Marco Castori, Filippo Aucella, Antonio Di Biagio, Luca Masucci, Serafina Valente, Marco Mandalà, Patrizia Zucchi, Ferdinando Giannattasio, Domenico A. Coviello, Cristina Mussini, Luisa Tavecchia, Lia Crotti, Marco Rizzi.
Maria Teresa La Rovere177,
Simona Sarzi-Braga178,
Maurizio Busso1179,
Sabrina Ravaglia180,
Rosangela Artuso181,
Antonio Perrella182,
Davide Romani183,
Paola Bergomi184,
Emanuele Catena184,
Antonella Vincenti185,
Claudio Ferri186,
Davide Grassi186,
Gloria Pessina187,
Mario Tumbarello132,188,
Massimo Di Pietro189,
Ravaglia Sabrina190,
Sauro Luchi191

Admin Team Lead
Simone Furini125,
Simona Dei192

Analysis Team Member
Elisa Benetti125,
Nicola Picchiotti121,193,
Maurizio Sanarico194,
Stefano Ceri195,
Pietro Pinoli195,
Francesco Raimondi196,
Filippo Biscarini197,
Alessandra Stella198,
Kristina Zguro199,
Katia Capitani132,200,
Mattia Cordioli16,
Sara Pigazzini12,
Mattia Cordioli16,
Sara Pigazzini12,
Lindokuhle Nkambule17,64,
Marco Tanfoni121

Data Collection Member
Sandro Mancarella, Chiara Gabbi, Franco Maggiolo, Diego Ripamonti, Tiziana Bachetti, Claudia Suardi, Gianfranco Parati, Giordano Botta, Paolo Di Domenico, Ilaria Rancan, Francesco Bianchi, Riccardo Colombo, Chiara Barbieri, Donatella Acquilini, Elena Andreucci, Francesco Paciosi, Francesco Vladimiro Segala, Giusy Tiseo, Marco Falcone, Mirjam Lista, Monica Poscente, Oreste De Vivo, Paola Petrocelli, Alessandra Guarnaccia, Silvia Baroni

Generation Scotland

Analysis Team Lead
Caroline Hayward

Data Collection Lead
David J Porteous

Admin Team Lead
Chloe Fawns-Ritchie

Analysis Team Member
Anne Richmond

Data Collection Member
Archie Campbell

Genes & Health
Genome-wide assessment of the gene variants associated with severe COVID-19 phenotype in Iran

Analysis Team Lead
Mari E.K. Niemi
Ahmadreza Niavarani

Data Collection Lead

Analysis Team Lead
Mari E.K. Niemi
Ahmadreza Niavarani

Data Collection Lead

Analysis Team Lead
Mari E.K. Niemi
Ahmadreza Niavarani

Data Collection Lead

Analysis Team Lead
Mari E.K. Niemi
Ahmadreza Niavarani

Data Collection Lead
Host genetic factors in COVID-19 patients in relation to disease susceptibility, disease severity and pharmacogenomics

Analysis Team Lead
Pajaree Chariyavilaskul

Data Collection Lead
Watsamon Jantarabenjakul

Admin Team Lead
Nattiya Hirankarn

Analysis Team Member
Monpat Chamnanphon, Thitima B. Suttichet, Vorasuk Shotelersuk, Monnat Pongpanich, Chureerat Phokaew, Wanna Chetruengchai

Data Collection Member
Mass General Brigham - Host Vulnerability to COVID-19

Analysis Team Lead
Yen-Chen Anne Feng, Josep Mercader

Data Collection Lead
Scott T Weiss, Elizabeth W. Karlson, Jordan W. Smoller, Shawn N Murphy, James B. Meigs, Ann E. Woolley

Admin Team Lead
Robert C. Green

Data Collection Member
Emma F Perez

Michigan Genomics Initiative (MGI)

Analysis Team Lead
Brooke Wolford

Admin Team Lead
Sebastian Zöllner

Analysis Team Member
Jiongming Wang, Andrew Beck

Mount Sinai Health System COVID-19 Genomics Initiative

Analysis Team Lead
Laura G. Sloofman

Data Collection Lead
Admin Team Lead
Joseph D. Buxbaum, Stuart C. Sealfon

Analysis Team Member

Data Collection Member
Irene Salib, Bari Britvan, Katherine Keller, Lara Tang, Michael Peruggia, Liam L. Hiester, Kristi Niblo, Alexandra Aksentijevich, Alexander Labkowsky, Avromie Karp, Menachem Zlatopolsky, Marissa Zyndorf

Admin Team Member

MyCode Health Initiative

Analysis Team Lead
Manuel A.R. Ferreira323, Goncalo R. Abecasis323

Data Collection Lead
Joseph B. Leader324, Michael N. Cantor323

Admin Team Lead
Anne E Justice325, Dave J. Carey326

Analysis Team Member
Geetha Chittoor325, Navya Shilpa Josyula325, Jack A. Kosmicki323, Julie E Horowitz323, Aris Baras323

Data Collection Member
Matthew C. Gass324, Ashish Yadav323

Admin Team Member
Tooraj Mirshahi326

Netherlands Twin Register

Analysis Team Lead
Jouke Jan Hottenga

Data Collection Lead
Meike Bartels

Admin Team Lead
Eco (E.J.C.) de geus

Analysis Team Member
Michel (M.G.) Nivard

Penn Medicine Biobank

Analysis Team Lead
Anurag Verma, Marylyn D. Ritchie

Admin Team Lead
Daniel Rader

Analysis Team Member
Binglan Li, Shefali S Verma, Anastasia Lucas, Yuki Bradford

Saudi Human Genome Program- COVID19 : Host Genomic markers predicting the severity and suitability to COVID-19 in highly consanguineous population

Analysis Team Lead
Malak Abedalthagafi, Manal Alaamery

Data Collection Lead
Abdulraheem Alshareef, Mona Sawaji

Admin Team Lead
Salam Massadeh, Abdulaziz AlMalik

Analysis Team Member
Saleh Alqahtani, Dona Baraka, Fawz Al Harthi, Ebtehal Alsolm, Leen Abu Safieh, Albandary M Alowayn, Fatimah Alqubaishi, Amal Al Mutairi, Serghei Mangul

Data Collection Member

Admin Team Member
Sara Alotaibi, Bader Alghamdi, Junghyun Jung, Mohammad S fawzy

Data collection Member
May Alrashed

The genetic predisposition to severe COVID-19

Analysis Team Lead
Mari E.K. Niemi

Data Collection Lead
Hugo Zeberg

Analysis Team Member
Mattia Cordioli, Sara Pigazzini, Lindo Nkambul

Data Collection Member
Robert Frithiof, Michael Hultström, Miklos Lipcsey, Nicolas Tardif, Olav Rooyackers, Jonathan Grip, Tomislav Maricic

The Norwegian Mother, Father and Child Cohort Study

Analysis Team Lead
Øyvind Helgeland

Data Collection Lead
Per Magnus, Lill-Iren S Trogstad

Analysis Team Member
Yunsung Lee

Admin Team Member
Jennifer R Harris

TwinsUK

Analysis Team Lead
Massimo Mangino

Data Collection Lead
Tim D Spector

Data Collection Member
Duncan Emma

UK 100,000 Genomes Project (Genomics England)

Analysis Team Lead
Loukas Moutsianas

Data Collection Lead
Mark J Caulfield, Richard H Scott

Analysis Team Member
Athanassios Kousathanas, Dorota Pasko, Susan Walker, Alex Stuckey, Christopher A Odhams, Daniel Rhodes

Data Collection Member
Tom Fowler, Augusto Rendon, Georgia Chan, Prabhu Arumugam

UK Biobank

Analysis Team Lead
Tomoko Nakanishi, Konrad J. Karczewski, Alicia R. Martin, Daniel J Wilson, Chris C A Spencer

Data Collection Lead
Derrick W Crook, David H Wyllie, Anne Marie O'Connell

Admin Team Lead
J. Brent Richards24,28,29

Analysis Team Member
Guillaume Butler-Laporte24,30,
Vincenzo Forgetta24,
Elizabeth G. Atkinson5,19,
Masahiro Kanai5,19,374,
Kristin Tsuo5,19,375,
Nikolas Baya5,19,
Patrick Turley5,19,
Rahul Gupta5,19,
Raymond K. Walters5,19,
Duncan S. Palmer5,19,
Gopal Sarma5,19,
Matthew Solomonson5,19,
Nathan Cheng5,19,
Wenhan Lu5,19,
Claire Churchhouse5,19,
Jacqueline I. Goldstein5,19,
Daniel King5,19,
Wei Zhou5,19,
Cotton Seed5,19,
Mark J. Daly2,3,5,
Benjamin M. Neale5,19,
Hilary Finucane5,19,
Sam Bryant3,
F. Kyle Satterstrom5,19,
Gavin Band376,
Sarah G Earle369,
Shang-Kuan Lin369,
Nicolas Arning369,
Nils Koelling370

Data Collection Member
Jacob Armstrong369,
Justine K Rudkin369

Admin Team Member
Shawneequa Callier377,
Sam Bryant5,19,
Caroline Cusick19

UK Blood Donors Cohort

Analysis Team Lead
Variability in immune response genes and severity of SARS-CoV-2 infection (INMUNGEN-CoV2 study)
Analysis Team Lead
Israel Fernandez-Cadenas

Data Collection Lead
Anna M Planas

Analysis Team Member
Jordi Perez-Tur
Laia Llucià-Carol
Natalia Cullell
Elena Muño
Jara Cárcel-Márquez
Marta L DeDiego
Lara Lloret Iglesias

Data Collection Member
Alex Soriano404, Veronica Rico405, Daiana Agüero405, Josep L Bedini405, Francisco Lozano406, Carlos Domingo405, Veronica Robles405, Francisca Ruiz-Jaén407, Leonardo Márquez408, Juan Gomez409, Eliecer Coto409, Guillermo M Albaiceta409, Marta García-Clemente409, David Dalmau410, Maria J Arranz410, Beatriz Dietl410, Alex Serra-Llovich410, Pere Soler411, Roger Colobrán411, Andrea Martín-Nalda411, Alba Parra Martínez411, David Bernardo412, Silvia Rojo413, Aida Fiz-López412, Elisa Arribas412, Paloma de la Cal-Sabater412, Tomás Segura414, Esther González-Villa415, Gemma Serrano-Heras416, Joan Martí-Fàbregas417, Elena Jiménez-Xarrié417, Alicia de Felipe Mimbrera418, Jaime Masjuan418, Sebastían García-Madrona418, Anna Domínguez-Mayoral419, Joan Montaner Villalonga419, Paloma Menéndez-Valladares419

Women's Genome Health Study (WGHS), i.e. the genomics subset of Women's Health Study (WHS)

Analysis Team Lead
Daniel I. Chasman

Data Collection Lead
Howard D. Sesso, JoAnn E. Manson

Admin Team Lead
Julie E. Buring, Paul M Ridker

Analysis Team Member
Giulianini Franco

COVID-19 HGI corresponding authors

Benjamin M Neale, Mark Daly, Andrea Ganna

1. Yale University, New Haven, CT, USA
2. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
3. Broad Institute of MIT and Harvard, Cambridge, MA, USA
4. Massachusetts General Hospital, Broad Institute of MIT and Harvard, Cambridge, MA, USA
5. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
6. Icahn School of Medicine at Mount Sinai, New York, NY, USA
7. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
8. Icahn School of Medicine at Mount Sinai, Genetics and Genomic Sciences
9. Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
10. University of Michigan, Ann Arbor, MI, USA
11. Ancestry, Lehi, UT, USA
12. Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
13. University of Liege, GIGA-Institute, Liège, Belgium
14. CHC Mont-Légia, Liège, Belgium
15. 5BHUL (Liège Biobank), CHU of Liège, Liège, Belgium
16. Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
17. Analytic & Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
18. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
19. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
20. CHU of Liege, Liège, Belgium
21. University of Liege, Liège, Belgium
22. CHU of liege, Liège, Belgium
23. Department of Human Genetics, McGill University, Montréal, Québec, Canada
24. Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
25. Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
26. Research Fellow, Japan Society for the Promotion of Science
27. McGill Genome Centre and Department of Human Genetics, McGill University, Montréal, Québec, Canada
28. Department of Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
29. Department of Twin Research, King’s College London, London, United Kingdom
30. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
31. Department of Emergency Medicine, McGill University, Montréal, Québec, Canada
32. Emergency Department, Jewish General Hospital, McGill University, Montréal, Québec, Canada
33. McGill AIDS Centre, Department of Microbiology and Immunology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Québec, Canada
34. McGill Centre for Viral Diseases, Lady Davis Institute, Department of Infectious Disease, Jewish General Hospital, Montréal, Québec, Canada
35. Research Centre of the Centre Hospitalier de l’Université de Montréal, Montréal, Canada
36. Department of Medicine, Research Centre of the Centre Hospitalier de l’Université de Montréal, Montréal, Canada
37. Department of Medicine, Université de Montréal, Montréal, Canada
38. Department of Medicine and Human Genetics, McGill University, Montréal, Québec, Canada
39. Department of Intensive Care, Research Centre of the Centre Hospitalier de l’Université de Montréal, Montréal, Canada
40. Division of Infectious Diseases, Research Centre of the Centre Hospitalier de l’Université de Montréal, Montréal, Canada
41. MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK EH4 2XU
42. Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
43. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
44. Vanderbilt University Medical Center
45. Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK EH4 2XU
46. University of Texas Health
47. Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK EH4 2XU
48. Department of Psychology, University of Edinburgh, Edinburgh, UK, EH8 9JZ, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK, EH4 2XU
49. University of North Carolina at Chapel Hill
50. Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
51. Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
52. Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
53. Divisions of Human Genetics and Pulmonary Medicine, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
54. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
55. University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
56. MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
57. Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, Scotland
58. The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
59. Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
60. Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
61. Genolier Innovation Network and Hub, Swiss Medical Network, Genolier Healthcare Campus, Route du Muids 3, 1272 Genolier, Switzerland.
62. Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
63. Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt.
64. Stanley Center for Psychiatric Research & Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
65. Chest Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
66. Anesthesia, Surgical Intensive Care & Pain Management Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
67. Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
68. Department of Surgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
69. Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
70. pediatric and neonatology, Kafr Elzayat General Hospital, Kafr El-Zayat, Egypt.
71. Chest Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
72. Pediatrics Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
73. Department of Anaesthesia and Critical Care, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
74. Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt.
75. Faculty of Science, Tanta University, Tanta, Egypt.
76. Department of Internal Medicine
77. Department of Epidemiology
78. Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
79. SYNLAB Estonia, University of Tartu, Tartu, Estonia
80. Kuressaaare Hospital, Kuressaaare, Estonia
81. University of Tartu, Tartu, Estonia
82. Institute of Biomedicine and Translational Medicine, University of Tartu
83. Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
84. West Tallinn Central Hospital, Tallinn, Estonia
85. University of Tartu, Tartu University Hospital, Tartu, Estonia
86. Estonian Health Insurance Fund, Tallinn, Estonia
87. Tartu University Hospital, Tartu, Estonia
88. Department of Health Sciences, University of Leicester, Leicester, UK
89. Leicester NIHR Biomedical Research Centre, Leicester, UK
90. Department of Respiratory Sciences, University of Leicester, UK
91. Department of Genetics and Genome Biology, University of Leicester
92. FinnGen, Helsinki, Finland
93. Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
94. Public Health, Faculty of Medicine, University of Helsinki, Finland
95. Finnish Institute for Health and Welfare (THL), Helsinki, Finland
97. University of Helsinki, Faculty of Medicine, Clinical and Molecular Metabolism Research Program, Helsinki, Finland
98. Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
99. Department of Ophthalmology, University of Basel, Basel, Switzerland
100. Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
101. Infectious Diseases Service, Department of Medicine, University Hospital, University of Lausanne, Lausanne, Switzerland
102. Centre for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
103. Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland.
104. Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland.
105. Infectious Disease Service, Department of Internal Medicine, Geneva University Hospital, Geneva, Switzerland.
106. Clinique de Médecine et spécialités, Infectiologie, HFR-Fribourg, Fribourg, Switzerland
107. Infectious Diseases Division, University Hospital Centre of the canton of Vaud, hospital of Valais, Sion, Switzerland
108. Functional Host Genomics of Infectious Diseases, University Hospital and University of Lausanne, Lausanne, Switzerland
109. Registry COVID, University Hospital and University of Lausanne, Lausanne, Switzerland
110. Pneumonia prediction using lung ultrasound, University Hospital and University of Lausanne, Lausanne, Switzerland
111. Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
112. Covid-19 Risk Prediction in Swiss ICUs-Trial, Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland.
113. GCAT-Genomes for Life, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Crta. de Can Ruti, Cami de les Escoles s/n,08916 Badalona, Catalonia
114. Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Consortium for Biomedical Research in Epidemiology and Public Health and University of Barcelona, Barcelona, Spain
115. ISGlobal, Barcelona, Spain
116. IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
117. Universitat Pompeu Fabra (UPF), Barcelona, Spain
118. CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
119. Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS).Life & Medical Sciences *currently at Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA and Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. Harvard Medical School, Boston, Massachusetts, USA
120. Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS).Life & Medical Sciences, Barcelona, Spain
121. University of Siena, DIISM-SAILAB, Siena, Italy
122. Université Côte d’Azur, Inria, CNRS, I3S, Maasai, Nice, France
123. Medical Genetics, University of Siena, Italy
124. Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
125. Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
126. Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
127. Department of Internal Medicine and Therapeutics, University of Pavia, Italy
128. Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy
129. Chirurgia Vascolare, Ospedale Maggiore di Crema, Crema, Italy
130. III Infectious Diseases Unit, ASST-FBF-Sacco, Milan, Italy
131. Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy
132. Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
133. Dept of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
134. Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy
135. Dept of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy
136. Department of Medical, Surgical and Neuro Sciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena, Siena, Italy
137. Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy
138. Department of Specialized and Internal Medicine, Infectious Diseases Unit, San Donato Hospital Arezzo, Arezzo, Italy
139. Dept of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy
140. Department of Specialized and Internal Medicine, Pneumology Unit and UTIP, San Donato Hospital, Arezzo, Italy
141. Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy
142. Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy
143. Department of Preventive Medicine, Azienda USL Toscana Sud Est, Arezzo, Italy
144. Clinical Chemical Analysis Laboratory, Misericordia Hospital, Grosseto, Italy
145. Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Arezzo, Italy
146. Clinical Chemical Analysis Laboratory, San Donato Hospital, Arezzo, Italy
147. Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
148. Department of Anesthesia and Intensive Care, University of Modena and Reggio Emilia, Modena, Italy
149. HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy
150. Infectious Diseases Clinic, Department of Medicine 2, Azienda Ospedaliera di Perugia and University of Perugia, Santa Maria Hospital, Perugia, Italy
151. Infectious Diseases Clinic, "Santa Maria" Hospital, University of Perugia, Perugia, Italy
152. Department of Infectious Diseases, Treviso Hospital, Treviso, Italy
153. Clinical Infectious Diseases, Mestre Hospital, Venezia, Italy
154. Infectious Diseases Clinic, ULSS1, Belluno, Italy
155. Medical Genetics and Laboratory of Medical Genetics Unit, A.O.R.N. "Antonio Cardarelli", Naples, Italy
156. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
157. CEINGE Biotecnologie Avanzate, Naples, Italy
158. IRCCS SDN, Naples, Italy
159. Unit of Respiratory Physiopathology, AORN dei Colli, Monaldi Hospital, Naples, Italy
160. Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San
Giovanni Rotondo, Italy
161. Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San
Giovanni Rotondo, Italy
162. Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS for Cancer Research, Genova,
Italy
163. Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of
Medicine, Rome, Italy
164. Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario A.
Gemelli IRCCS, Rome, Italy
165. Department of Cardiovascular Diseases, University of Siena, Siena, Italy
166. Otolaryngology Unit, University of Siena, Siena, Italy
167. Department of Internal Medicine, ASST Valtellina e Alto Lario, Sondrio, Italy
168. First Aid Department, Luigi Curto Hospital, Polla, Salerno, Italy
169. U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto G. Gaslini, Genova, Italy
170. Infectious Diseases Clinics, University of Modena and Reggio Emilia, Modena, Italy
171. U.O.C. Medicina, ASST Nord Milano, Ospedale Bassini, Cinisello Balsamo (MI), Italy
172. Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San
Luca Hospital, Milan, Italy
173. Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
174. Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy
175. Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy
176. Unit of Infectious Diseases, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
177. Department of Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, Institute of Montescano, Pavia,
Italy
178. Istituti Clinici Scientifici Maugeri, IRCCS, Department of Cardiac Rehabilitation, Institute of Tradate
(VA), Pavia, Italy
179. Cardiac Rehabilitation Unit, Fondazione Salvatore Maugeri, IRCCS, Scientific Institute of Milan,
Milan, Italy
180. IRCCS C. Mondino Foundation, Pavia, Italy
181. Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
182. Department of Medicine, Pneumology Unit, Misericordia Hospital, Grosseto, Italy
183. Department of Preventive Medicine, Azienda USL Toscana Sud Est, Tuscany, Italy
184. Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco
Hospital, Polo Universitario, University of Milan, Milan, Italy
185. Infectious Disease Unit, Hospital of Massa, Massa, Italy.
186. Department of Clinical Medicine, Public Health, Life and Environment Sciences, University of
L'Aquila, L'Aquila, Italy
187. UOSD Laboratorio di Genetica Medica - ASL Viterbo, San Lorenzo, Italy
188. Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera
Universitaria Senese, Siena, Italy
189. Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy.
190. IRCCS Mondino Foundation, Pavia, Italy.
191. Infectious Disease Unit, Hospital of Lucca, Lucca, Italy
192. Health Management, Azienda USL Toscana Sudest, Tuscany, Italy
193. Department of Mathematics, University of Pavia, Pavia, Italy
194. Independent Researcher, Milan, Italy
195. Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy
196. Scuola Normale Superiore, Pisa, Italy
197. CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
198. CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy
199. Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
200. Core Research Laboratory, ISPRO, Florence, Italy
201. Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
202. Infectious Diseases Clinic, Department of Medicine 2, Azienda Ospedaliera di Perugia and University of Perugia, Santa Maria Hospital
203. Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
204. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
205. Department of Molecular and Translational Medicine, University of Brescia, Italy
206. Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
207. Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
208. Department of Molecular Medicine, University of Padova, Padua, Italy
209. Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
210. Clinical Trial Office, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
211. Department of Health Sciences, University of Genova, Genova, Italy
212. Oncologia Medica e Ufficio Flussi Sondrio, Sondrio, Italy
213. Local Health Unit-Pharmaceutical Department of Grosseto, Toscana Sud Est Local Health Unit, Grosseto, Italy
214. Department of Respiratory Diseases, Azienda Ospedaliera di Cremona, Cremona, Italy
215. Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
216. Fondazione per la ricerca Ospedale di Bergamo, Bergamo, Italy
217. Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy
218. Allelica Inc, New York, NY, USA
219. Dept of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
220. Department of Clinical and Experimental Medicine, Infectious Diseases Unit, University of Pisa, Pisa, Italy
221. Infectious Disease Unit, Santo Stefano Hospital, AUSL Toscana Centro, Prato, Italy
222. Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy
223. Medical Genetics, University of Siena, Siena, Italy
224. Infectious Disease Unit, Hospital of Lucca, Lucca Italy
225. Department of Diagnostic and Laboratory Medicine, Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
226. MRC Human Genetics Unit, IGC, University of Edinburgh, EH4 2XU, UK
227. Medical Genetics Section, Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK, Generation Scotland, Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
228. Department of Psychology, University of Edinburgh, Edinburgh, UK, Medical Genetics Section, Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK, Generation Scotland, Centre for Genomic and Experimental Medicine, IGC, University of Edinburgh, Edinburgh, UK
229. Blizard Institute, Queen Mary University of London, London, United Kingdom
230. School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
231. Medical and Population Genomics, Wellcome Sanger Institute, Hinxton, UK
232. Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK
233. Blizard Institute, 4 Newark Street, Queen Mary University of London
234. Institute of Population Health Sciences, 4 Newark Street, Queen Mary University of London, London, United Kingdom
235. Genes & Health, Blizard Institute, Queen Mary University of London, E1 2AT, London, United Kingdom
236. Institute of Population Health Sciences, 4 Newark Street, Queen Mary University of London
237. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
238. Digestive Oncology Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
239. Department of Pulmonology, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
240. Department of Critical Care Medicine, Noorafshar Hospital, Tehran, Iran
241. Department of Emergency Intensive Care Unit, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
242. Department of Anesthesiology, School of Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
243. Department of Pulmonology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
244. Department of Pathology, Parseh Pathobiology and Genetics Laboratory, Tehran, Iran
245. Department of Microbiology, Health and Family Research Center, NIOC Hospital, Tehran, Iran
246. Department of Emergency Medicine, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
247. Department of Anesthesiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
248. Department of Pathology, Faculty of Medicine, Tehran Azad University, Tehran, Iran
249. Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok Thailand
250. Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok Thailand
251. Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
252. Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
253. Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
254. Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
255. Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
256. Department of Pathology, Faculty of Medicine, Nakornnayok, Srinakharinwirot University, Thailand
257. Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
258. Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
259. Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
260. Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
261. Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
262. Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
263. Division of Infectious Disease, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
264. Center of Excellence in Pediatric Infectious Diseases and Vaccines, Chulalongkorn University, Bangkok, Thailand
265. Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
266. Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
267. Healthcare-associated Infection Research Group STAR (Special Task Force for Activating Research), Chulalongkorn University, Bangkok, Thailand
268. K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway
269. HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway
270. Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway
271. Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
272. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
273. Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
274. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
275. Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
276. Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
277. Department of Chronic Disease Epidemiology and Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
278. Clinic of Anaesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
279. Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
280. Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
281. Department of Genetics, University Medical Centre Groningen, University of Groningen / Department of Genetics, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
282. Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
283. University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
284. Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
285. Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
286. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
287. Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
288. Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA, Harvard Medical School, Boston, Massachusetts, USA
289. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
290. Brigham and Women's Hospital, Boston, MA, USA
291. Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
292. Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
293. Division of General Internal Medicine, Massachusetts General Hospital and Department of Medicine, Harvard Medical School and Program in Medical and Population Genetics, Broad Institute, Boston, MA, USA
294. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Broad Institute of MIT and Harvard, Harvard Medical School, Boston, MA, USA
295. Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
296. Seaver Autism Center for Research and Treatment
297. Department of Psychiatry
298. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
299. Mount Sinai Clinical Intelligence Center, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
300. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
301. Sema4, a Mount Sinai venture, Stamford CT, 06902, USA
302. Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
303. Mount Sinai Clinical Intelligence Center, Charles Bronfman Institute for Personalized Medicine
304. Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
305. Mount Sinai Clinical Intelligence Center, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
306. Icahn Institute of Data Science and Genomics Technology, New York, NY 10029, USA
307. Mount Sinai Clinical Intelligence Center, New York, NY 10029, USA
308. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
309. Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
310. Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
311. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
312. The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
313. Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Department of Genetic and Genomic Sciences
314. Pamela Sklar Division of Psychiatric Genomics, Department of Psychiatry, Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
315. Seaver Autism Center for Research and Treatment, Department of Psychiatry
316. Mount Sinai Clinical Intelligence Center, Department of Psychiatry, Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
317. Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
318. Mount Sinai Clinical Intelligence Center
319. The Hasso Plattner Institute of Digital Health at Mount Sinai
320. BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
321. Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
322. Pamela Sklar Division of Psychiatric Genomics, Seaver Autism Center for Research and Treatment, Department of Psychiatry, Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
323. Regeneron Genetics Center, Tarrytown, NY, USA
324. Phenomic Analytics & Clinical Data Core, Geisinger Health System, Danville, PA, USA
325. Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA
326. Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
327. Vrije Universiteit Amsterdam, Amsterdam, UK
328. Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
329. Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
330. Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdullah City for Science and Technology, Riyadh, Saudi Arabia
331. Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard- Health Affairs, Riyadh, Kingdom of Saudi Arabia and Saudi Human Genome Project (SHGP), King Abdulaziz City for Science and Technology (KACST), Satellite Lab at King Abdulaziz Medical City (KAMC), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Kingdom of Saudi Arabia.
332. College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
333. Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
334. Life Science and environmental institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
335. The Liver Transplant Unit, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. The Division of Gastroenterology and Hepatology, Johns Hopkins University
336. Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
337. Titus Family Department of Clinical Pharmacy, USC School of Pharmacy University of Southern California
338. KACST-BWH Centre of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
339. Ministry of the National Guard Health Affairs, King Abdullah International Medical Research Center and King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
340. Ohud Hospital, Ministry of Health, Madinah, Saudi Arabia
341. Pediatric Infectious Diseases, Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
342. The Saudi Biobank, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
343. Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
344. Department of Pathology and Laboratory Medicine, King Abdullah Medical City, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
345. Laboratory Department, Security Forces Hospital, General Directorate of Medical Services, Ministry of Interior
346. King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
347. Department of Developmental Medicine, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
348. Titus Family Department of Clinical Pharmacy, USC School of Pharmacy
349. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
350. Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
351. Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
352. Stanley Center for Psychiatric Research & Program in Medical and Population Genetics
353. Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
354. Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
355. Hedenstierna Laboratory, CIRRUS, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
356. Division Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
357. Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.
358. Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
359. Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway.
360. King’s College London, Department of Twin Research and Genetic Epidemiology, London, UK
361. NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
362. Genomics England
363. Queen Mary University, London, United Kingdom
364. William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
365. UCL Great Ormond Street Institute of Child Health, London, United Kingdom
367. University of Cambridge, London, United Kingdom
368. Department of Human Genetics, McGill University, Montréal, Québec, Canada. Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada. Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Research Fellow, Japan Society for the Promotion of Science
369. Big Data Institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, United Kingdom
370. Genomics PLC, King Charles House, Park End Street, Oxford, OX1 1JD, United Kingdom
371. Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
372. Public Health England, Field Service, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
373. Public Health England, Data and Analytical Services, National Infection Service, London, NW9 5EQ, United Kingdom
374. Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA
375. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
376. Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
377. Department of Clinical Research and Leadership, George Washington University, Washington, DC, USA
378. Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
379. The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Strangeways Research Laboratory, Wort’s Causeway, Cambridge, CB1 8RN, UK
380. Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge, CB2 0PT, UK
381. British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
382. British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
383. National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
384. Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
385. Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
386. Department of Epidemiology, Emory University Rollins School of Public Health
387. Atlanta CA Health Care System, North Druid Hills, GA, USA
388. Center for Population Genomics, MAVERIC, VA Boston Healthcare System, Boston, MA, USA
389. MAVERIC, VA Boston Healthcare System, Boston, MA, USA
390. Stanford University
391. Palo Alto VA Healthcare System, Stanford, CA, USA
392. Department of Biostatistics, Boston Univeristy School of Public Health
393. Vanda Pharmaceuticals Inc.
394. Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau, Sant Pau Hospital, Barcelona, Spain
395. Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC)
396. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
397. Institute of Biomedicine of Valencia (IBV), CSIC, València, Spain
398. Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), València, Spain
399. Neurology and Genetic Mixed Unit, La Fe Health Research Institute, València, Spain
400. Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC)
401. Department of Neurology, Hospital Universitari MútuaTerrassa, Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain
402. Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
403. Instituto de Física de Cantabria (IFCA-CSIC)
404. Hospital Clínico, IDIBAPS, Barcelona, Spain
405. Hospital Clínico, Barcelona, Spain
Hospital Clínica, IDIBAPS, School of Medicine, University of Barcelona, Barcelona, Spain
IDIBAPS, Barcelona, Spain
IIBB-CSIC, Barcelona, Spain
Servicio de Salud del Principado de Asturias, Oviedo, Spain
Hospital Mutua de Terrassa, Terrassa, Spain
Hospital Valle Hebrón, Barcelona, Spain
Instituto de Biomedicina y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Spain
Hospital Clínico Universitario de Valladolid (SACYL)
Department of Neurology, University Hospital of Albacete.
Department of Neurology
Research Unit, University Hospital of Albacete
Department of Neurology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona (Spain)
Hospital Universitario Ramón Y Cajal, IRYCIS, Madrid, Spain
Institute de Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville.
Brigham and Women's Hospital, Boston, USA
Harvard Medical School, Boston, MA
A

Effective sample size
120
1,200
12,000
120,000

Analysis Type
Reported SARS-CoV-2 infection
Critically ill COVID-19+
Hospitalised COVID-19+

Effective sample size by genetic ancestry

PC1
PC2
PC3

Population
AFR
AMR
EAS
EUR
MID
SAS

B

It is made available under a CC-BY-NC-ND 4.0 International license. This is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It was not certified by peer review. The copyright holder for this preprint is posted February 9, 2022. doi: medRxiv preprint