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S1. Stochastic model
Stochastic mesoscopic model of tumor growth
To simulate tumor growth three cellular population were accounted: healthy cells, tumor cells and necrotic cells. Biological
processes, namely cell division, death andmigration were implemented similarly tomodel in [1], although a small modification
was incorporated in the tumor death process to reproduce specific characteristics observed in brain metastases.

The probabilistic events for this process reads as follows
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where nt , nn and nh denotes the number of total tumor cells, necrotic cells and healthy cells inside a given voxel, respec-
tively. Parameters τ represent the characteristic times of each process and Kact is the local threshold of voxel capacity from
which tumor cells begin to die due to lack of resources.

Then, the total numbers of proliferating and dying cells from tumor population are drawn from binomial distributions
B(nt, PTrep) and B(nt, PTdeath), respectively. Due to the acquired capacity of tumor cells to evade apoptosis [2], we will
assume that apoptosis signaling is activated once 75% of the voxel limit carrying capacity (Kact) is exceeded, simulating
a significant lack of resources for the tumor cells. This is explained in the probability of death PTdeath by the term of the
hyperbolic tangent as a function of the voxel capacity. The number of migrating cells is also drawn from the respective
binomial distribution B(nt, PTmig) and then they are distributed around a neighborhood of 26 voxels (Moore neighborhood)
according to a multinomial distribution [1]. For simplicity we have assumed all tumor cells comes from the same clonal
population without including mutation events.

For healthy cells we assume that the levels of cell division and death remain in balance due to the ability of these cells to self-
regulate, and that the biological process of migration is the only one that is affected by the evolution of tumor cells.Therefore,
the numbers of migrating healthy cells is drawn from the binomial distribution B(nh, PHmig) being displaced by the pressure
performed by the tumor cells colonization when the total number of cells in the voxel exceeds 45% of its maximum capacity.
Figure S1 is a slice of an actual simulation, where the colors indicate the voxel occupation. Each voxel contains a variable
number of cells as described in the updating algorithm above.

Stochastic mesoscopic model of response to radiosurgery
When tumors are treated with radiosurgery, tumor cells are lethally damaged or killed due to high doses of radiation. In
addition, a fraction of the surrounding healthy tissue can also be damaged. As a consequence, the immune system is activated
and immune cells move to the irradiated region to repair the damage caused. To describe the response to this treatment we
have included three new cell populations: damaged tumor cells, activated immune cells and damaged healthy cells.

The dynamics of these populations are given by the following probabilistic events:
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Figure S1 Slice of an actual simulation of tumor without treatment, with colors indicating occupation. Cells color indicates the different
cell populations, with blue representing healthy cells, red representing tumor cells and black representing necrotic cells.
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where nd , ni and nhd denote the number of total damaged tumor cells, activated immune cells and damaged healthy cells
inside a given voxel, respectively. Similarly, parameters τ represent the characteristic times of each process and new cell
populations are incorporated into the saturation process. Note that q is a scalar that normalizes the size of immune cells with
respect to the size of healthy and tumor cells, assuming that the latter have similar sizes.

The number of damaged tumor cells are drawn from the binomial distribution B(nd, PDdie). This cells population dies after
the k cycle of mitosis while trying to repair the damage caused and then passes into the necrotic cell compartment. The number
of necrotic cells that are eliminated by interaction with immune cells and the number of immune cells activated are drawn form
the binomial distribution B(nn, PIkill) and B(ni, PIact), respectively. Further, the activated immune cells are removed naturally
and this process is simulated form the binomial distribution B(ni, PIdeath). Analogous to tumor cells migration, the number of
migrating immune cells is drawn from the binomial distribution B(ni, PImig) using the same algorithm.

Therapy was implemented to resemble the actual radiosurgery in the experimental part of this study. To simulate the spatial
distribution of radiation, we relied on the typical isodose plot for a Gamma Knife patient, as shown in Figure S2 A-B. In this
example, the isodose surface that encloses the target (which is often taken as the prescription dose) is typically 50% of the
maximum dose in the target. In addition, radiation doses (30% of the maximum dose) are also administered in a larger volume
around the lesion, with an additional 1 to 2 mm diameter. This percentage may vary depending on the technique and machines
used [3].

A single dose of SRS was simulated in-silico as follows: i) a fraction of tumor cells Sf will suffer either no damage and
will remain viable, an additional fraction (1 − Sf ) will receive lethal damage of which a fraction ε will die on a short time
scale (i.e. days), and the remainder will move into the compartment of lethally damaged cells; ii) a fraction of immune cells
I f will be activated and iii) a fraction of healthy cells surrounding the tumor H f will suffer lethal damage. Figure S2C shows
an example of the spacial distribution of cell population before and after SRS as described above.
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Figure S2 A A single-shot treatment plan for a vitual simuation of SRS treatment.The target is outlined in yellow, and it is the area
most affected by SRS. The green line encloses another area affected with less intensity. B A real example of Gamma Knife isodose
plot with the target outlined in red, the 50% isodose line in yellow, and the 30% isodose line in green. Figure adapted from [3]. C Spatial
distribution of cell populations before and after SRS. The voxels can be occupied by more than one cell population but the colors per
voxel of the representative samples of each population are shown.

Estimation of parameters
To fix the initial data we used the sizes typically found in the clinical setting for the tumor sizes pre-SRS treatment, which are
around 0.5-2 cm3 and the tumor maximum sizes until 10 cm3. Hence, we selected L = 60 voxels per spatial length to make
these sizes attainable. The time step was fixed to 4 hours. From typical cell sizes [4] we estimated the carrying capacity of a
single voxel Nmax to be 2 × 105 cells and we have assumed same size for all type of cells. The choice of division, death, and
migration basal rates used the doubling times estimations [5] and imaging data from real BMs in [6].

Several studies indicated increased microglial activation, proliferation, and phagocytosis may contribute to onset of neuro-
inflammation-induced brain injury. To estimate the parameters related with the immune system we have based on this cell
population [7,8]. Microglia are the resident macrophages of the brain, comprising 0.5%—16.6% of the total number of cells
in the human brain [9]. For this reason, we set the initial number of immune cells as 10% of the healthy cells surrounding
the tumor. Microglial activation is characterized by morphological changes, including an increase in size. There is great
heterogeneity in the cell morphology of the microglia. Based on previous morphological studies [10] we assume that in the
normal state microglia cells have the same size and in the activation state they present an increase of 50% in their size, hence
the parameter q = 3/2 in the saturation process. Recent studies have reported the microglial landscape changes radically
within a few weeks, with cells dying and other taking their place [9]. Thus, we take the mean lifetime of immune cells in a
voxel to be around 2 months and activation to be in the range of 12-20 hours.

All the proposed parameters are associated with cellular processes, which combined result in whole-tumor rates. Cellular
traits were randomly sampled from the range of allowed basal rates for each simulation. This provided variability between
individual simulations and allowed us to assess the robustness of the model’s behavior.

Virtual BMs simulations
To simulate the tumor growth dynamics after SRS, we ran a set of 400 simulations of BMs starting from 103 tumor cells,
allowing them to grow until reaching diagnostic volumes in the range of 0.5 − 2 cm3. Then, the radiosurgery event was
simulated and post-treatment tumor evolution continued as described in Section 1. Each simulation had a different set of
basal rates, sampled randomly from the ranges specified in Table S1. Because the large number of parameters in the model
is sufficient to guarantee variability between the different tumor responses to treatment, the ranges of tumor proliferation and
migration rates were reduced to 500h (±10) and 1000h (±10) respectively.

Furthermore, we assumed that radiosurgery achieves an initial reduction in the volume of the lesion. To do this, we used
the following voxel survival fraction
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Parameters Meaning (average times per voxel) Value (hours)
τTrep Tumor cells reproduction 450-550
τTmig Tumor cells death 7000-1500
τTdeath Tumor cells migration 1000-2000
τImig Immune cells migration 150-250
τImig Immune cells death 1440- 1560
τact Immune cells activation 12-20
τkill Necrotic tumor cells elimination 72- 96
τ̄kill Necrotic healthy cells elimination 200- 280

and vascular repair

Table S1 Relevant parameter values for the stochastic model.
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where S f̂ is the maximum survival fraction. This expression is supported by the fact that well oxygenated cells are less
resistant to radiation (more radio sensitive). Thus, the cells that are farthest away and that do not get enough oxygen and
nutrients to survive are those that are found in the voxels with the highest number of necrotic cells.

The simulations were divided into two groups. First, a control group of 200 BM simulations was performed under the
condition of not damage to the healthy tissue surrounding the tumor (Sn = 1). A second group of 200 BM simulations
accounted for the damage induced by SRS to healthy tissue next to the lession (0.1 ≤ Sn ≤ 0.7). The latter would be the
situation that was expected to occur in the clinics.

Calculation of β exponent for a virtual tumor

We focused our attention on the dynamic behavior of tumors after the second follow-up (six months after radiosurgery). Taking
into account that the average time between follow-ups in the clinic is 3 months, for each case we calculated the following three
volume measurements from six months post-SRS, that is, t = 6, 9 and 12 months. Volume measurements were calculated as
explained in [1]. All cell populations were taken into account and a filled voxel threshold equal to 0.45 was used. After that,
we fitted the volumes to the growth law as explained in ’Methods’ and calculated the value of the exponent β.

To avoid possible conditioning of the estimate in the choice of time points, the three time instances were taken within the
following ranges: t0 ∈ (180, 180+ 15) days, t1 ∈ (t0 + 80, t0 + 100) days and t2 ∈ (t1 + 80, t1 + 100) days. Then, we estimated
β for each combination of t0, t1 and t2, repeating this procedure 20 times. Finally, we obtained the estimated β̂ value for the
corresponding simulated tumor as the median value of all the previously calculated values.

Volumetric dynamics of BM relapses after SRS
With the virtual BMs generated, we studied their volumetric growth dynamics after therapy. Figure S3 shows three examples
of these in silico simulations. First column (A, C, E) shows the dynamics of the different cell populations present: proliferating
tumor cells, damaged cells, necrotic cells, immune cells and total tumor cells for the three cases. The second column (B, D,
F) shows the longitudinal volumetric dynamics of the simulation displayed in the first column. In each case, 20 β growth
exponents were calculated as explained in section 1. Additionally, β̂ median was obtained for each simulation. In two of the
cases, sublinear growths ( β̂ < 1) were obtained for relapses. These simulations were generated with small or no damage to
healthy tissue, i.e, Sn = 1 (Figure S3 (A,B)) and Sn = 0.7 (Figure S3 (E,F)). On the other hand, when there was a substantial
damage to healthy tissue Sn = 0.1, the volumetric evolution displayed a superlinear growth ( β̂ > 1), as shown in Figure S3
(C,D).

Thus, in order to characterize the volumetric growth post-SRS of the BMs using the scaling exponent, the values of β were
calculated for the set of 400 virtual BMs. The results obtained for the first group (Sn = 1) are shown in Main Text Fig. 3(f1).
The values of β were grouped according to the value of S f̂ used in the simulation. Medians and the quartiles of the box plots
were mostly below 1, although for small values of S f̂ there were a set of outliers with high estimates of β. These exponents
described the dynamics of relapsing lesions.

For the second group, which included damage to healthy tissue, there were two behaviors observed in silico. Figure S4
shows the scatter plot of the β̂ median calculated for the virtual BMs according to the different values of (S f̂ , Sn) simulated.
Values of β̂ > 1 were obtained for cases where SRS eliminates most of the tumor cells (values of S f̂ ≤ 0.1). Here, the volume
re-growth was due to the inflammatory component. Otherwise, for larger tumor remnants re-growth simulations ( values of
0.1 < S f̂ < 1) the calculated β̂ exponents were less than 1. This behavior corresponds to a tumor relapse. In addition, we can
see in Main Text Fig. 3(f2) the β values calculated for the cases simulated with 0.1 ≤ Sn ≤ 0.7 and S f̂ ≤ 0.1. Despite the
presented variability, β values obtained were typically greater than 1.

The computational results suggest that β value could be used to distinguish inflammatory response from tumor progression.
The ANOVA test for the comparison with the BMs virtual lead to significant differences between inflammatory response group
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Figure S3 Longitudinal tumor growth dynamics after SRS. The first column shows the dynamics of the proliferating cells (red
line), damaged cells (orange line), necrotic cells (violet line), immune cells (green line) and total tumor cells (blue line). The second
column shows the longitudinal tumor volumetric dynamics. Subplots (A-B) correspond with a tumor simulation with no damage to
healthy tissue (Sn = 1), subplots (E-F) correspond with small damage to healthy tissue (Sn = 0.7 ) and subplots (C-D) correspond with
high damage to healthy tissue Sn = 0.1.

Figure S4 Scatter plot that shows the β median calculated for the virtual BMs which were simulated with different values of (S f̂ , Sn).
Parameters for this simulation are as in Table S1.
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and relapses groups (p=1.85× 10−12). Box plots for the different subgroups are shown in Main Text Fig. 3(g). The area under
the ROC curve (AUC) in Main Text Fig. 3(h) illustrates the ability of the exponent β̂ to discriminate between responses
groups. We obtained AUC=0.97 and the optimal threshold calculated to maximize the sensitivity and specificity values was
βthreshold = 1.05. This means that inflammatory events show faster growth dynamics than relapses.

S2. Sensitivity to small changes in volume when computing beta
Since only three points per patient were available to obtain three parameters, the fitting could be very sensitive to small
variations in the data. Those variations in volumetric data could be given either by image segmentation, regardless being
performed by the same image expert, and revised by another expert and a radiologist, or by the time between MRIs.

In order to check this fact, a random error smaller or equal to ±5% was added to every volume. The process was performed
200 times for each BM, computing β∗ for each set of random errors. The average of the 200 computed β∗ was imposed to has
a difference smaller than 0.5 when compared with the computed β for the measure volumes, that is to say, | β∗av − β | < 0.5.

Imposing the previous condition, 27 of the 106 BMs used for the study were excluded. The Kruskal-Wallis test was
performed to the remaining BMs, and significant differences (p = 0.0049) were found when comparing relapsing BMs with
the RN group. Having only three time points per BM affects the model fitting and computation of β, however, when sensitive
cases are excluded, results agree with the ones found for the whole cohort of BMs, ensuring the strength of the study.
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Figure S5 Longitudinal tumor growth dynamics of BMs which display early inflammatory response after SRS. SRS treatment time is
marked with a vertical dashed black line and dots are the measured volumes in percentage. Lines give no additional information and
are shown only to guide the eye.

V0 (cm3) βm

0.5 2.7895
1.0 4.1332
1.5 3.7949
2.0 5.0124
2.5 5.9064
3.0 5.8784

Table S2 Mean β values computed for each given initial volume V0. For each V0, 500 virtual BM were simulated by model in Eqs.
(6) assuming radiation necrosis. Regardless the initial volume, all mean β values were greater than 2.
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Number of BMs
Chemotherapy type (percentage)
Ado-trastuzumab emtansine (T-DM1) 8 (16%)
Vinorelbine 7 (14%)
Pemetrexed + carboplatin 4 (8%)
Trastuzumab + vinorelbine 3 (6%)
Erlotinib 3 (6%)
Unknown 3 (6%)
Vemurafenib 2 (4%)
Trastuzuman+lapatinib 2 (4%)
Nivolumab 2 (4%)
Pembrolizumab 2 (4%)
Pemetrexed 2 (4%)
Afatinib 2 (4%)
Lorlatinib 2 (4%)
Nivolumab 1 (2%)
Tamoxifeno+Fulvestrant 1 (2%)
Vinorelbine + carboplatin 1 (2%)
Paclitaxel 1 (2%)
Sorafenib 1 (2%)
CDDP-VP16 1 (2%)
Nivolumab-gemcitabina 1 (2%)
Carboplatin + etoposide + atezolizumab 1 (2%)

Table S3 Chemotherapeutic drugs received by the patients who meet the inclusion criteria and number of BMs of those patients.
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Patient characteristics
Number of patients 77
Number of metastases 106
Age (years)
median (range) 56.75 (33-78)

Metastases per patient
median (range) 1.63 (1-19)

Sex (Male (M), Female (F))
Percentage (number of patients) 45% M (34), 55% F (41)

Primary cancer Histology
Percentage (number of BMs)

NSCLC 60.38% (64)
Breast 26.41% (28)
Melanoma 4.72% (5)
SCLC 5.66% (6)
Others 2.83% (3)

Volumetric parameters
mean (range)

Total tumor volume (cm3) 0.895 (0.003-33.106)
CE volume (cm3) 0.801 (0.003-28.989)
Necrotic volume (cm3) 0.025 (0.000-22.800)

Table S4 Summary of patient and BM characteristics, histology and volumetric parameters.

λN γ λI

(days−1) (days−1· cells−1 ) (days−1)
BM 1 0.0070 6.100e-09 0.07
BM 2 0.0004 1.830e-08 0.07
BM 3 0.0040 1.300e-07 0.07
BM 4 0.00075 1.444e-08 0.07
BM 5 0.0020 1.720e-08 0.07
BM 6 0.0010 1.500e-08 0.07

Table S5 Parameters used for fitting the available longitudinal volumetric data in the patients subgroup with diagnosed Radiation
Necrosis by model in Eqs. (6).
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