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Abstract 

Background: Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions for individual 

patients and allocation of potentially scarce resources. So far, risk models for severe COVID outcomes have included 

age but have not been optimized to best serve the needs of either older or younger adults. Additionally, existing risk 

models have been limited to either small sample sizes, or modeling mortality over an entire hospital admission. 

Further, previous models were developed on data from early in the pandemic, before improvements in COVID-19 

treatment, the SARS-CoV-2 delta variant, and vaccination. There remains a need for early, accurate identification of 

patients who may need invasive mechanical ventilation (IMV) or die, considering multiple time horizons. 

Methods: This retrospective study analyzed data from 6,906 hospitalized adults with COVID-19 from a community 

health system with 51 hospitals and 1085 clinics across five states in the western United States. Risk models were 
developed to predict mechanical ventilation illness or death across one to 56 days of hospitalization, using clinical 

data collected available within the first hour after either admission with COVID-19 or a first positive SARS-CoV-2 

test. The relative importance of predictive risk factors features for all models was determined using Shapley additive 

explanations. 

Findings: The percentage of patients who required mechanical ventilation or died within seven days of admission to 

the hospital due to COVID-19 was 10.82%. For the seven-day interval, models for age ≥ 18 and < 50 years reached 

AUROC 0.80 (95% CI: 0.70-0.89) and models for age ≥ 50 years reached AUROC 0.83 (95% CI: 0.79-0.88). Models 

revealed differences in the statistical significance and relative predictive value of risk factors between older and 

younger patients, including age, BMI, vital signs, and laboratory results. In addition, sex and chronic comorbidities 

had lower predictive value than vital signs and laboratory results. 

Interpretation: For hospitalized adults, baseline data that is readily available within one hour after hospital admission 

or a first positive inpatient SARS-CoV-2 test can predict critical illness within one day, and up to 56 days later. Further, 

the relative importance of risk factors differs between older and younger patients. 

Keyword: COVID-19; Risk; Age Groups; Decision Support Systems; Clinical; Electronic Health Records; Machine 

Learning 
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Introduction 

The number of global confirmed cases with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection 

has surpassed 257 million as of December 10, 2021, with over 5 million reported deaths.1 Although the majority of 

patients infected by SARS-CoV-2 present with mild symptoms, studies reported that 20% get hospitalized and 5% of 

patients with Coronavirus disease 2019 (COVID-19) become critically ill.2,3 From early on of the pandemic, both age 

and chronic comorbidities have been reported as a significant risk factor for poor outcomes4, and evidence supports 

increased risk with hypertension, diabetes, chronic obstructive pulmonary disease, chronic renal disease, and 

cardiovascular conditions.4–6 Although young patients have a lower prevalence of comorbidities than aging patients, 

the relative risk of fatal outcome in young patients with hypertension, diabetes and cardiovascular diseases has been 

shown to be higher than in elderly patients.7 In addition, some studies show patient population tends to be younger 

with the emergence of delta as the variant of concern in U.S. with  regional proportions being greater than 99% as of 

November 2021.8 Assessing risk for severe COVID-19 in specific age groups is complicated by both the heterogeneity 
of clinical presentation and age-related differences in the prevalence of chronic multimorbidities. A deeper 

understanding of risk factors for COVID-19 severity among different age subpopulations is needed, as well as 

practical, explainable risk stratification for bedside clinical decision support, research stewardship, and advancing our 

biomedical understanding of SARS-CoV-2. 

Several studies have described successful development of machine learning models to predict COVID-19 outcomes 

in hospitalized patients.9–17 Further, explainable models can also inform care decisions by showing which factors lead 

a specific individual patient to be at risk for severe outcomes, and can also help show which variables are most 

important at the population level, suggesting areas for further research investigation.18 However, existing studies have 

several limitations; 1) most are based on small sample sizes from academic centers, 2) higher incidence of severe 

outcomes in hospitalized cohorts than are typically observed with current treatments, 3) reliance on laboratory tests 

that are not routinely administered to all patients, 4) lack of investigation of differences in risk factors between younger 
and older hospitalized patients, and 5) marginal model performance for either of age groups.11 In this study, we report 

age-stratified machine-learning models to predict the severity of COVID-19 progression within one, seven, 14, 28, 56 

days of the time of hospital admission. The models are developed from data for 6,906 patients from community 

hospitals across a large geographic area in the western United States over five months after the delta variant became 

predominant. 

Research in Context 

Evidence before this study 

We searched google scholar, PubMed and its associated LitCovid repository for publications in English from database 

inception until November 15, 2021, using the terms “COVID-19”, “critical illness”, “mortality”, “hospitalized”, “risk 

score” and “prediction”. The studies we identified generally focused on small cohorts or limited geographic regions 

and time periods with higher incidence of severe outcomes in hospitalized patients. Earlier papers with more inclusive 

cohorts were limited to predicting mortality, and we were unable to find papers which developed risk models for 

current COVID-19 standard of care and Delta variant predominance. None of the studies were optimized to model 

critical illness or mortality in different age groups or investigate differences between risk factors in each age-group. 

Lack of age-stratified models has also caused lower performance of general models for younger and older patients. 

Added value of the study 

In this study, we analyzed the data from a large cohort across five states in western United States from June 31, 2021 

to November 15, 2021, looking at hospitalized patients who were not already on invasive mechanical ventilation. We 
investigated risk factors for the need for invasive mechanical ventilation or death by developing linear and non-linear 

complex age-stratified models to accurately predict for time horizons of one to 56 days. Models were based on readily 

available data within one hour after either hospital admission with COVID-19 or a first positive inpatient SARS-CoV-

2 test. In addition, we analyzed how risk factors differ by age. 

https://paperpile.com/c/FeJcXA/gbrh5
https://paperpile.com/c/FeJcXA/8eeui+PQyZY
https://paperpile.com/c/FeJcXA/KTakh
https://paperpile.com/c/FeJcXA/tAmqm+5VBKU+KTakh
https://paperpile.com/c/FeJcXA/35IvO
https://paperpile.com/c/FeJcXA/G3bJP
https://paperpile.com/c/FeJcXA/E13mj+erCjA+GqWx9+yXvGI+YC7fk+iA2IR+igDmP+tT1az+Lcr5P
https://paperpile.com/c/FeJcXA/5HpTm
https://paperpile.com/c/FeJcXA/GqWx9
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Implications of all the available evidence 

We present a set of age-stratified COVID-19 critical illness and mortality prediction analyses, derived from large 

population of patients over a wide geographic region, in the context of current standard of care for COVID-19 and 

delta-variant predominance. The cohort and analytical methods that we used resulted in prediction models with strong 

performance, considering there is now lower severe COVID-19 incidence than early in the pandemic. Based on 
previous studies and linear statistical analyses on the population in this study, comorbidities such as diabetes, 

hypertension, cardiac disease, chronic lung and kidney disease, and immunosuppression, along with factors including 

higher age, being male or African American and Hispanic have been associated with higher mortality in patients with 

COVID-19. However, our study suggests those chronic historical factors and demographic features are less important 

than biomedical observations in the acute setting. After validation in other health system populations, our model could 

be implemented in clinical practice to enable better identification of patients with severe COVID-19 outcome. 

Methods 

Study design and setting 

This retrospective study analyzed data gathered from Providence St. Joseph Health (PSJH), a community health 

system with 51 hospitals and 1085 clinics across five states in the western United States: Alaska, California, Montana, 

Oregon, and Washington. Inclusion criteria was age ≥18 years and confirmation of COVID-19 by a positive PCR-

based SARS-CoV-2 test result. This study was performed in compliance with the Health Insurance Portability and 

Accountability Act (HIPAA) Privacy Rule and was approved by the Institutional Review Board (IRB) at PSJH with 

Study Number STUDY2020000196 with waiver of consent. We follow STROBE reporting guidelines (Supplemental 

Table 5). 

Task Definition 

In this study, we hypothesized that age-stratified risk models for hospitalized patients with COVID-19 can accurately 

predict critical illness and mortality due to COVID-19 based on readily available patient data. Outcomes of patients 

were defined using the World Health Organization Ordinal Scale (WOS), proposed by the WHO R&D Blueprint group 

in their COVID-19 Therapeutic Trial Synopsis.19 The WHO ordinal scale ranges from 0 (uninfected) to 8 (deceased) 

with gradations depending on hospitalization, supplemental oxygen, mechanical ventilation, and organ support 

(vasopressors, renal replacement therapy, and extracorporeal membrane oxygenation). See Supplemental Table 1. In 

this study, we categorized WHO ordinal scores of 3-5 as the mild cases of COVID-19 and WHO ordinal scores of 6-

8 as the critical illness and death within hospitalized patients. The objective is to develop machine learning models to 

predict critical illness and death with COVID-19 in hospitalized patients using easily available variables, including 
aggregated laboratory biomarkers and vital signs within one hour of either admission to the hospital or the first positive 

inpatient SARS-CoV-2 test. These predictive models are developed and tested on time horizons for one, seven, 14, 

28, and 56 days from the confirmation of the infection and hospitalization. We compare the performance of machine 

learning models for 1) all-ages population, and 2) age-stratified subpopulations, to report the effect of age and compare 

the relative importance of risk factors between younger and aging adults. 

Population 

The start time point of study is defined as June 31, 2021, after the delta became the predominant SARS-CoV-2 variant 

in the Western United States. Studied population included hospitalized individuals who received a positive test for 

COVID-19 between June 31, 2021 and November 15, 2021. This was confirmed by reverse-transcriptase polymerase 
chain reaction (RT-PCR) for the SARS-CoV-2 ribonucleic acid (RNA). Patients were excluded if they were already 

receiving mechanical ventilation at the time of admission to the hospital. 

Variables 

The factors analyzed for prediction of COVID-19 outcomes were demographic characteristics, medical history, vital 

signs, and laboratory biomarkers (n = 64). Medical conditions included known risk factors for poor COVID-19 

outcomes reported in the literature5 and conditions which are prevalent in aging patients (Table 1). Comorbidities that 

https://paperpile.com/c/FeJcXA/vpYqf
https://paperpile.com/c/FeJcXA/tAmqm
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are usually chronic, such as hypertension, were included if they were active at the time of admission. Other 

comorbidities were included if they had been active any time within 2 years prior to admission, except for malignancy, 

which was included if active any time within the past 5 years. Note that active conditions mean health issues that 

affect the individual's current functioning and all health. For biomedical precision, we used the Systematized 

Nomenclature of Medicine Clinical Terms (SNOMED–CT©) hierarchy (Supplemental Table 2), which can be mapped 
to ICD-10. Laboratory results and vital signs were included (both inpatient and outpatient) if they were collected 

between 24 hours before and one hour after either admission to the hospital or the first positive inpatient SARS-CoV-

2 test (Table 1). Note that, we used aggregated temporal longitudinal vital signs in our model as described in Lee, 

et.al.20 Additionally, the risk factor list included patients need for supplemental oxygen mode, need for vasopressors, 

total number of comorbidities, and COVID-19 vaccination status. 

Statistical Analysis 

Descriptive analyses are presented as frequencies and percentage for categorical variables, and as mean and standard 

deviation (std) for numerical variables. Fisher exact test was applied to compare distributions of categorical variables. 

The differences between distributions of numerical variables were calculated using Mann Whitney U-test. Results 
were considered statistically significant at a (2-tailed) p-value < 0.1. All statistical analyses were completed using 

PySpark version 2.4.5. 

Risk Model Development 

In data preprocessing for development of each risk model, we removed features with missing values greater than 20% 

(Supplemental Table 3). We used IterativeImputer from Scikit Learn version 0.24.0 for imputing missing data in 

numerical features.21 Missing values for comorbidities were assumed to be absent from the patient’s medical history 

and imputed with a constant number of 0. Outliers were detected by calculating the modified z-score based on median 

absolute deviation with a threshold of 3.5 and then these outliers were imputed by the median. 

To build machine learning models, we randomly split the dataset into 80% training data and 20% testing data and 
analyzed each patient using multiple algorithms including logistic regression (LR), random forest classification (RF), 

Adaptive Boosting (AdaBoost), and Gradient Boosting Decision Tree (GBDT). The parameters for each model were 

optimized using a 10-fold cross-validation on the training set with the maximum scoring value for the area under 

receiver operating characteristic curve score (AUROC). We then balanced true and false positive rates by optimizing 

the probability threshold for each class. 

To address collinearity between predictors, we compared the optimum performance of logistic regression using the 

least absolute shrinkage and selection operator (LASSO) feature selection method. For non-linear tree-based models 

all features were included. Performance of models was reported as the area under the receiver operating characteristic 

curve (AUROC), area under the precision-recall curve (AUPRC), true positive rate (TPR), true negative rate (TNR), 

predictive positive value (PPV), and negative predictive value (NPV). We reported the 95% confidence interval for 

performance metrics of the models using Wilcoxon statistics,22 and binomial interval23 for the area under the ROC 

and precision-recall curves, respectively. All ML models were applied using Spark version 2.4.5, in the Python 
interface. We presented the interpretation of the model with the highest relative performance, gradient boosting, using 

the Shapley additive explanations (SHAP) algorithm, which uses cooperative game theory to calculate the marginal 

contribution of each feature, and examines the feature influence on model prediction.24 Predictive models were 

reported following TRIPOD guidelines.25 

Results 

Baseline characteristics 

In the Providence St Joseph cohort (described in Methods above), 6,906 patients with positive tests for SARS-CoV-2 

were analyzed (Supplemental Figure 1). Percent female was 44·25 and mean age was 59·90 years (SD ± 17·83 years), 

with a range 18 to 90+ years old. The distribution of relative frequency of hospitalizations by age is shown in 

Supplemental Figure 1. We divided the patients into two age subgroups: younger (age ≥ 18 and < 50 years with 1,963 

patients) and older (≥ 50 years with 4,943 patients). The reported variables for prognosis of COVID-19 critical illness

https://paperpile.com/c/FeJcXA/VSxj
https://paperpile.com/c/FeJcXA/l5SA8
https://paperpile.com/c/FeJcXA/1tX4D
https://paperpile.com/c/FeJcXA/5l3cy
https://paperpile.com/c/FeJcXA/NuvDV
https://paperpile.com/c/FeJcXA/h324W
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Table 1 Demographics, vital signs, laboratory tests, and medical conditions analyzed for SARS-CoV-2 positive patients 

Demographics Vital signs Laboratory tests Medical conditions Other Risk factors 

Age 

Body mass index (BMI) 

Sex 

Reported ethnicity 

Reported race 

 

Heart rate (HR) 

Respiratory rate (RR) 

Systolic blood pressure (SBP) 

Diastolic blood pressure (DBP) 

Temperature 

Oxygen saturation (SpO2) 

 

White blood cell count (WBC) 

Platelets (PLT) 

Hematocrit (HCT) 

Hemoglobin (HGT) 

Basophils (BASO) 

Eosinophils (EOSABS) 

Lymphocytes (LYMABS) 

Monocytes (MONO) 

Neutrophils (NEUABS) 

Potassium (K) 

Sodium (NA) 

Chloride (CI) 

Bicarbonate (HCO3) 

Creatinine (CREA) 

Blood urea nitrogen (BUN) 

Glucose (GLU) 

Albumin (ALB) 

Alkaline (ALP) 

Aspartate aminotransferase (AST) 

Alanine aminotransferase (ALT) 

Anion Gap (AGAP) 

Bilirubin (TBIL) 

Calcium (CA) 

Globulin (GLOB) 

Total Protein 

D-dimer 

C-reactive protein 

Prothrombin time 

BUN/Creatinine Ratio 

Ferritin 

International normalized ratio (INR) 

Magnesium (MG) 

Procalcitonin 

Lactate dehydrogenase (LDH) 

Hypertension 

Coronary arteriosclerosis 

Heart failure 

Cardiomyopathy 

Chronic obstructive pulmonary disease (COPD) 

Asthma 

Malignancy 

Liver disease 

Hyperlipidemia and Dyslipidemia 

Obstructive sleep apnea 

Chronic kidney disease 

Diabetes mellitus 

Solid organ transplant 

Conditions related to reduced immune response 

Dementia (All Causes) 

Initial oxygen mode 

Total Number of comorbidities 

Vaccination status 

Vasopressors 
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are presented in Table 2, Supplemental Table 3, and Supplemental Table 4. For patients with age ≥ 18 and < 50 years, 

the variables that had statistically significant correlation with critical illness and death in patients with COVID-19 

were BMI, age, heart failure, and cardiomyopathy. For patients with age ≥ 50 years, the statistically significant 

variables were BMI, age, sex, dementia, and use of vasopressors within one hour of either admission to the hospital 

with COVID-19 or a first positive inpatient SARS-CoV-2 test. Vital signs values were aggregated from 24 hours 
before to one hour after and included (mean and standard deviation) for heart rate (HR), systolic blood pressure (SBP), 

diastolic blood pressure DBP, respiratory rate (RR), blood oxygen saturation (SpO2), and body temperature. 

Table 2: Demographics and medical conditions among hospitalized patients with COVID-19 by severity 

  

Variable 

Patients with age ≥ 18 and < 50 years 

(n=1,963) 

Patients with age ≥ 50 years 

(n=4,943) 

Mild 

(WOS ≤ 5) 

(n=1,810) 

Severe 

(WOS >5) 

(n=153) 

P-value OR
*
 Mild 

(WOS ≤ 5) 

(n=4,349) 

Severe 

(WOS >5) 

(n=595) 

P-value OR 

Age in years, mean (std) 37·21 (8·27) 39·320 (8·15) <0·001 - 68·67 (11·63) 70·17 (11·64) <0·001 - 

BMI, kg/m2, mean (std) 34·18 (9·46) 37·219 (1·00) <0·001 - 31·06 (8·31) 32·10 (9·10) <0·001 - 

Sex (Male) 991 (54·75%) 92 (60·13%) 0·205 1·246 2367 (54·43%) 356 (59·83%) 0·014 1·247 

Ethnic group (Hispanic) 565 (31·21%) 53 (34·64%) 0·415 1·168 537 (12·35%) 74 (12·44%) 0·947 1·008 

Race** 742 (40·99%) 64 (41·83%) 0·864 1·035 1006 (23·13%) 152 (25·55%) 0·197 1·140 

Hypertension 95 (5·25%) 6 (3·92%) 0·571 0·737 863 (19·84%) 111 (18·65%) 0·510 0·926 

Coronary Arteriosclerosis 11 (0·61%) 2 (1·31%) 0·269 2·166 429 (9·86%) 50 (8·40%) 0·301 0·838 

Heart failure 26 (1·44%) 6 (3·92%) 0·034 2·801 471 (10·83%) 68 (11·43%) 0·674 1·062 

Cardiomyopathy 9 (0·50%) 3 (1·96%) 0·061 4·002 112 (2·57%) 13 (2·18%) 0·676 0·845 

COPD 6 (0·33%) 1 (0·65%) 0·434 1·978 390 (8·97%) 46 (7·73%) 0·355 0·851 

Asthma 82 (4·53%) 6 (3·92%) 1·000 0·860 226 (5·20%) 27 (4·54%) 0·552 0·867 

Malignancy 39 (2·15%) 4 (2·61%) 0·573 1·219 412 (9·47%) 50 (8·40%) 0·453 0·877 

Liver disease 71 (3·92%) 7 (4·57%) 0·665 1·174 232 (5·33%) 32 (5·38%) 0·923 1·009 

Dyslipidemia, 

Hyperlipidemia 

122 (6·74%) 14 (9·15%) 0·247 1·394 1188 (27·32%) 150 (25·21%) 0·302 0·897 

Obstructive sleep apnea 52 (2·87%) 6 (3·92%) 0·452 1·380 347 (7·98%) 37 (6·22%) 0·142 0·765 

Chronic kidney disease 27 (1·49%) 4 (2·61%) 0·298 1·773 523 (12·02%) 82 (13·78%) 0·230 1·169 

Diabetes mellitus 150 (8·29%) 7 (4·57%) 0·120 0·531 756 (17·38%) 119  (20%) 0·122 1·188 

Solid organ transplant 3 (0·17%) 1 (0·65%) 0·277 3·963 8 (0·18%) 3 (0·50%) 0·137 2·750 

Immunosuppression 12 (0·66%) 1 (0·65%) 1·000 0·986 48 (1·10%) 7 (1·18%) 0·835 1·067 

Dementia (all causes) 0 (0%)  0 (0%) - - 138 (3·17%) 27 (4·54%) 0·088 1·451 

Vasopressors 10 (0·55%) 1 (0·65%) 0·591 1·184 16 (0·37%) 15 (2·52%) 0·000 7·004 

*OR = Unadjusted odds ratio. **American Indian, Alaska Native, Asian, Black or African American, Native 
Hawaiian or other Pacific Islander, Other 
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Risk Model Analysis 

In this paper, we trained five ML models including LR, RF, GBDT, and AdaBoost for the all-age population 

(n=6,906), and two different age subpopulations (patients with age ≥ 18 and < 50 years with n=1,963 and patients 
with age ≥ 50 years with n=4,943) using the aggregated values of predictors. Class distribution for outcomes show 

that patients with critical illness and death accounted for 7·79% of the younger cohort with age ≥ 18 and < 50 years 

and 12·04% of the older cohort with age ≥ 50 years. This class imbalance was addressed by undersampling patients 

with mild severity from the training set. Results were reported on the complete test dataset, representing actual 

population distribution. Supplemental Table 5 represents the performance results for three sets of developed models 

for younger, older patients and all-age groups. These performance results were reported after adjusting the probability 

threshold to optimize models for clinical and research applications. Among four models for the younger population, 

GBDT had the highest true positive rate of 67·73%, true negative rate of 67·40%, and AUROC value of 0·80. For the 

older population, GBDT had a maximum true positive rate of 76·92%, true negative rate of 76·95% and AUROC of 

0·83. Figure 1 represents the comparison between the AUROC value for four ML models based on the patient's age. 

Relative feature importance for the younger, older and generalized GBDT models was determined by Shapley additive 
explanations (SHAP), as shown in Figure 2, and Supplemental Figure 3, respectively. SHAP values were also used to 

assess the contribution of age on each model outcome (Supplemental Figure 3). We used the distribution of importance 

for each variable to assess its contribution to model outcome. In the younger population, some variables for 

comorbidities added no predictive value, which resulted in them being automatically removed from the SHAP plot. 

 

Figure 1: Area under receiver operator characteristic curve (AUROC) for age-stratified models of severe 

COVID-19 outcomes in hospitalized patients 
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Figure 2: Gradient Boosting Decision Tree feature importance for age-stratified models of severe COVID-19 

outcomes in hospitalized patients 

A) Feature importance and the influence of higher and lower values of the risk factors on the patient with age ≥ 18 

and < 50 years outcome, B) Feature importance and the influence of higher and lower values of the risk factors on the 

patient with age ≥ 50 years outcome. Note that the left side of this graph represents reduced risk of critical illness or 

death, and the right side of the graph represents the increased risk of  critical illness and death outcome. Nominal 

classes are binary [0,1]. For sex, female is 0 (blue) and for race, White is 0 (blue). 

Additionally, we used the GBDT to validate and assess the performance of the model for different time horizons. For 

the all-age group, gradient boosting showed an AUROC value of 0·80, 0·78, 0·77 and 0·77 for respectively, one, 14, 
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28 and 56 day intervals after the confirmation of infection. Furthermore, we predicted the mortality of patients (WHO 

ordinal score of 8) using the GBDT model and the full set of aggregated risk factors. Note that to predict the mortality 

of patients with COVID-19, we also included the patients who were already receiving mechanical ventilation and 

additional organ support (WHO ordinal score of 6 and 7), see Supplemental Figure 1. Therefore, the number of all 

age group patients for predicting mortality increased to 7,063. The results show the AUROC value of 0·85 for the 

general population and 0·76 and 0·80 for the younger and aging population, respectively. 

Discussion 

In this study, we developed risk models to predict the outcomes of hospitalized adult patients with COVID-19, in the 

context of current COVID-19 standard of care and delta variant predominance. We used clinical data from within one 

hour of either admission to the hospital with COVID-19 or the first positive inpatient SARS-CoV-2 test result. 

Explainability analysis on the machine learning models showed that risk factors are different for older patients 

compared to younger patients. This is the first study that investigates age-stratified modeling for COVID-19 severity 
for hospitalized adults for early prediction across multiple time horizons. Data from 6,906 patients across five states 

was used to develop predictive models for COVID-19 critical illness and death in younger and older hospitalized 

adults within one, seven, 14, 28 and 56 days of positive infection test and hospitalization. The key findings are: 1) risk 

models perform well using readily available clinical data, 2) vital signs and laboratory results at the time of admission 

are more important for prediction than the presence of comorbidities, 3) age-stratified models show that the relative 

importance of risk factor differs between younger and older adults. 

Since the beginning of the pandemic, standard of COVID-19 care has improved and delta has become the predominant 

variant. Further, risk models from earlier in the pandemic relied on labs that are not routinely used in many patients.26 

This was reflected by the high rate of missing values for tests required for in early risk scores, including INR, D-

dimer, ferritin and procalcitonin (PCT). The models developed here are both performant and pragmatic. 

Our statistical analysis revealed new insights on how variables that correlate significantly with critical illness and 
death in COVID-19 differ between younger and older age groups. For example, most comorbidities such as 

malignancy, cardiomyopathy and COPD have higher odds ratios for severe outcomes in younger patients than in older 

patients. Conversely, lower BUN/creatinine ratio and lower potassium are only statistically associated with  critical 

illness and death in older patients. 

We chose GBDT, a sequential ensemble approach,27 as the model with the best relative performance to define the 

most predictive variables for COVID-19 outcomes. Non-linear models showed higher performance than linear models, 

suggesting better representation of complex interactions across multiple mechanisms of disease. Stratifying patients 

by age group revealed that, in general, vital signs and laboratory tests have a higher relative importance than 

comorbidities. Because age is such a significant risk factor, it can mask other important predictors. By removing the 

confounding effects of age, these models highlight new insights into risk factors for IMV and death. 

Additionally, we investigated the effect of age on predictive models for younger and older COVID-19 patients. For 

patients with age ≥ 18 and < 50 years (Supplemental Figure 3C), age has a relatively high and more consistent 
predictive effect on the performance of the model. Within patients younger than 50 years old, higher age had a negative 

effect on outcome. However, in patients with age ≥ 50 years (Supplemental Figure 3D), age has less effect on the 

model performance. Patient stratification removed some of the confounding effect of age28 in this group, better 

revealing the contribution of laboratory results, vital signs and comorbidities as predictors. 

For the younger population, the patient's initial oxygen mode and aggregated vital signs demonstrate the highest 

predictive value for outcome severity. Other predictive factors include higher AST, higher creatinine, lower alkaline 

phosphatase, and lower calcium levels, higher age, and higher BMI. Laboratory results have higher importance for 

older patients than they do for younger patients. Features such as higher BUN, higher AST, lower HCO3, lower 

calcium, and some aggregated vital signs (respiratory rate, blood pressure and SpO2) are among the most predictive. 

Sex is not a strong predictive factor, despite it having an odds ratio of ~1·25 in both the older and younger population. 

BMI is another feature that supports the importance of analyzing age subgroups separately. It is statistically correlated 
to the severity of COVID-19 and is an important predictor for the younger population but shows no significant 

correlation in the older population (Supplemental Figure 3). This could be explained by higher BMI in younger 

https://paperpile.com/c/FeJcXA/gib3o
https://paperpile.com/c/FeJcXA/8wpYY
https://paperpile.com/c/FeJcXA/wJwjg
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hospitalized patients compared to the older hospitalized patients with COVID-19.29 Future investigation is needed to 

determine risks with being underweight or overweight, potentially with BMI-stratified models. Neither race or 

ethnicity had strong feature importance for prediction in the younger and older population. This shows that although 

chronic comorbidities (binary diagnostic labels), BMI, sex, race, ethnicity may have high odds ratios in a univariate 

analysis, these factors are much less important in the acute setting for predicting critical illness. Once hospitalized, 

biomedical observations are more predictive. 

SHAP values also indicate the direction of variables’ impact on outcomes. For example, higher serum creatinine 

levels, lower platelet counts, lower lymphocyte counts, and higher neutrophil count are all predictive of critical illness 

and death.33–35 Lower calcium is associated with more severe COVID-19, as noted in previous studies,30 and this 

analysis shows it has higher predictive value in older patients. 

Hence, age stratification shows that risk factors for severe COVID-19 differ by age, in ways that cannot be determined 

in all-age models. This affirms the importance of analyzing each different age group separately, particularly for the 

older population who have the greater overall risk for poor outcomes. 

Also, as expected, vaccination reduced the risk of severe outcomes in the older population. Vaccination status had 

relatively low importance, which may reflect the low number of hospitalized patients who had received vaccination 

during the observation window; only 8·10% of the younger hospitalized patients and 25·48% of older hospitalized 

patients had received at least one dose of a vaccine. 

Early risk stratification in patients with COVID-19 is essential to inform decisions about what level of care a patient 

is likely to need. One of the main challenges of COVID-19 is the heterogeneity of presentation; therefore factors 

related to poor outcomes are not always evident at admission.13 In this study, ML models using readily available 

variables (demographics, vital signs, common laboratory test and medical history) demonstrated strong performance 

for predicting the severity of COVID-19. Importantly, the population in this study included patients from 51 hospitals 

and 1081 clinics across five states, using data based on the current standard of care for COVID-19 and the delta variant. 

Five limitations of this retrospective study are: 1) reliance on EHR structured data which can miss medical conditions 

that not diagnosed, not recorded, or noted only in free text, 2) use of hospital reported race and ethnicity of patients31 

as opposed to direct per-patient measures of potential confounders (genetic information, disparities in healthcare, and 

individual lifetime history of beneficial and harmful exposures, 4) use of data from within a single healthcare system. 

Concerns regarding generalizability of this study are partially mitigated by the size and diversity of PSJH, which 
serves both urban and rural communities from California to Alaska. Future investigations will benefit from finer 

granularity of subdivisions by age, BMI, and more detailed variables on conditions and drugs that affect individual 

immune response. 

Conclusion 

We developed two age-stratified risk models for critical illness in hospitalized patients with COVID-19 and tested 

them on data from patients during times of improved standard of care treatment and delta variant predominance. For 

hospitalized adults, baseline data that is readily available within one hour after hospital admission or a first positive 
inpatient SARS-CoV-2 test can predict critical illness within one day, and up to 56 days later. The models for age ≥ 

18 and < 50 years and the model for age ≥ 50 years were both more performant than all-age models. These age-

stratified models also revealed differences in the statistical significance and relative predictive value of risk factors 

between older and younger patients, including age, BMI, vital signs, and laboratory results. In addition, sex and 

chronic comorbidities had lower predictive value than vital signs and laboratory results. The results of this age-

stratified modeling approach provide advanced understanding of current risk factors for severe COVID-19 outcomes 

and can help inform care decisions and prioritize next steps for research. 
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Supplemental Figure 1: Study cohort 

(A) Cohort selection from PSJH-EHR data. (B) The frequency histogram of hospitalized patients based on their age. 

(C) The frequency of hospitalized patients maximum WHO ordinal score within 7 days of hospitalization based on 

their age. 
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Supplemental Figure 2: Distribution of patients’ BMI for invasive mechanical ventilation and mortality 

outcome in different age groups 
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Supplemental Figure 3: Feature importance for all-age model of severe COVID-19 outcomes in hospitalized 

patients 

A) Gradient Boosting Decision Tree feature importance and the influence of higher and lower values of the risk factors 

on the all-age group population outcome. Note that the left side of this graph represents reduced risk of  critical illness 

and death outcome and right side of the graph represents the increased risk of critical illness and death outcome. 
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Nominal classes are binary [0,1]. For sex, female is 0 (blue) and for race, White is 0 (blue), B: Variable “Age” 

contribution in prediction process of model for patients’ with all age groups, C: Variable “Age” contribution in 

prediction process of model for patients’ age ≥ 18 and < 50 years, D: Variable “Age” contribution in prediction process 

of model for patients’ age ≥ 50 years. 

 

Supplemental Table 1: Implementation of World Health Organization Ordinal Scale (WOS) 

Patient State Descriptor Score Implementation 

Uninfected No clinical or virological 

evidence 

0 Not applicable: all patients in study were hospitalized. 

Ambulatory No limitation of activities 1 Not applicable: all patients in study were hospitalized. 

 Limitation of activities 2 Not applicable: all patients in study were hospitalized. 

Hospitalized 

mild disease 

 

Hospitalized, no oxygen therapy 3 Encounter  

Oxygen by mask or nasal prongs 4 Nursing flowsheets, step function 

Non-invasive ventilation of high-

flow oxygen 

5 Nursing flowsheets, step function 

Hospitalized 

severe 

disease 

 

Intubation and mechanical 

ventilation 

6 Nursing flowsheets, step function 

Ventilation and additional organ 

support:  pressors, renal 

replacement therapy, dialysis, 

extracorporeal membrane 

oxygenation (ECMO) 

 

 

7 

Vasopressor in medication administration records. RxNorm ingredient: 

3616 dobutamine, 3628 dopamine, 3966 ephedrine, 3992 epinephrine, 

6963 midodrine, 7512 norepinephrine, 8163 phenylephrine, 11149 

vasopressin (USP) 

 

Renal replacement therapy: Nursing flowsheets, step function 

 

ECMO: Nursing flowsheets, step function 

Death 8 Date of death is recorded 
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Supplemental Table 2: Terms and SNOMED-CT codes 

Term Code 

Hypertension 31992008,59621000,69909000,198941007,367390009,48194001  

Coronary Arteriosclerosis 53741008 

Heart failure 84114007 

Cardiomyopathy 85898001 

Diabetes mellitus (Includes Type 1 and Type 2) 46635009,44054006 

Chronic obstructive pulmonary disease (COPD) 13645005 

Asthma 195967001 

Obstructive sleep apnea 78275009 

Chronic kidney disease 709044004 

Liver disease 235856003 

Malignancy, current or past 363346000 

Dyslipidemia, Hyperlipidemia 370992007, 55822004 

History of solid organ transplant (includes heart, lungs, kidney, liver) 195967001,739025007,737295003, 737296002, 737297006 

Immunosuppression 737300001, 370388006, 370391006, 234532001, 86406008, 

62479008 

Dementia (all causes) 52448006 

Terms were defined as the parent code and all children under that parent. 
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Supplemental Table 3: Mean and standard deviation values and missing percentage of laboratory results 

among hospital patients with COVID-19 by severity 

 

Variable 

Patients with age ≥ 18 and < 50  years 

(n=1,963)  

Patients with age ≥ 50 years 

(n=4,944) 
 

Less Severe Severe P-value Missing 

(%) 

Less Severe Severe P-value Missing 

(%) 

RBC (std), x1012/L 4.732 

(0.714) 

4.828 

(0.753) 

0.017 1.375 4.505 

(0.764) 

4.524 

(0.845) 

0.282 2.306 

WBC (std) , x109/L 8.360 

(8.424) 

8.987 

(5.479) 

0.043 1.375 8.236 

(6.261) 

9.619 

(8.207) 

<0.001 2.286 

Neutrophils (std), x109/L 6.213 

(3.822) 

7.381 

(4.739) 

0.014 8.507 6.279 

(3.968) 

7.439 

(4.596) 

<0.001 6.271 

Lymphocytes (std) , x109/L 1.259 

(6.105) 

0.968 

(0.669) 

<0.001 8.660 1.153 

(4.351) 

1.164 

(4.595) 

<0.001 6.373 

Eosinophils (std), x109/L  0.046  

(0.111) 

0.019 

(0.065) 

<0.001 29.699 0.050 

(0.144) 

0.024 

(0.069) 

<0.001 25.571 

Basophils (std), x109/L 0.020 

(0.032) 

0.018 

(0.034) 

0.128 26.999 0.021 

(0.089) 

0.019 

(0.033) 

0.142 24.074 

Platelets (std), x109/L 238.745 

(99.499) 

227.856 

(95.169) 

0.127 1.528 224.315 

(102.507) 

213.450 

(101.504) 

<0.001 2.448 

Hematocrit (std), % 

    Male 

 

    Female 

 

43.125 

(5.569) 

38.315 

(5.424) 

 

44.052 

(5.462) 

37.604 

(5.928) 

 

0.342 

 

0.278 

1.324  

41.088 

(6.533) 

38.935 

(5.667) 

 

41.565 

(7.143) 

38.206 

(6.669) 

 

0.243 

 

0.198 

2.246 

Hemoglobin (std), g/dL 

    Male 

 

    Female 

 

14.588 

(1.989) 

12.659 

(1.956) 

 

14.978 

(1.952) 

12.389 

(2.084) 

 

0.025 

 

0.020 

1.273  

13.789 

(2.340) 

12.846 

(1.993) 

 

13.902 

(2.530) 

12.484 

(2.279) 

 

0.175 

 

0.143 

2.165 

Globulin (std), g/dL 3.709 

(0.842) 

3.787 

(0.893) 

0.103 21.599 3.632 

(0.845) 

3.696 

(0.892) 

0.468 21.080 

Sodium (std), mmol/L 135.828 

(4.100) 

134.966 

(4.840) 

<0.001 7.030 135.588 

(4.855) 

135.746 

(6.133) 

0.213 2.691 

Potassium (std), mmol/L 3.865 

(0.545) 

3.895 

(0.635) 

0.280 7.132 3.999 

(0.597) 

4.125 

(0.663) 

<0.001 2.650 

Calcium (std), mmol/L 8.749 

(0.613) 

8.453 

(0.615) 

<0.001 7.132 8.780 

(0.618) 

8.592 

(0.644) 

<0.001 2.792 

Magnesium (std), mg/dL 2.052 

(0.495) 

1.970 

(0.450) 

<0.001 84.921 1.975 

(0.353) 

2.123 

(0.609) 

<0.001 82.986 

Albumin (std), g/dL 3.652 

(0.704) 

3.428 

(0.738) 

<0.001 11.105 3.474 

(0.659) 

3.261 

(0.732) 

<0.001 8.557 
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Creatinine (std), mg/dL 1.093 

(1.339) 

1.300 

(1.349) 

<0.001 6.928 1.370 

(1.509) 

1.642 

(1.325) 

<0.001 2.630 

AST (std), U/L 79.670 

(141.354) 

104.125 

(107.617) 

<0.001 11.563 58.203 

(65.267) 

107.067 

(250.009) 

<0.001 9.104 

ALT (std), U/L 71.945 

(97.304) 

72.832 

(60.649) 

0.362 11.462 47.197 

(59.073) 

67.058 

(118.011) 

<0.001 9.549 

LDH (std), U/L 462.544 

(220.515) 

579.333 

(281.813) 

<0.001 79.317 401.303 

(184.575) 

541.781 

(370.662) 

<0.001 83.512 

Glucose (std), mg/dL 146.594 

(93.950) 

159.092 

(95.668) 

<0.001 6.317 147.074 

(72.026) 

172.005 

(99.159) 

<0.001 1.881 

Bilirubin (std), mg/dL 0.685 

(0.834) 

0.801 

(1.812) 

0.128 11.768 0.702 

(0.543) 

0.794 

(0.605) 

<0.001 9.346 

Anion Gap (std), mmol/L 10.157 

(4.175) 

11.196 

(4.199) 

0.023 7.590 9.702 

(3.594) 

11.421 

(4.457) 

<0.001 3.054 

Alkaline (std), U/L 94.852 

(77.846) 

92.745 

(64.137) 

<0.001 11.309 94.434 

(71.613) 

94.657 

(64.072) 

0.447 8.861 

Monocytes (std), x109/L 0.519 

(0.385) 

0.457 

(0.454) 

<0.001 8.660 0.592 

(0.452) 

0.603 

(1.197) 

<0.001 6.453 

BUN (std), mg\dL 14.835 

(13.570) 

18.895 

(14.074) 

<0.001 9.119 23.897 

(17.242) 

34.765 

(22.949) 

<0.001 2.954 

Chloride (std), mmol/L 101.034 

(5.045) 

100.268 

(5.728) 

<0.001 7.030 100.944 

(5.549) 

101.350 

(6.635) 

0.455 2.670 

Bicarbonate (std), mmol/L 24.907 

(4.236) 

23.899 

(4.750) 

<0.001 7.285 25.205 

(3.931) 

23.234 

(4.956) 

<0.001 2.610 

Ferritin (std), ng/mL 1169.543 

(1667.133) 

1398.247 

(1524.964) 

<0.001 80.489 1001.510 

(1108.519) 

1160.807 

(1155.168) 

<0.001 83.107 

Procalcitonin (std). ng/mL 2.595 

(25.863) 

4.042 

(19.127) 

<0.001 65.919 1.455 

(6.573) 

3.483 

(13.963) 

<0.001 83.107 

Total Protein (std), g/dL 7.348 

(0.740) 

7.196 

(0.795) 

<0.001 11.309 7.098 

(0.730) 

6.939 

(0.827) 

<0.001 8.861 

C-reactive (std), mg/L 35.945 

(51.749) 

36.623 

(56.429) 

<0.001 64.085 37.197 

(58.468) 

46.909 

(75.217) 

<0.001 69.350 

Prothrombin (std), sec 13.933 

(2.971) 

14.486 

(2.844) 

<0.001 77.331 15.694 

(8.245) 

16.840 

(7.262) 

<0.001 72.385 

BUN/ Creat (std), ratio 14.596 

(6.313) 

14.896 

(5.605) 

0.343 25.420 19.234 

(7.766) 

23.255 

(11.151) 

<0.001 24.924 

INR (std), ratio 1.150 

(0.318) 

1.188 

(0.295) 

<0.001 77.331 1.324 

(0.869) 

1.432 

(0.756) 

<0.001 72.122 

D-Dimer (std),  µg/ml 1.312 

(2.586) 

2.602 

(6.056) 

<0.001 63.984 1.667 

(2.849) 

3.461 

(10.168) 

<0.001 69.876 
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Supplemental Table 4: Vital sign data among patients with COVID-19 according to the severity 

Variable Patients ≥ 18 and < 50 years 

(n=706) 

Patients >= 50 years old 

(n=2531) 

Less Severe Severe P-value Less Severe Severe P-value 

SBP 124.848 (17.381) 125.949 (18.416) 0.143 130.859 (20.502) 128.440 (22.401) <0.001 

DBP 75.321 (11.774) 76.437 (12.250) 0.130 73.193 (12.219) 71.963 (12.723) <0.001 

RR 22.422 (5.631) 27.148 (8.235) <0.001 21.747 (4.708) 25.363 (5.960) <0.001 

SpO2 94.341 (3.441) 91.086 (5.162) <0.001 93.821 (3.408) 91.751 (5.021) <0.001 

HR 97.374 (16.404) 106.390 (16.577) <0.001 88.989 (16.821) 94.054 (19.447) <0.001 

Body Temp. 99.178 (1.652) 99.432 (1.594) 0.013 98.839 (1.678) 98.863 (1.613) 0.080 
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Supplemental Table 5: Prediction performance and 95% confidence interval on the test set for models with full 

set of features. 

Age group Classifier AUROC PR-AUC TPR TNR PPV NPV LKR+ LKR- 

Generalized 

model for 

patients in all 

age groups 

LR 0.7672 

(0.72,0.81) 

0.4606 

(0.38,0.54) 

0.6776 

(0.60,0.75) 

0.6813 

(0.65,0.71) 

0.2081 

(0.17,0.24) 

0.9447 

(0.93,0.96) 

2.1261 

(1.85,2.44) 

0.4732 

(0.37,0.60) 

RF 0.7764 

(0.73,0.82) 

0.4876 

(0.41,0.57) 

0.7105 

(0.64,0.78) 

0.7106 

(0.65,0.74) 

0.2328 

(0.19,0.27) 

0.9521 

(0.94,0.97) 

2.4551 

(2.15,2.81) 

0.4074 

(0.32,0.52) 

GBDT 0.7784 

(0.73,0.82) 

0.4868 

(0.41,0.57) 

0.7105 

(0.64,0.78) 

0.7081 

(0.68,0.73) 

0.2313 

(0.19,0.27) 

0.9519 

(0.94,0.97)  

2.4341 

(2.13,2.78) 

0.4088 

(0.32,0.53) 

AdaBoost 0.7603 

(0.71,0.81) 

0.4702 

(0.39,0.55) 

0.6908 

(0.62,0.76) 

0.6894 

(0.66,0.71) 

0.2156 

(0.18,0.25) 

0.9475 

(0.93,0.96) 

2.2241 

(1.94,2.55) 

0.4485 

(0.35,0.57) 

Age-stratified 

model for 

patients 

age ≥ 18 and < 

50  years 
 

LR 0.7222 

(0.62,0.83) 

0.3965 

(0.22,0.57) 

0.6451 

(0.48,0.81) 

0.5939 

(0.54,0.64) 

0.1198 

(0.07,0.17) 

0.9513 

(0092,0.98) 

1.5885 

(1.19,2.12) 

0.5976 

(0.37,0.97) 

RF 0.7930 

(0.70,0.89) 

0.4238 

(0.25,0.60) 

0.6773 

(0.51,0.84) 

0.6574 

(0.61,0.71) 

0.1449 

(0.09,0.20) 

0.9596 

(0.93,0.98) 

1.9769 

(1.49,2.62) 

0.4909 

(0.29,0.82) 

GBDT 0.7965 

(0.70,0.89) 

0.4270 

(0.25,0.60) 

0.6773 

(0.51,0.84) 

0.6740 

(0.63,0.72) 

0.1511 

(0.09,0.21) 

0.9606 

(0.94,0.98) 

2.0776 

(1.56,2.76) 

0.4788 

(0.29,0.80) 

AdaBoost 0.7840 

(0.68,0.88) 

0.4085 

(0.24,0.58) 

0.6451 

(0.48,0.81) 

0.6713 

(0.62,0.72) 

0.1439 

(0.08,0.20) 

0.9567 

(0.93,0.98) 

1.9626 

(1.45,2.65) 

0.5287 

(0.33,0.85) 

Age-stratified 

model for 

patients age ≥ 

50 years 
 

LR 0.7920 

(0.74,0.84) 

0.5210 

(0.43,0.61) 

0.7350 

(0.65,0.81) 

0.7408 

(0.71,0.77) 

0.2757 

(0.23,0.32) 

0.9542 

(0.94,0.97) 

2.8356 

(2.43,3.32) 

0.3577 

(0.26,0.48) 

RF 0.8318 

(0.79,0.88) 

0.5513 

(0.46,0.64) 

0.7692 

(0.69,0.85) 

0.7660 

(0.74,0.79) 

0.3061 

(0.25,0.36) 

0.9611 

(0.95,0.97) 

3.2872 

(2.81,3.84) 

0.3013 

(0.22,0.42) 

GBDT 0.8336 

(0.79,0.88) 

0.5529 

(0.46,0.64) 

0.7692 

(0.69,0.85) 

0.7695 

(0.74,0.80) 

0.3093 

(0.26,0.36) 

0.9613 

(0.95,0.98) 

3.3371 

(2.85,3.90) 

0.3999 

(0.21,0.42) 

AdaBoost 0.8155 

(0.77,0.86) 

0.5419 

(0.45,0.63) 

0.7521 

(0.67,0.83) 

0.7672 

(0.74,0.79) 

0.3024 

(0.25,0.35) 

0.9584 

(0.94,0.97) 

3.2307 

(2.75,3.79) 

0.3231 

(0.23,0.44) 

AUROC = area under the receiver-operating characteristic curve. PR-AUC: area under the precision-recall curve. TPR 

= true positive rate. TNR = true negative rate. LKR+ = positive likelihood ratio. LKR- = negative likelihood ratio. 

PPV = positive predictive value. NPV = negative predictive value. 

 

 

 

 

 

 

 

 


