SUPPLEMENTARY FILE

Members of the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC)

Ji Chen^{1,2}, Cassandra N. Spracklen^{3,4}, Gaëlle Marenne^{2,5}, Arushi Varshney⁶, Laura J Corbin^{7,8}, Jian'an Luan⁹, Sara M Willems⁹, Ying Wu³, Xiaoshuai Zhang^{9,10}, Momoko Horikoshi^{11,12,13}, Thibaud S Boutin¹⁴, Reedik Mägi¹⁵, Johannes Waage¹⁶, Ruifang Li-Gao¹⁷, Kei Hang Katie Chan^{18,19,20}, Jie Yao²¹, Mila D Anasanti²², Audrey Y Chu²³, Annique Claringbould²⁴, Jani Heikkinen²², Jaeyoung Hong²⁵, Jouke-Jan Hottenga^{26,27}, Shaofeng Huo²⁸, Marika A. Kaakinen^{29,22}, Tin Louie³⁰, Winfried März^{31,32,33}, Hortensia Moreno-Macias³⁴, Anne Ndungu¹², Sarah C. Nelson³⁰, Ilja M. Nolte³⁵, Kari E North³⁶, Chelsea K. Raulerson³, Debashree Ray³⁷, Rebecca Rohde³⁶, Denis Rybin²⁵, Claudia Schurmann^{38,39}, Xueling Sim^{40,41,42}, Loz Southam², Isobel D Stewart⁹, Carol A. Wang⁴³, Yujie Wang³⁶, Peitao Wu²⁵, Weihua Zhang^{44,45}, Tarunveer S. Ahluwalia^{16,46,47}, Emil VR Appel⁴⁸, Lawrence F. Bielak⁴⁹, Jennifer A. Brody⁵⁰, Noël P Burtt⁵¹, Claudia P Cabrera^{52,53}, Brian E Cade^{54,55}, Jin Fang Chai⁴⁰, Xiaoran Chai^{56,57}, Li-Ching Chang⁵⁸, Chien-Hsiun Chen⁵⁸, Brian H Chen⁵⁹, Kumaraswamy Naidu Chitrala⁶⁰, Yen-Feng Chiu⁶¹, Hugoline G. de Haan¹⁷, Graciela E Delgado³³, Ayse Demirkan^{62,29}, Qing Duan^{3,63}, Jorgen Engmann⁶⁴, Segun A Fatumo^{65,66,67}, Javier Gayán⁶⁸, Franco Giulianini⁶⁹, Jung Ho Gong¹⁸, Stefan Gustafsson⁷⁰, Yang Hai⁷¹, Fernando P Hartwig^{72,7}, Jing He⁷³, Yoriko Heianza⁷⁴, Tao Huang⁷⁵, Alicia Huerta-Chagoya^{76,77}, Mi Yeong Hwang⁷⁸, Richard A. Jensen⁵⁰, Takahisa Kawaguchi⁷⁹, Katherine A Kentistou^{80,81}, Young Jin Kim⁷⁸, Marcus E Kleber³³, Ishminder K Kooner⁴⁵, Shuiqing Lai¹⁸, Leslie A Lange⁸², Carl D Langefeld⁸³, Marie Lauzon²¹, Man Li⁸⁴, Symen Ligthart⁶², Jun Liu^{62,85}, Marie Loh^{86,44}, Jirong Long⁸⁷, Valeriya Lyssenko^{88,89}, Massimo Mangino^{90,91}, Carola Marzi^{92,93}, May E Montasser⁹⁴, Abhishek Nag¹², Masahiro Nakatochi⁹⁵, Damia Noce⁹⁶, Raymond Noordam⁹⁷, Giorgio Pistis⁹⁸, Michael Preuss^{38,99}, Laura Raffield³, Laura J. Rasmussen-Torvik¹⁰⁰, Stephen S Rich^{101,102}, Neil R Robertson^{11,12}, Rico Rueedi^{103,104}, Kathleen Ryan⁹⁴, Serena Sanna^{98,24}, Richa Saxena^{105,106,107}, Katharina E Schraut^{80,81}, Bengt Sennblad¹⁰⁸, Kazuya Setoh⁷⁹, Albert V Smith^{109,110}, Lorraine Southam^{111,112}, Thomas Sparsø⁴⁸, Rona J Strawbridge^{113,114}, Fumihiko Takeuchi¹¹⁵, Jingyi Tan²¹, Stella Trompet^{97,116}, Erik van den Akker^{117,118,119}, Peter J van der Most³⁵, Niek Verweij^{120,121}, Mandy Vogel¹²², Heming Wang^{54,55}, Chaolong Wang^{123,124}, Nan Wang^{125,126}, Helen R Warren^{52,53}, Wanqing Wen⁸⁷, Tom Wilsgaard¹²⁷, Andrew Wong¹²⁸, Andrew R Wood¹, Tian Xie³⁵, Mohammad Hadi Zafarmand^{129,130}, Jing-Hua Zhao¹³¹, Wei Zhao⁴⁹, Najaf Amin^{62,85}, Zorayr Arzumanyan²¹, Arne Astrup¹³², Stephan JL Bakker¹³³, Damiano Baldassarre^{134,135}, Marian Beekman¹¹⁷, Richard N Bergman¹³⁶, Alain Bertoni¹³⁷, Matthias Blüher¹³⁸, Lori L. Bonnycastle¹³⁹, Stefan R Bornstein¹⁴⁰, Donald W Bowden¹⁴¹, Oiuvin Cai⁷³, Archie Campbell^{142,143}, Harry Campbell⁸⁰, Yi Cheng Chang^{144,145,146}, Eco J.C. de Geus^{26,27}, Abbas Dehghan⁶², Shufa Du¹⁴⁷, Gudny Eiriksdottir¹¹⁰, Aliki Eleni Farmaki^{148,149}, Mattias Frånberg¹⁵⁰, Christian Fuchsberger⁹⁶, Yutang Gao¹⁵¹, Anette P Gjesing⁴⁸, Anuj Goel^{152,12}, Sohee Han⁷⁸, Catharina A Hartman¹⁵³, Christian Herder^{154,155,156}, Andrew A. Hicks⁹⁶. Chang-Hsun Hsieh^{157,158}, Willa A. Hsueh¹⁵⁹, Sahoko Ichihara¹⁶⁰, Michiya Igase¹⁶¹, M. Arfan Ikram⁶², W. Craig Johnson³⁰, Marit E Jørgensen^{46,162}, Peter K Joshi⁸⁰, Rita R Kalyani¹⁶³, Fouad R. Kandeel¹⁶⁴, Tomohiro Katsuya^{165,166}, Chiea Chuen Khor¹²⁴, Wieland Kiess¹²², Ivana Kolcic¹⁶⁷, Teemu Kuulasmaa¹⁶⁸, Johanna Kuusisto¹⁶⁹, Kristi Läll¹⁵, Kelvin Lam²¹, Deborah A Lawlor^{170,8}, Nanette R. Lee^{171,172}, Rozenn N. Lemaitre⁵⁰, Honglan Li¹⁷³, Shih-Yi Lin^{174,175,176}, Jaana Lindström¹⁷⁷, Allan Linneberg^{178,179}, Jianjun Liu^{124,180}, Carlos Lorenzo¹⁸¹, Tatsuaki Matsubara¹⁸², Fumihiko Matsuda⁷⁹, Geltrude Mingrone¹⁸³, Simon Mooijaart⁹⁷, Sanghoon Moon⁷⁸, Toru Nabika¹⁸⁴, Girish N. Nadkarni³⁸, Jerry L. Nadler¹⁸⁵, Mari Nelis¹⁵, Matt J Neville^{11,186}, Jill M Norris¹⁸⁷, Yasumasa Ohyagi¹⁸⁸, Annette Peters^{189,93,190}, Patricia A. Peyser⁴⁹, Ozren Polasek^{167,191}, Qibin Qi¹⁹², Dennis Raven¹⁵³, Dermot F Reilly¹⁹³, Alex Reiner¹⁹⁴, Fernando Rivideneira¹⁹⁵, Kathryn Roll²¹, Igor Rudan¹⁹⁶, Charumathi Sabanayagam^{56,197}, Kevin Sandow²¹, Naveed Sattar¹⁹⁸, Annette Schürmann^{199,200}, Jinxiu Shi²⁰¹, Heather M Stringham^{42,41}, Kent D. Taylor²¹, Tanya M. Teslovich²⁰², Betina Thuesen¹⁷⁸, Paul RHJ Timmers^{80,203}, Elena Tremoli¹³⁵, Michael Y Tsai²⁰⁴, Andre Uitterlinden¹⁹⁵, Rob M van Dam^{40,180,205}, Diana van Heemst⁹⁷, Astrid van Hylckama Vlieg¹⁷, Jana V Van Vliet-Ostaptchouk³⁵, Jagadish Vangipurapu²⁰⁶, Henrik Vestergaard^{48,207}, Tao Wang¹⁹², Ko Willems van Dijk^{208,209,210}, Tatijana Zemunik²¹¹, Goncalo R Abecasis⁴², Linda S. Adair^{147,212}, Carlos Alberto Aguilar-Salinas^{213,214,215}, Marta E Alarcón-Riquelme^{216,217}, Ping An²¹⁸, Larissa Aviles-Santa²¹⁹, Diane M Becker²²⁰, Lawrence J Beilin²²¹, Sven Bergmann^{103,104,222}, Hans Bisgaard¹⁶, Corri Black²²³, Michael Boehnke^{42,41}, Eric Boerwinkle^{224,225}, Bernhard O Böhm^{226,227}, Klaus Bønnelykke¹⁶, D I. Boomsma^{26,27}, Erwin P. Bottinger^{38,228,229}, Thomas A Buchanan^{230,231,126}, Mickaël Canouil^{232,233}, Mark J Caulfield^{52,53}, John C. Chambers^{86,44,45,234,235}, Daniel I. Chasman^{69,236}, Yii-Der Ida Chen²¹, Ching-Yu Cheng^{56,197}, Francis S. Collins¹³⁹, Adolfo Correa²³⁷, Francesco Cucca⁹⁸, H. Janaka de Silva²³⁸,

George Dedoussis²³⁹, Sölve Elmståhl²⁴⁰, Michele K. Evans²⁴¹, Ele Ferrannini²⁴², Luigi Ferrucci²⁴³, Jose C Florez^{244,245,107}, Paul W Franks^{89,246}, Timothy M Frayling¹, Philippe Froguel^{232,233,247}, Bruna Gigante²⁴⁸, Mark O. Goodarzi²⁴⁹, Penny Gordon-Larsen^{147,212}, Harald Grallert^{92,93}, Niels Grarup⁴⁸, Sameline Grimsgaard¹²⁷, Leif Groop^{250,251}, Vilmundur Gudnason^{110,252}, Xiuqing Guo²¹, Anders Hamsten¹¹⁴, Torben Hansen⁴⁸, Caroline Hayward²⁰³, Susan R. Heckbert²⁵³, Bernardo L Horta⁷², Wei Huang²⁰¹, Erik Ingelsson²⁵⁴, Pankow S James²⁵⁵, Marjo-Ritta Jarvelin^{256,257,258,259}, Jost B Jonas^{260,261,262}, J. Wouter Jukema^{116,263}, Pontiano Kaleebu²⁶⁴, Robert Kaplan^{192,194}, Sharon L.R. Kardia⁴⁹, Norihiro Kato¹¹⁵, Sirkka M. Keinanen-Kiukaanniemi^{265,266}, Bong-Jo Kim⁷⁸, Mika Kivimaki²⁶⁷, Heikki A. Koistinen^{268,269,270}, Jaspal S. Kooner^{45,234,235,271}, Antje Körner¹²², Peter Kovacs^{138,272}, Diana Kuh¹²⁸, Meena Kumari²⁷³, Zoltan Kutalik^{274,104}, Markku Laakso¹⁶⁹, Timo A. Lakka^{275,276,277}, Lenore J Launer⁶⁰, Karin Leander²⁷⁸, Huaixing Li²⁸, Xu Lin²⁸, Lars Lind²⁷⁹, Cecilia Lindgren^{12,280,281}, Simin Liu¹⁸, Ruth J.F. Loos^{38,99}, Patrik KE Magnusson²⁸², Anubha Mahajan¹², Andres Metspalu¹⁵, Dennis O Mook-Kanamori^{17,283}, Trevor A Mori²²¹, Patricia B Munroe^{52,53}, Inger Njølstad¹²⁷, Jeffrey R O'Connell⁹⁴, Albertine J Oldehinkel¹⁵³, Ken K Ong⁹, Sandosh Padmanabhan²⁸⁴, Colin N.A. Palmer²⁸⁵, Nicholette D Palmer¹⁴¹, Oluf Pedersen⁴⁸, Craig E Pennell⁴³, David J Porteous^{142,286}, Peter P. Pramstaller⁹⁶, Michael A. Province²¹⁸, Bruce M. Psaty^{50,253,287}, Lu Qi²⁸⁸, Leslie J. Raffel²⁸⁹, Rainer Rauramaa²⁷⁷, Susan Redline^{54,55}, Paul M Ridker^{69,290}, Frits R. Rosendaal¹⁷, Timo E. Saaristo^{291,292}, Manjinder Sandhu²⁹³, Jouko Saramies²⁹⁴, Neil Schneiderman²⁹⁵, Peter Schwarz^{140,296,200}, Laura J. Scott^{42,41}, Elizabeth Selvin³⁷, Peter Sever²⁷¹, Xiao-ou Shu⁸⁷, P Eline Slagboom¹¹⁷, Kerrin S Small⁹⁰, Blair H Smith²⁹⁷, Harold Snieder³⁵, Tamar Sofer^{298,245}, Thorkild I.A. Sørensen^{48,299,7,8}, Tim D Spector⁹⁰, Alice Stanton³⁰⁰, Claire J Steves^{90,301}, Michael Stumvoll¹³⁸, Liang Sun²⁸, Yasuharu Tabara⁷⁹, E Shyong Tai^{180,40,302}, Nicholas J Timpson^{7,8}, Anke Tönjes¹³⁸, Jaakko Tuomilehto^{303,304,305}, Teresa Tusie^{77,306}, Matti Uusitupa³⁰⁷, Pim van der Harst^{120,24}, Cornelia van Duijn^{85,62}, Veronique Vitart²⁰³, Peter Vollenweider³⁰⁸, Tanja GM Vrijkotte¹²⁹, Lynne E Wagenknecht³⁰⁹, Mark Walker³¹⁰, Ya X Wang²⁶¹, Nick J Wareham⁹, Richard M Watanabe^{125,231,126}, Hugh Watkins^{152,12}, Wen B Wei³¹¹, Ananda R Wickremasinghe³¹², Gonneke Willemsen^{26,27}, James F Wilson^{80,203}, Tien-Yin Wong^{56,197}, Jer-Yuarn Wu⁵⁸, Anny H Xiang³¹³, Lisa R Yanek²²⁰, Loïc Yengo³¹⁴, Mitsuhiro Yokota³¹⁵, Eleftheria Zeggini^{111,316,317}, Wei Zheng⁸⁷, Alan B Zonderman⁶⁰, Jerome I Rotter²¹, Anna L Gloyn^{11,12,186,318}, Mark I. McCarthy^{11,319,186,12}, Josée Dupuis²⁵, James B Meigs^{320,245,107}, Robert A Scott⁹, Inga Prokopenko^{29,22}, Aaron Leong^{321,322,236}, Ching-Ti Liu²⁵, Stephen CJ Parker^{6,323#}, Karen L. Mohlke³, Claudia Langenberg⁹, Eleanor Wheeler^{2,9}, Andrew P. Morris^{324,325,326,12}, Inês Barroso^{1,2,9,327} and the Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC)*

¹Exeter Centre of Excellence for Diabetes Research (ExCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK, ²Department of Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK, ³Department of Genetics, University of North Carolina, Chapel Hill, NC, USA, ⁴Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA, ⁵Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France, ⁶Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA, ⁷MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK, ⁸Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, Bristol, UK, ⁹MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK, ¹⁰Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China, ¹¹Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK, ¹²Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK, ¹³Laboratory for Genomics of Diabetes and Metabolism, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan, ¹⁴Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, UK, ¹⁵Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia, ¹⁶COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark, ¹⁷Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, ¹⁸Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA, ¹⁹Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China, ²⁰Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China, ²¹The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA, ²²Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK, ²³Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA,

USA, ²⁴Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, ²⁵Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA, ²⁶Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 27 Amsterdam Public Health Research Institute, Amsterdam Universities Medical Center, Amsterdam, The Netherlands, 28CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, ²⁹Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, Surrey, UK, ³⁰Department of Biostatistics, University of Washington, Seattle, WA, USA, ³¹SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany, ³²Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria, ³³Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany, ³⁴Department of Economics, Metropolitan Autonomous University, Mexico City, Mexico, ³⁵Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, ³⁶CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA, ³⁷Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, ³⁸The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, ³⁹HPI Digital Health Center, Digital Health and Personalized Medicine, Hasso Plattner Institute, Potsdam, Germany, ⁴⁰Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore, ⁴¹Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA, ⁴²Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA, ⁴³School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia, ⁴⁴Department of Epidemiology and Biostatistics, Imperial College London, London, UK, ⁴⁵Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK, ⁴⁶Steno Diabetes Center Copenhagen, Gentofte, Denmark, ⁴⁷The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark, ⁴⁸Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 49Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA, ⁵⁰Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA, ⁵¹Metabolism Program, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA, ⁵²Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK, 53NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, UK, ⁵⁴Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA, ⁵⁵Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA, ⁵⁶Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, ⁵⁷Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore, ⁵⁸Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Taiwan, ⁵⁹Department of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA, USA, 60 Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA, ⁶¹Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan, ⁶²Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands, ⁶³Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, ⁶⁴Institute of Cardiovascular Science, UCL, London, UK, 65Uganda Medical Informatics Centre (UMIC), MRC/UVRI and London School of Hygiene & Tropical Medicine (Uganda Research Unit), Entebbe, Uganda, ⁶⁶London School of Hygiene & Tropical Medicine, London, UK, 67H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria, 68Bioinfosol, Sevilla, Spain, 69Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA, ⁷⁰Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden, ⁷¹Department of Statistics, The University of Auckland, Science Center, Auckland, New Zealand, ⁷²Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil, ⁷³Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA, 74Department of Epidemiology, Tulane University Obesity Research Center, Tulane University, New Orleans, USA, ⁷⁵Department of Epidemiology and Biostatistics,

School of Public Health, Peking University, Beijing, China, ⁷⁶Molecular Biology and Genomic Medicine Unit, National Council for Science and Technology, Mexico City, Mexico, ⁷⁷Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico, ⁷⁸Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Chungcheongbuk-do, South Korea, ⁷⁹Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan, ⁸⁰Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland, ⁸¹Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, 82Department of Medicine, Divison of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA, 83Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA, 84Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA, 85Nuffield Department of Population Health, University of Oxford, Oxford, UK, ⁸⁶Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, ⁸⁷Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA, 88Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway, 89Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden, ⁹⁰Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, UK, ⁹¹NIHR Biomedical Research Centre, Guy's and St Thomas' Foundation Trust, London, UK, ⁹²Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Bavaria, Germany, 93German Center for Diabetes Research (DZD), Neuherberg, Bavaria, Germany, 94Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA, 95Public Health Informatics Unit, Department of Integrated Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan, ⁹⁶Institute for Biomedicine, Eurac Research, Bolzano, BZ, Italy, 97Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands, ⁹⁸Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy, 99The Mindich Child Health and Development Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 100Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA, ¹⁰¹Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA, ¹⁰²Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA, ¹⁰³Department of Computational Biology, University of Lausanne, Lausanne, Switzerland, ¹⁰⁴Swiss Institute of Bioinformatics, Lausanne, Switzerland, ¹⁰⁵Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, ¹⁰⁶Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA, ¹⁰⁷Program in Medical and Population Genetics,, Broad Institute, Cambridge, MA, USA, ¹⁰⁸Department of Cell and Molecular Biology., National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden, ¹⁰⁹Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, ¹¹⁰Icelandic Heart Association, Kopavogur, Iceland, ¹¹¹Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany, ¹¹²Wellcome Sanger Institute, Hinxton, Cambridge, UK, ¹¹³Institute of Health and Wellbeing, University of Glasgow, Glasgow, Glasgow, UK, ¹¹⁴Department of Medicine Solna, Cardiovascular medicine, Karolinska Institutet, Stockholm, Sweden, ¹¹⁵National Center for Global Health and Medicine, Tokyo, Japan, ¹¹⁶Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands, ¹¹⁷Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, ¹¹⁸Department of Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands, ¹¹⁹Department of Biomedical Data Sciences, Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands, ¹²⁰Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, ¹²¹Genomics plc, Oxford, UK, ¹²²Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany, ¹²³Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, ¹²⁴Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, ¹²⁵Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA, ¹²⁶USC Diabetes and Obesity Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA, ¹²⁷Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway, ¹²⁸MRC Unit for

Lifelong Health & Ageing at UCL, London, UK, ¹²⁹Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam Universities Medical Center, Amsterdam, The Netherlands, ¹³⁰Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam Universities Medical Center, Amsterdam, The Netherlands, ¹³¹Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK, 132Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark, ¹³³Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, ¹³⁴Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy, ¹³⁵Centro Cardiologico Monzino, IRCCS, Milan, Italy, 136Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA, ¹³⁷Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA, ¹³⁸Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany, ¹³⁹Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA, ¹⁴⁰Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, 141Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA, ¹⁴²Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK, ¹⁴³Usher Institute, University of Edinburgh, Edinburgh, UK, ¹⁴⁴Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ¹⁴⁵Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan, ¹⁴⁶Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ¹⁴⁷Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA, ¹⁴⁸Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK, ¹⁴⁹Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece, ¹⁵⁰Department of Medicine Solna, Cardiovascular medicine, Stockholm, Sweden, ¹⁵¹Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China, ¹⁵²Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK, ¹⁵³Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands, ¹⁵⁴Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany, ¹⁵⁵Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, ¹⁵⁶German Center for Diabetes Research (DZD), Düsseldorf, Germany, ¹⁵⁷Internal Medicine, Endocrine & Metabolism, Tri-Service General Hospital, Taipei, Taiwan, ¹⁵⁸School of Medicine, National Defense Medical Center, Taipei, Taiwan, ¹⁵⁹Internal Medicine, Endocrinology, Diabetes & Metabolism, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA, ¹⁶⁰Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan, ¹⁶¹Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Toon, Japan, ¹⁶²National Institute of Public Health, University of Southern Denmark, Odense, Denmark, ¹⁶³Department of Medicine, Endocrinology, Diabetes & Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA, ¹⁶⁴Clinical Diabetes, Endocrinology & Metabolism, Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, USA, ¹⁶⁵Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan, ¹⁶⁶Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan, ¹⁶⁷Department of Public Health, University of Split School of Medicine, Split, Croatia, ¹⁶⁸Institute of Biomedicine, Bioinformatics Center, University of Eastern Finland, Kuopio, Finland, ¹⁶⁹Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland, ¹⁷⁰MRC Integrative Epidemiology Unit, University of Bristol, Bristol, Bristol, UK, ¹⁷¹USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines, ¹⁷²Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, Philippines, ¹⁷³State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China, ¹⁷⁴Internal Medicine, Endocrine & Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan, ¹⁷⁵Center for Geriatrics and Gerontology,, Taichung Veterans General Hospital, Taichung, Taiwan, ¹⁷⁶National Defense Medical Center, National Yang-Ming University, Taipei, Taiwan, ¹⁷⁷Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland, ¹⁷⁸Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark, ¹⁷⁹Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ¹⁸⁰Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore, ¹⁸¹Department of Medicine, University of Texas Health Sciences Center, San Antonio, TX, USA, ¹⁸²Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya, Japan, ¹⁸³Department of Diabetes, Diabetes, & Nutritional Sciences, James Black Centre, King's College London, London, UK, ¹⁸⁴Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan, ¹⁸⁵Department of Medicine and Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA, ¹⁸⁶Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK, ¹⁸⁷Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA, ¹⁸⁸Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan, ¹⁸⁹Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Bavaria, Germany, ¹⁹⁰Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians University Munich, Munich, Bavaria, Germany, ¹⁹¹Gen-info LtD, Zagreb, Croatia, ¹⁹²Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA, ¹⁹³Genetics and Pharmacogenomics, Merck Sharp & Dohme Corp., Kenilworth, NJ, USA, ¹⁹⁴Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA, ¹⁹⁵Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands, ¹⁹⁶Centre for Global Health, The Usher Institute, University of Edinburgh, Edinburgh, UK, ¹⁹⁷Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore, ¹⁹⁸BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK, ¹⁹⁹Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 200 German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany, ²⁰¹Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST), Shanghai, China, ²⁰²Sarepta Therapeutics, Cambridge, Massachusetts, USA, ²⁰³Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK, ²⁰⁴Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA, ²⁰⁵Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA, ²⁰⁶Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland, ²⁰⁷Department of Medicine, Bornholms Hospital, Rønne, Denmark, ²⁰⁸Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands, 209 Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands, ²¹⁰Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands, ²¹¹Department of Human Biology, University of Split School of Medicine, Split, Croatia, ²¹²Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA, ²¹³Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico, 214Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición and Tec Salud, Mexico City, Mexico, ²¹⁵Instituto Tecnológico y de Estudios Superiores de Monterrey Tec Salud, Mexico City, Mexico, ²¹⁶Department of Medical Genomics, Pfizer/University of Granada/Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain, ²¹⁷Institute for Environmental Medicine, Chronic Inflammatory Diseases, Karolinska Institutet, Solna, Sweden, ²¹⁸Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA, ²¹⁹Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA, ²²⁰Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA, ²²¹Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia, ²²²Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa, 223 Aberdeen Centre for Health Data Science, 1:042 Polwarth Building, School of Medicine, Medical, Science and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK, 224 Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA, 225Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA, ²²⁶Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes, University of Ulm, Ulm, Baden-Württemberg, Germany, 227LKC School of Medicine, Nanyang Technological University, Singapore and Imperial College London, UK, Singapore, Singapore, ²²⁸Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA,

²²⁹Digital Health Center, Hasso Plattner Institut, University Potsdam, Potsdam, Germany, ²³⁰Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA, ²³¹Department of Physiology and Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA, ²³²INSERM UMR 1283 / CNRS UMR 8199, European Institute for Diabetes (EGID), Université de Lille, Lille, France, ²³³INSERM UMR 1283 / CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France, ²³⁴Imperial College Healthcare NHS Trust, Imperial College London, London, UK, ²³⁵MRC-PHE Centre for Environment and Health, Imperial College London, London, UK, 236 Harvard Medical School, Boston, MA, USA, 237 Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA, ²³⁸Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka, ²³⁹Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Kallithea, Greece, ²⁴⁰Department of Clinical Sciences, Lund University, Malmö, Sweden, 241 Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA, ²⁴²CNR Institute of Clinical Physiology, Pisa, Italy, ²⁴³Intramural Research Program, National Institute of Aging, Baltimore, MD, USA, ²⁴⁴Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA, ²⁴⁵Department of Medicine, Harvard Medical School, Boston, MA, USA, ²⁴⁶Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweeden, 247 Department of Genomics of Common Disease, Imperial College London, London, UK, 248Department of Medicine, Cardiovascular medicine, Karolinska Institutet, Stockholm, Sweden, ²⁴⁹Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA, ²⁵⁰Diabetes Centre, Lund University, Sweden, ²⁵¹Finnish Instituter of Molecular Medicine, Helsinki University, Helsinki, Finland, ²⁵²Faculty of Medicine, School of health sciences, University of Iceland, Reykjavik, Iceland, 253 Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA, 254 Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA, 255 Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA, 256 Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK, 257 Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland, ²⁵⁸Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland, ²⁵⁹Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK, ²⁶⁰Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, ²⁶¹Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China, 262 Institute of Molecular and Clinical Ophthalmology Basel IOB, Basel, Switzerland, ²⁶³Netherlands Heart Institute, Utrecht, The Netherlands, ²⁶⁴MRC/UVRI and LSHTM (Uganda Research Unit), Entebbe, Uganda, ²⁶⁵Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland, ²⁶⁶Unit of General Practice, Oulu University Hospital, Oulu, Finland, ²⁶⁷Department of Epidemiology and Public Health, UCL, London, UK, ²⁶⁸Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland, ²⁶⁹Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland, ²⁷⁰Minerva Foundation Institute for Medical Research, Helsinki, Finland, ²⁷¹National Heart and Lung Institute, Imperial College London, London, UK, ²⁷²IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany, 273 Institute for Social and Economic Research, University of Essex, Colchester, UK, ²⁷⁴University Institute of Primary Care and Public Health, Division of Biostatistics, University of Lausanne, Lausanne, Switzerland, 275 Institute of Biomedicine, School of Medicine, University of Eastern Finland, Finland, ²⁷⁶Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland, ²⁷⁷Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland, ²⁷⁸Institute of Environmental Medicine, Cardiovascular and Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden, 279 Department of Medical Sciences, Uppsala, Sweden, 280 Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK, 281Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK, 282Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden, 283 Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands, ²⁸⁴Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK, 285 Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK, ²⁸⁶Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK, ²⁸⁷Department of Health Services,

Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA, 288Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA, ²⁸⁹Department of Pediatrics, Genetic and Genomic medicine, University of California, Irvine, Irvine, CA, USA, ²⁹⁰Havard Medical School, Boston, MA, USA, ²⁹¹Tampere, Finnish Diabetes Association, Tampere, Finland, ²⁹²Pirkanmaa Hospital District, Tampere, Finland, ²⁹³Department of Medicine, University of Cambridge, Cambridge, UK, 294South Karelia Central Hospital, Lappeenranta, Finland, 295Department of Psychology, University of Miami, Miami, FL, USA, ²⁹⁶Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Dresden, Germany, 297 Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK, 298 Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA, 299 Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ³⁰⁰Departent of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland, ³⁰¹Department of Aging and Health, Guy's and St Thomas' Foundation Trust, London, UK, 302Cardiovascular and Metabolic Disease Signature Research Program, Duke-NUS Medical School, Singapore, Singapore, ³⁰³Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland, ³⁰⁴Department of Public Health, University of Helsinki, Helsinki, Finland, ³⁰⁵Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia, ³⁰⁶Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, 307Department of Public Health and Clinical Nutrition, University of Eastern Finland, Finland, ³⁰⁸Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland, ³⁰⁹Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA, ³¹⁰Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK, ³¹¹Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China, China, ³¹²Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka, ³¹³Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena, CA, USA, ³¹⁴Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia, ³¹⁵Kurume University School of Medicine, Japan, ³¹⁶Wellcome Sanger Institute, Hinxton, UK, ³¹⁷TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany, ³¹⁸Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA, ³¹⁹Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK, 320 Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA, 321 Department of Medicine, General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA, 322 Department of Medicine, Diabetes Unit and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA, ³²³Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA, ³²⁴Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK, ³²⁵Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK, ³²⁶Department of Biostatistics, University of Liverpool, Liverpool, UK, ³²⁷University of Cambridge, Cambridge

Study Design of SUGAR-MGH

SUGAR-MGH is an NIH-funded pharmacogenetic study in 1,000 adults at three Boston medical centers from 2008-2015. Subjects were enrolled if they had never been on anti-diabetes medications; they could have a family history or personal history of diabetes that was lifestyle or diet-controlled. At Visit 1 (V1), a single dose of glipizide was administered in the fasting state with plasma glucose and insulin measured at regular intervals up to 240 minutes. After a washout period, participants received 500 mg of metformin twice daily for two days and, at Visit 2 (V2) a week later, a 75-g oral glucose tolerance test (OGTT) with glucose and insulin measurements. A subset had glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), proinsulin, and glucagon measured.

Colocalization Methods

The COLOC 4.0 R package¹ was used for the colocalization analysis. We used the coloc.abf method which implements a variation of the Approximate Bayes Factor computations.² The coloc.abf function was called with two R lists, one for the SUGAR-MGH and one for the T2D/glycemic trait GWAS: list(pvalues=..., N=..., MAF=..., snp=..., type="quant"), with a vector of *p*-values, N for the sample size, MAF for the minor allele frequency, and snp for the rsid of the variant. The colocalization was run over regions ranging from one million base pairs downstream to one million upstream from the lead SUGAR-MGH variant. We reported the posterior probabilities (PP) of colocalization. The colocalization plots were generated using the locuscompare R package v1.0.0.³

References

- 1 Giambartolomei C, Zhenli Liu J, Zhang W, *et al.* A Bayesian framework for multiple trait colocalization from summary association statistics. *Bioinformatics* 2018; **34**: 2538–45.
- 2 Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. *Genet Epidemiol* 2009; **33**: 79–86.
- 3 Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB. Abundant associations with gene expression complicate GWAS follow-up. *Nat Genet* 2019; **51**: 768–9.

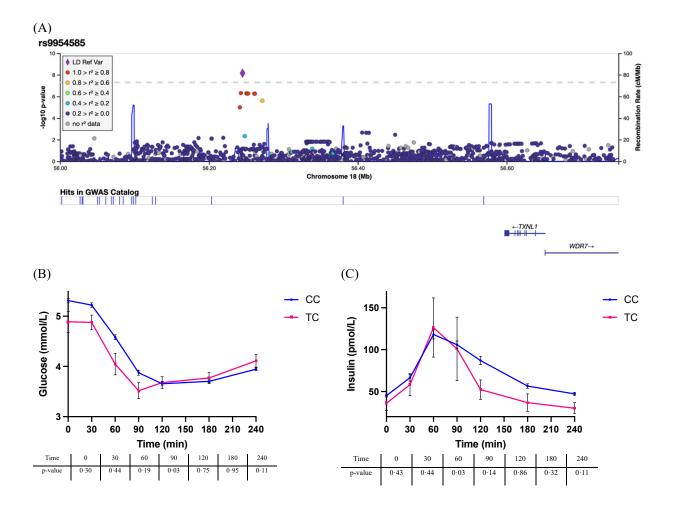
Supplementary Table S1. List of secondary outcomes of metformin and glipizide response in SUGAR-MGH.

Glucose at 30 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 60 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 90 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 120 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 180 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 240 mins at V1 +/- adjustment for baseline glucose V1
Glucose at 30 mins at V2 +/- adjustment for baseline glucose V2
Glucose at 60 mins at V2 +/- adjustment for baseline glucose V2
Glucose at 120 mins at V2 +/- adjustment for baseline glucose V2
Area under the curve of insulin at V2 adjusted for fasting insulin at V2
Fasting glucose at V2 minus fasting glucose at V1 +/- adjustment for baseline glucose V1
Fasting insulin at V2 minus fasting insulin at V1 +/- adjustment for baseline insulin V1
HOMA-IR at V2 minus HOMA-IR at V1
HOMA-B at V2 minus HOMA-B at V1
Insulin at 30 mins at V1
Insulin at 60 mins at V1
Insulin at 90 mins at V1
Insulin at 120 mins at V1
Insulin at 180 mins at V1
Insulin at 240 mins at V1
Fasting insulin at V2
Insulin at 30 mins at V2
Insulin at 60 mins at V2
Insulin at 120 mins at V2
Slope to glucose trough at V1 +/- adjustment for baseline glucose
Slope to glucose recovery at V1 +/- adjustment for baseline glucose
Slope to insulin peak at V1 +/- adjustment for baseline insulin V1
Time to reach peak insulin at V1 +/- adjustment for baseline insulin V1

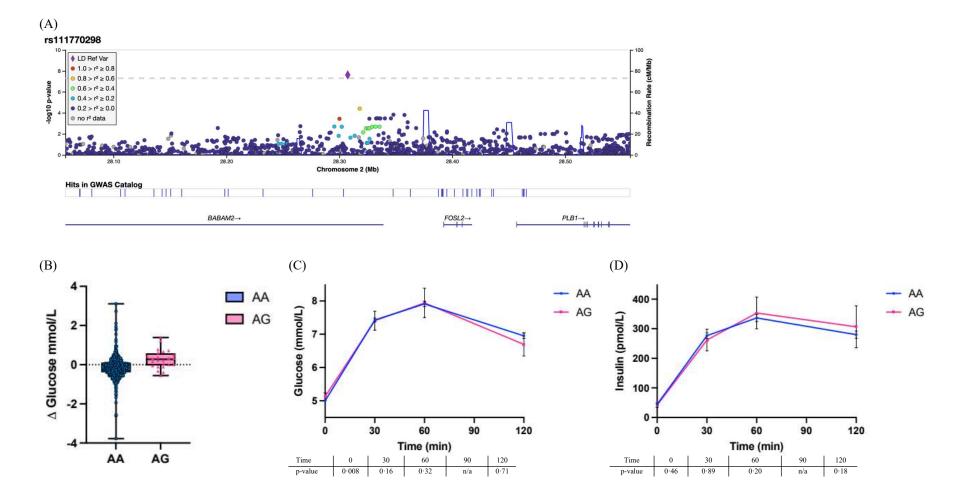
Supplementary Table S2. Demographic characteristics and baseline measurements of 890 participants with genome-wide genotyping in SUGAR-MGH.

	All participants (n=890)
Women [n (%)]	474 (53·3)
Age (years)	47.1 ± 16.2
BMI (kg/m ²) (n=873)	30.2 ± 7.2
Self-reported race/ethnicity [n (%)]	
White, non-Hispanic	560 (62.9)
Black, non-Hispanic	190 (21.4)
Hispanic	63 (7.1)
Asian, non-Hispanic	53 (5.9)
Others	24 (2.7)
Diagnosis of T2D [n (%)]	22 (2.8)
Received full glipizide challenge	572 (64·3)
Fasting glucose (mmol/L)	5.14 ± 0.94
Fasting insulin (pmol/L)	$41{\cdot}88\pm42{\cdot}13$

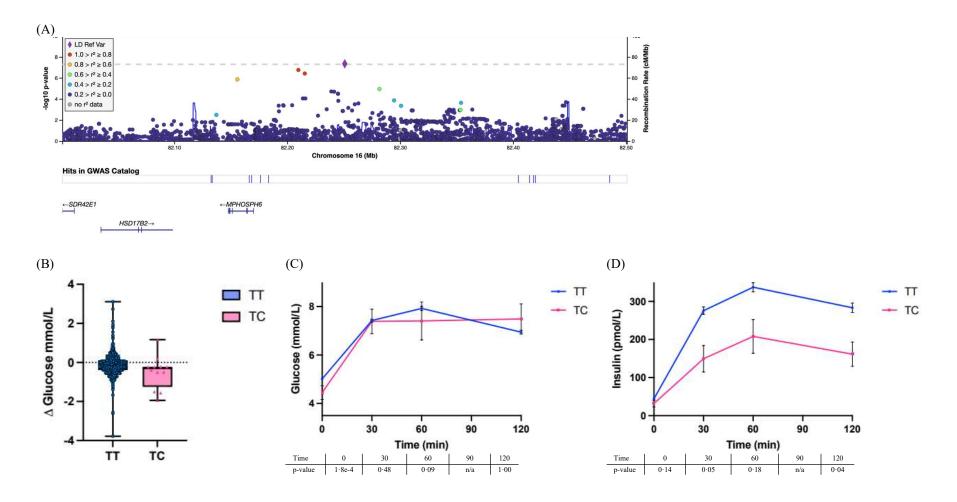
Age, body mass index (BM), and fasting glucose are mean \pm SD. Fasting insulin is median (interquartile range).

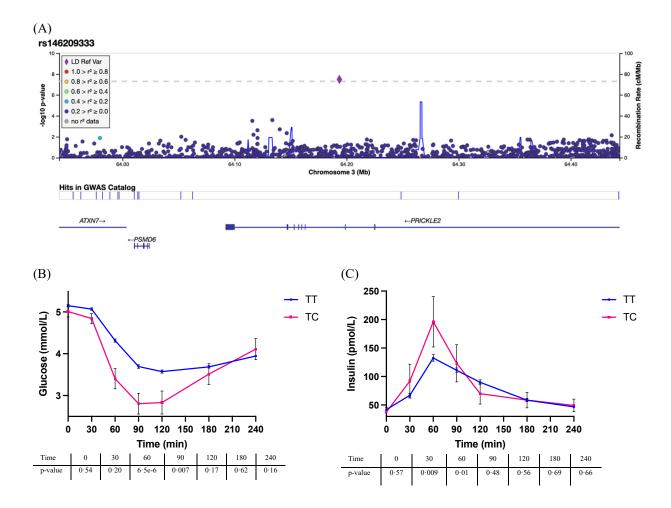

rsid	Chr	Position [#]	Nearest gene	NEA	EA	EAF	AFR*	AMR*	EAS*	EUR*	SAS*	N	Trait	Beta [†]	<i>p</i> -value	Additional traits
rs150628520 [‡]	4	187296094	FATI	A	G	0.009	0.002	0.007	0.0002	0.011	0.002	550	Time to reach glucose trough at V1	1.7	9·7×10 ⁻⁹	Slope to glucose trough at V1 (beta=-1.7, $p=7.3\times10^{-8}$)
rs111406936	10	113583078	HABP2	А	Т	0.008	0.031	0.003	0	0.0002	0	776	Insulin at 60 mins at V2	-1.5	6·4×10 ⁻⁹	AUC insulin at V2 (beta= -1.4 , $p=7.2\times10^{-7}$)
rs149193557	3	98379904	OR5K3	А	С	0.013	0.0598	0.008	0	0.0003	0	545	AOC glucose at V1	-1.3	1·1×10 ⁻⁸	Glucose trough at V1 (beta=- $1\cdot 3$, $p=3\cdot 0\times 10^{-6}$)
rs111770298 [‡]	2	28307503	BABAM2	А	G	0.013	0.054	0.002	0	0.0001	0.0002	807	Fasting glucose at V2 adj. V1	0.7	2·4×10 ⁻⁸	Fasting glucose at V2- fasting glucose at V1 (beta= 1.1 , $p=2.7\times10^{-7}$)
rs2749695	1	225964122	LEFTY1, SDE2	Т	А	0.628	0.580	0.542	0.776	0.623	0.669	807	Insulin at 30 mins at V1	0.3	3·2×10 ⁻⁸	Insulin at 60 min at V1 (beta= 0.2 , $p=1.8\times10^{-6}$)
rs146209333	3	64193613	PRICKLE2	Т	С	0.012	0.002	0.002	0	0.014	0.003	830	Glucose at 60 mins at V1	-0.9	3·3×10 ⁻⁸	Slope to glucose trough at V1 (beta=1·2, $p=9\cdot9\times10^{-8}$), Glucose trough at V1 (beta=-0·9, $p=2\cdot8\times10^{-6}$)
rs12062755	1	182077342	ZNF648	G	А	0.113	0.124	0.139	0.280	0.122	0.227	794	Glucose at 60 mins at V2	0.4	4·4×10 ⁻⁸	AUC glucose at V2 (beta= 0.42 , $p=5.7\times10^{-8}$)

Supplementary Table S3. Genome-wide significant variants ($p < 5 \times 10^{-8}$) associated with multiple drug response endpoints in SUGAR-MGH.


NEA=Non-effect allele; EA=Effect allele; EAF=Effect allele frequency; AFR=African; AMR=Admixed American; EAS=East Asian; EUR=European; SAS=South Asian; V1=Visit 1; V2=Visit 2; AOC=area over the curve; AUC=area under the curve. *Ancestry-specific allele frequencies as reported by gnomAD 3·1·2 [†]Beta estimates are rank-inverse normalized. [‡]Variant present in Table 1. [#]GRCh38 assembly. **Supplementary Table S4.** Association of polygenic scores with the primary endpoints of metformin and glipizide response in SUGAR-MGH

SUGAR-MGH Outcome	Beta	SD	<i>p</i> -value	Polygenic score tested	Reference
Fasting glucose at V2, adj. V1 (metformin)	0.091	0.029	0.0018	gePS for fasting glucose	Chen et al. 2021
Time to reach glucose trough (glipizide)	-0.082	0.038	0.031	obesity cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	0.187	0.094	0.048	gePS for type 2 diabetes	Mahajan et al. 2020; Vujkovic et al. 2020
Fasting glucose at V2, adj. V1 (metformin)	0.1	0.057	0.076	gePS for type 2 diabetes	Mahajan et al. 2020; Vujkovic et al. 2020
Time to reach glucose trough (glipizide)	0.089	0.05	0.078	gePS for fasting glucose	Chen et al. 2021
Fasting glucose at V2, adj. V1 (metformin)	0.048	0.029	0.11	gePS for HbA1c	Chen et al. 2021
Peak insulin, adj. baseline insulin (glipizide)	0.045	0.03	0.14	obesity cluster (pPS)	Udler et al. 2018
Fasting glucose at V2, adj. V1 (metformin)	-0.031	0.023	0.17	beta cell cluster (pPS)	Udler et al. 2018
Time to reach glucose trough (glipizide)	0.07	0.053	0.19	gePS for fasting insulin	Chen et al. 2021
Time to reach glucose trough (glipizide)	0.121	0.098	0.22	gePS for type 2 diabetes	Mahajan et al. 2020; Vujkovic et al. 2020
Peak insulin, adj. baseline insulin (glipizide)	-0.039	0.032	0.22	liver/lipid cluster (pPS)	Udler et al. 2018
Fasting glucose at V2, adj. V1 (metformin)	0.035	0.03	0.25	gePS for fasting insulin	Chen et al. 2021
Time to reach glucose trough (glipizide)	0.058	0.051	0.26	gePS for HbA1c	Chen et al. 2021
Glucose trough adj. baseline glucose (glipizide)	0.034	0.037	0.37	liver/lipid cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	0.033	0.036	0.37	obesity cluster (pPS)	Udler et al. 2018
Peak insulin, adj. baseline insulin (glipizide)	0.036	0.041	0.38	gePS for HbA1c	Chen et al. 2021
Fasting glucose at V2, adj. V1 (metformin)	-0.019	0.023	0.41	liver/lipid cluster (pPS)	Udler et al. 2018
Fasting glucose at V2, adj. V1 (metformin)	0.018	0.023	0.43	obesity cluster (pPS)	Udler et al. 2018
Peak insulin, adj. baseline insulin (glipizide)	0.035	0.043	0.43	gePS for fasting insulin	Chen et al. 2021
Glucose trough adj. baseline glucose (glipizide)	0.028	0.037	0.45	lipodystrophy cluster (pPS)	Udler et al. 2018
Fasting glucose at V2, adj. V1 (metformin)	0.015	0.024	0.53	proinsulin cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	0.029	0.05	0.57	gePS for fasting glucose	Chen et al. 2021
Peak insulin, adj. baseline insulin (glipizide)	0.015	0.032	0.63	lipodystrophy cluster (pPS)	Udler et al. 2018
Peak insulin, adj. baseline insulin (glipizide)	-0.014	0.031	0.65	beta cell cluster (pPS)	Udler et al. 2018
Time to reach glucose trough (glipizide)	0.017	0.039	0.67	lipodystrophy cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	0.019	0.051	0.7	gePS for fasting insulin	Chen et al. 2021
Glucose trough adj. baseline glucose (glipizide)	0.011	0.037	0.77	beta cell cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	-0.011	0.041	0.79	proinsulin cluster (pPS)	Udler et al. 2018
Time to reach glucose trough (glipizide)	0.009	0.039	0.82	liver/lipid cluster (pPS)	Udler et al. 2018
Peak insulin, adj. baseline insulin (glipizide)	-0.008	0.034	0.82	proinsulin cluster (pPS)	Udler et al. 2018
Time to reach glucose trough (glipizide)	-0.009	0.042	0.84	proinsulin cluster (pPS)	Udler et al. 2018
Peak insulin, adj. baseline insulin (glipizide)	0.007	0.041	0.87	gePS for fasting glucose	Chen et al. 2021
Peak insulin, adj. baseline insulin (glipizide)	-0.013	0.079	0.87	gePS for type 2 diabetes	Mahajan et al. 2020; Vujkovic et al. 2020
Fasting glucose at V2, adj. V1 (metformin)	-0.002	0.023	0.93	lipodystrophy cluster (pPS)	Udler et al. 2018
Glucose trough adj. baseline glucose (glipizide)	0.004	0.049	0.93	gePS for HbA1c	Chen et al. 2021
Time to reach glucose trough (glipizide)	-0.001	0.039	0.97	beta cell cluster (pPS)	Udler et al. 2018


gePS=global extended polygenic score; pPS=process-specific polygenic score


Supplementary Figure S1. (A) Regional association plot of rs9954585. (B) Change in plasma glucose by rs9954585 genotype at Visit 1 after glipizide administration. (C) Change in plasma insulin by rs9954585 genotype at Visit 1 after glipizide administration.

Supplementary Figure S2. (A) Regional association plot of rs111770298. (B) Box plot illustrating mean change in fasting glucose (Visit 2 minus Visit 1) by rs111770298 genotype. (C) Change in plasma glucose by rs111770298 genotype across the OGTT following metformin. (D) Change in plasma insulin by rs111770298 genotype across the OGTT following metformin.

Supplementary Figure S3. (A) Regional association plot of rs117207651. (B) Box plot illustrating mean change in fasting glucose (Visit 2 minus Visit 1) by rs117207651 genotype. (C) Change in plasma glucose by rs117207651 genotype across the OGTT following metformin. (D) Change in plasma insulin by rs117207651 genotype across the OGTT following metformin.

Supplementary Figure S4. (A) Regional association plot of rs146209333. (B) Change in plasma glucose by rs146209333 genotype at Visit 1 after glipizide administration. (C) Change in plasma insulin by rs146209333 genotype at Visit 1 after glipizide administration.