Supplementary Information

Article: "Astrocyte biomarker signatures of amyloid- β and tau pathologies in Alzheimer's disease" Ferrari-Souza *et al*.

Supplementary Methods. MRI and PET acquisition and processing.

Supplementary Figure 1. Correlation between reactive astrocyte biomarkers.

Supplementary Figure 2. Sensitivity analyses testing the associations of A β -PET and tau-PET with reactive astrocyte biomarkers using plasma GFAP instead of CSF GFAP.

Supplementary Figure 3. Flowchart of included participants.

Supplementary Table 1. Associations of CSF GFAP and YKL-40 with neocortical $A\beta$ -PET and temporal meta-ROI tau-PET.

Supplementary Table 2. Structural equation model coefficients and associated statistics for Figure 2A.

Supplementary Table 3. Structural equation model coefficients and associated statistics for Figure 2B.

Supplementary Table 4. Demographics of the subset of individuals with available CSF inflammation-related proteins.Supplementary Table 5. Abbreviations of inflammation-related proteins.

Abbreviations: AD = Alzheimer's disease; ADAD = autosomal dominant Alzheimer's disease; ADNI = Alzheimer'sDisease Neuroimaging Initiative; *APOE* $\varepsilon 4$ = Apolipoprotein E $\varepsilon 4$; $A\beta$ = amyloid- β ; CFI = comparative fit index; CSF = cerebrospinal fluid; CI = cognitively impaired; CU = cognitively unimpaired; GFAP = glial fibrillary acidic protein; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; MPRAGE = magnetization prepared rapid acquisition gradient echo; MNI = Montreal Neurological Institute; NS = not significant; PET = positron emission tomography; RMSEA = root mean squared error of approximation; SD = standard deviation; SRMR = standardized root mean square residual; SUVR = standardized uptake value ratio; YKL-40 = chitinase-3-like protein 1.

Supplementary Methods. MRI and PET acquisition and processing.

Structural MRI was acquired at the MNI using a 3-T Siemens Magnetom using a standard head coil. We used the MPRAGE MRI (TR: 2300 ms, TE: 2.96ms) sequence to obtain high-resolution structural images of the whole brain (9° flip angle, coronal orientation perpendicular to the double spin echo sequence, 1x1 mm² in-plane resolution of 1 mm slab thickness). Then, the Statistical Parametric Mapping 12 segmentation tool was used to segment anatomical images into probabilistic grey matter and white matter maps. Each grey matter probability map was then non-linearly registered (with modulation) to the ADNI template using DARTEL¹ and voxel values were modulated by multiplying them by the Jacobian determinants derived from the spatial normalization step². MRI images were smoothed using a Gaussian kernel of full width half maximum of 8 mm. Lastly, we visually inspected all images to ensure proper alignment to the ADNI template. Aβ-PET ([¹⁸F]AZD4694; 40–70 min post-injection) and tau-PET ([¹⁸F]MK-6240; 90–110 min post-injection) scans were acquired on a Siemens High Resolution Research Tomograph. AB-PET and tau-PET scans were reconstructed using the ordered subset expectation maximization algorithm on a 4D volume with three frames (3 x 600 seconds) and four frames (4 x 300 seconds), respectively³. Then, attenuation correction was performed using a 6-minute transmission scan with a rotating ¹³⁷Cs point source. Furthermore, PET images were corrected for motion, dead time, decay, and scattered and random coincidences. Following an in-house pipeline, T1-weighted MRI data was corrected for non-uniformity and field distortion. Subsequently, linear co-registration and non-linear spatial normalization for the MNI template was performed through linear and non-linear transformation in two main steps: (i) PET registration to the correspondent T1-weighted MRI, and (ii) T1-weighted MRI registration to the MNI reference space. PET images were spatially smoothed to achieve a final resolution of 8 mm full width at half-maximum width. SUVRs were calculated using the whole cerebellum grey matters reference region for $[^{18}F]AZD4694 A\beta$ -PET⁴ and using inferior cerebellum as reference region for [¹⁸F]MK-6240 tau-PET⁵.

Supplementary Figure 1. Correlation between reactive astrocyte biomarkers. Scatter plot showing the results of Spearman's rank correlations between (**A**) CSF GFAP and CSF YKL-40, (**B**) plasma GFAP and CSF GFAP, and (**C**) plasma GFAP and CSF YKL-40. The error bands indicate the 95% confidence intervals. Individuals are colored by cognitive status. Noteworthy, analyses involving plasma GFAP were conducted in a subset of 114 individuals; from the total study population of 121 subjects, five participants did not have available plasma GFAP measures and two were excluded because they were considered outliers (plasma GFAP concentrations three SD above the mean of the population).

Supplementary Figure 2. Sensitivity analyses testing the associations of Aβ-PET and tau-PET with reactive astrocyte biomarkers using plasma GFAP instead of CSF GFAP. (A) Box-and-whisker plot of plasma GFAP levels adjusted for age-, sex-, and *APOE* ε 4 status across AT groups. The horizontal line in each box represents the median; box ends represent the 25th and 75th percentiles. Groups were compared using analyses of variance with Tukey's multiple comparison test (**P*<0.05, ***P*<0.01, ****P*<0.001). (B) Partial residual plots of linear regressions testing the associations of neocortical Aβ-PET SUVR with plasma GFAP and CSF YKL-40 levels adjusting for temporal meta-ROI tau-PET SUVR, age, sex, cognitive status, and *APOE* ε 4 status. (C) Partial residual plots of linear regressions testing the associations of temporal meta-ROI tau-PET SUVR with plasma GFAP and CSF YKL-40 levels adjusting for neocortical Aβ-PET SUVR, age, sex, cognitive status, and *APOE* ε 4 status. Of note, analyses involving plasma GFAP were conducted in a subset of 114 individuals; from the total study population of 121 subjects, five participants did not have available plasma GFAP measures and two were excluded because they were considered outliers (plasma GFAP concentrations three SD above the mean of the population).

Exclusions

Supplementary Figure 3. Flowchart of included participants.

Supplementary Table 1. Associations of CSF GFAP and YKL-40 with neocortical Aβ-PET and temporal meta-

ROI tau-PET.

	β (95% confidence interval)	<i>T</i> -value	<i>P</i> -value	
Model A ^a : neocortical Aβ-PET SUVR ~ CSF GFAP + CSF YKL-40 + temporal meta-ROI tau-PET SUVR + covariates ^c				
CSF GFAP	0.24 (0.08 to 0.40)	3.03	0.003	
CSF YKL-40	-0.14 (-0.30 to 0.03)	-1.66	0.100	
Temporal meta-ROI tau-PET SUVR	0.53 (0.33 to 0.72)	5.38	< 0.001	
Model B ^b : temporal meta-ROI tau-PET S covariates ^c	UVR ~ CSF GFAP + CSF YKL	-40 + neocortical	Aβ-PET SUVR +	
CSF GFAP	-0.08 (-0.22 to 0.06)	-1.17	0.244	
CSF YKL-40	0.24 (0.11 to 0.37)	3.55	< 0.001	
Neocortical Aβ-PET SUVR	0.39 (0.24 to 0.53)	5.38	< 0.001	

^aAdjusted R^2 : 0.51. ^bAdjusted R^2 : 0.64. ^cPotential confounders included in the models as covariates are the following:

age, sex, cognitive status, and APOE ε 4 status.

Supplementary Table 2. Structural equation model coefficients and associated statistics for Figure 2A.

	β (95% confidence interval)	<i>P</i> -value
MMSE		
Hippocampal volume	0.28 (0.12 to 0.43)	0.001
Temporal meta-ROI tau-PET SUVR	-0.48 (-0.68 to -0.28)	< 0.001
Neocortical Aβ-PET SUVR	0.04 (-0.14 to 0.21)	0.690
CSF GFAP	-0.02 (-0.16 to 0.12)	0.762
Hippocampal volume		
Temporal meta-ROI tau-PET SUVR	-0.46 (-0.68 to -0.24)	< 0.001
Neocortical Aβ-PET SUVR	-0.03 (-0.23 to 0.17)	0.783
CSF GFAP	-0.16 (-0.32 to -0.003)	0.046
CSF GFAP		
Temporal meta-ROI tau-PET SUVR	0.11 (-0.13 to 0.36)	0.361
Neocortical Aβ-PET SUVR	0.30 (0.09 to 0.52)	0.007
Temporal meta-ROI tau-PET SUVR		
Neocortical Aβ-PET SUVR	0.58 (0.45 to 0.70)	< 0.001

Model fit indices: CFI = 1.00; RMSEA = 0.00 (90% confidence interval: 0.00-0.00); SRMR = 0.00. All associations were adjusted for age, *APOE* ϵ 4 status, and years of education.

Supplementary Table 3. Structural equation model coefficients and associated statistics for Figure 2B.

	β (95% confidence interval)	<i>P</i> -value
MMSE		
Hippocampal volume	0.30 (0.15 to 0.46)	< 0.001
Temporal meta-ROI tau-PET SUVR	-0.51 (-0.72 to -0.31)	< 0.001
Neocortical Aβ-PET SUVR	0.03 (-0.14 to 0.20)	0.706
CSF YKL-40	0.09 (-0.05 to 0.23)	0.198
Hippocampal volume		
Temporal meta-ROI tau-PET SUVR	-0.41 (-0.63 to -0.18)	< 0.001
Neocortical Aβ-PET SUVR	-0.08 (-0.27 to 0.11)	0.418
CSF YKL-40	-0.17 (-0.33 to -0.01)	0.041
CSF YKL-40		
Temporal meta-ROI tau-PET SUVR	0.44 (0.20 to 0.67)	< 0.001
Neocortical Aβ-PET SUVR	-0.02 (-0.24 to 0.20)	0.855
Temporal meta-ROI tau-PET SUVR		
Neocortical Aβ-PET SUVR	0.58 (0.45 to 0.70)	< 0.001

Model fit indices: CFI = 1.00; RMSEA = 0.00 (90% confidence interval: 0.00-0.00); SRMR = 0.00. All associations were adjusted for age, *APOE* ϵ 4 status, and years of education.

Supplementary Table 4. Demographics of the subset of individuals with available CSF inflammation-related

proteins.

	CU	CI	<i>P</i> -value
No.	36	26	-
Age, years	71.6 (6.1)	69.6 (7.9)	0.296
Male, No. (%)	9 (25.0)	16 (61.5)	0.008
Education, years	14.5 (3.5)	15.6 (2.8)	0.174
APOE ε4 carriers, No. (%)	11 (30.6)	16 (61.5)	0.030
MMSE score	29.2 (1.1)	26.6 (3.9)	0.002
Neocortical Aβ-PET SUVR	1.62 (0.5)	2.30 (0.5)	< 0.001
Temporal meta-ROI tau-PET SUVR	0.87 (0.1)	1.54 (0.7)	< 0.001
Hippocampal volume, cm ³	3.53 (0.3)	3.24 (0.4)	0.004

Continuous variables are presented as mean (SD).

Supplementary	Table 5.	Abbreviations	of inflamm	ation-related	proteins.
---------------	----------	---------------	------------	---------------	-----------

Protein symbol	Protein name
4E-BP1	Eukaryotic translation initiation factor 4E-binding protein 1
ADA	Adenosine Deaminase
CCL11	C-X-C motif chemokine 11
CCL19	C-C motif chemokine 19
CCL23	C-C motif chemokine 23
CCL25	C-C motif chemokine 25
CCL3	C-C motif chemokine 3
CCL4	C-C motif chemokine 4
CD244	Natural killer cell receptor 2B4
CD40	CD40L receptor
CD5	T-cell surface glycoprotein CD5
CD8A	T-cell surface glycoprotein CD8 alpha chain
CDCP1	CUB domain-containing protein 1
CSF-1	Macrophage colony-stimulating factor 1
CST5	Cystatin D
CX3CL1	Fractalkine
CXCL1	C-X-C motif chemokine 1
CXCL10	C-X-C motif chemokine 10
CXCL11	C-X-C motif chemokine 11
CXCL5	C-X-C motif chemokine 5
CXCL6	C-X-C motif chemokine 6
CXCL9	C-X-C motif chemokine 9
DNER	Delta and Notch-like epidermal growth factor-related receptor
FGF-19	Fibroblast growth factor 19
FGF-5	Fibroblast growth factor 5
Flt3L	FMS-related tyrosine kinase 3 ligand
HGF	Hepatocyte growth factor
IL-10RB	Interleukin-10 receptor subunit beta

IL-12B	Interleukin-12 subunit beta
IL-18	Interleukin-18
IL-18R1	Interleukin-18 receptor 1
IL-6	Interleukin-6
IL-7	Interleukin-7
IL-8	Interleukin-8
LAP TGF-beta-1	Latency-associated peptide transforming growth factor beta-1
LIF	Leukemia inhibitory factor
LIF-R	Leukemia inhibitory factor receptor
MCP-1	Monocyte chemotactic protein 1
MCP-2	Monocyte chemotactic protein 2
MCP-4	Monocyte chemotactic protein 4
MMP-1	Matrix metalloproteinase-1
MMP-10	Matrix metalloproteinase-10
OPG	Osteoprotegerin
PD-L1	Programmed cell death 1 ligand 1
SCF	Stem cell factor
SIRT2	SIR2-like protein 2
STAMBP	STAM-binding protein
TGF-alpha	Transforming growth factor alpha
TNF-beta	TNF-beta
TNFRSF9	Tumor necrosis factor receptor superfamily member 9
TNFSF14	Tumor necrosis factor ligand superfamily member 14
TRAIL	TNF-related apoptosis-inducing ligand
TWEAK	Tumor necrosis factor ligand superfamily, member 12
uPA	Urokinase-type plasminogen activator
VEGF-A	Vascular endothelial growth factor A

Supplementary References

- 1 Ashburner, J. A fast diffeomorphic image registration algorithm. *Neuroimage* **38**, 95-113, doi:10.1016/j.neuroimage.2007.07.007 (2007).
- Ashburner, J. & Friston, K. J. Voxel-based morphometry--the methods. *Neuroimage* 11, 805-821, doi:10.1006/nimg.2000.0582 (2000).
- Pascoal, T. A. *et al.* In vivo quantification of neurofibrillary tangles with [(18)F]MK-6240. *Alzheimers Res Ther*10, 74, doi:10.1186/s13195-018-0402-y (2018).
- Cselenyi, Z. *et al.* Clinical validation of 18F-AZD4694, an amyloid-beta-specific PET radioligand. *J Nucl Med*53, 415-424, doi:10.2967/jnumed.111.094029 (2012).
- Pascoal, T. A. *et al.* 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. *Brain* 143, 2818-2830, doi:10.1093/brain/awaa180 (2020).