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Abstract 8 

The human connectome is the complete structural description of the network of connections and elements 9 

that form the ‘wiring diagram’ of the brain. Due to the current scarcity of information regarding laminar 10 

end points of white matter tracts inside cortical grey matter, tractography remains focused on cortical 11 

partitioning into regions, while ignoring radial partitioning into laminar components. To overcome this 12 

biased representation of the cortex as a single homogenous unit, we use a recent data-derived model of 13 

cortical laminar connectivity, which has been further explored and corroborated in the macaque brain by 14 

comparison to published studies. The model integrates multimodal MRI imaging datasets of both white 15 

matter connectivity and grey matter laminar composition into a laminar-level connectome. In this study 16 

we model the laminar connectome of healthy human brains (N=30) and explore them via a set of 17 

neurobiologically meaningful complex network measures. Our analysis demonstrates a subdivision of 18 

network hubs that appear in the standard connectome into each individual component of the laminar 19 

connectome, giving a fresh look into the role of laminar components in cortical connectivity and offering 20 

new prospects in the fields of both structural and functional connectivity.  21 
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Introduction  26 

The human connectome is the comprehensive structural description of the network of connections and 27 

elements that form the human brain’s ‘wiring diagram’. The importance of exploring the connectome 28 

lies not only in uncovering patterns of structural connectivity across the brain, but also in understanding 29 

the functional states that emerge from it. For these reasons and more, uncovering the complete human 30 

connectome has become a crucial and central mission in neuroscientific research (Sporns et al. 2005).  31 

Since its foundation, the Human Connectome Project has lead the mission to map the connectome using 32 

non-invasive neuroimaging techniques, showcasing great progress particularly in MRI imaging of white 33 

matter connectivity (Van Essen et al. 2013; Setsompop et al. 2013). Concurrently to the progress in white 34 

matter imaging through MRI, promising strides have also been made in imaging of the laminar 35 

composition of cortical grey matter. The progress in imaging the substructure of cortical grey matter 36 

began with establishing that myelination causes shortening of T1 values (Clark et al. 1992). Next, T1 37 

values were linked to myeloarchitecture (Barbier et al. 2002; Duyn et al. 2007; Van Essen et al. 2019), 38 

and the correspondence between T1 clusters and cortical layers was established in rat brains (Barazany 39 

and Assaf 2012). Subsequent studies have shown that low resolution T1 MRI can also be used to provide 40 

information regarding cortical layers in the human brain (Glasser et al. 2014; Shafee et al. 2015; Lifshits 41 

et al. 2018). A complete methodological framework was then established for MRI-based quantification 42 

and visualization of the cortical laminar composition (Shamir et al. 2019). 43 

Despite growing progress in connectomics, starting from the macroscale and progressing gradually into 44 

higher resolutions in meso- and microscales, the field remains inherently limited by the biased 45 

representation of the cortex as a single homogenous unit. Due to the current scarcity of information 46 

regarding laminar end points of white matter tracts inside the cortical grey matter, tractography remains 47 

focused on transverse partitioning of the cortex into regions, while ignoring radial partitioning into 48 

laminar components (Jbabdi and Johansen-Berg 2011).  49 

The integration of macrostructural data regarding white matter connectomics and microstructural data 50 

regarding grey matter laminar composition poses a promising development in the field of connectomics 51 

(Johansen-Berg 2013). A recently published study offers a simplified granularity-based model of cortical 52 

laminar connectivity based on published tract tracing and histological findings, with the purpose of 53 

https://en.wikipedia.org/wiki/Minimally-invasive_procedures#Non-invasive_procedure
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integrating white and grey matter datasets derived from multimodal MRI imaging (Shamir and Assaf, 54 

2021a). The model is then further explored in the macaque brain and corroborated in its visual cortex by 55 

comparison to published studies (Shamir and Assaf 2021b). The resulting micro-level connectome offers 56 

a more detailed and unbiased representation of the connectome and offers new prospects in the field of 57 

both structural and functional connectivity on the laminar level.  58 

In this study we model the laminar connectome of the healthy human brain (N=30 healthy subjects) and 59 

explore it via a set of neurobiologically meaningful complex network measures. We focus on 60 

investigating network hubs in the standard cortical connectome versus those in the cortical laminar 61 

connectome. 62 

Methods and materials 63 

The framework for modelling cortical laminar connectivity (Shamir and Assaf 2021a) was applied on a 64 

set of (N=30) healthy human subjects.  65 

Subjects 66 

Thirty healthy human subjects (N=30), including 14 male and 16 female, 18-78 years old. Subjects were 67 

neurologically and radiologically healthy with no history of neurological diseases. The imaging protocol 68 

was approved by the institutional review boards of Sheba Medical Center and Tel Aviv University, where 69 

the MRI investigations were performed. All subjects signed informed consent before enrollment in the 70 

study. 71 

Each subject was scanned on a 3T Magnetom Siemens Prisma (Siemens, Erlangen, Germany) scanner 72 

with a 64-channel RF coil. The scans include the following sequences: 73 

1. A standard diffusion-weighted imaging (DWI) sequence, with the following parameters: 74 

Δ/δ=60/15.5 ms, b max=5000 (0 250 1000 3000 & 5000) s/mm2, with 87 gradient directions, FoV 75 

204 mm, maxG= 7.2, TR=5200 ms, TE=118 ms, 1.5×1.5×1.5 mm3, 128×128×94 voxels. This 76 

sequence was used for mapping the cortical connectome.   77 

2. An MPRAGE sequence, with the following parameters: TR/TE = 1750/2.6 ms, TI = 900 ms, 1×1×1 78 

mm3, 224×224×160 voxels, each voxel fitted with a single T1 value. This sequence was used for 79 

delineating the cortical surfaces.   80 
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3. An inversion recovery echo planar imaging (IR EPI) sequence, with the following parameters: 81 

TR/TE = 10,000/30 ms and 60 inversion times spread between 50 ms up to 3,000 ms, 3×3×3 mm3, 82 

68×68×42 voxels, each voxel fitted with up to 7 T1 values (Lifshits et al. 2018). This sequence used 83 

for characterizing the cortical layers.   84 

Image processing 85 

The following datasets were analyzed across Brainnetome atlas regions, a connectivity-based 86 

parcellation which consists of 210 cortical regions and 36 subcortical subregions (Fan et al. 2016): 87 

1. Global white matter connectivity analysis 88 

Each DWI dataset was analyzed for global white matter connectivity using global tractography. 89 

Traditional tractography involves streamline estimation by inferring connectivity from local 90 

orientation fields. It has been proven that streamline estimation experiences difficulties in 91 

reconstructing long tracts, due to high false positive rates associated with strong tracts, alongside 92 

difficulties reconstructing complex geometries, due to the partial volume effect associated with 93 

crossing fibers (Maier-Hein et al. 2017).  94 

Global tractography differs from streamline tracking conceptually and methodologically by 95 

finding the full track configuration that best explains the measured DWI data. As a result, this 96 

tractography method is less sensitive to noise, and the density of the resulting tractogram is more 97 

directly related to the data. The analysis was conducted using MRtrix3 software package, which 98 

uses a multi-tissue spherical convolution model that accounts for partial volumes (Tournier et al. 99 

2019), similarly to the analysis by Krupnik et al. (2021).  100 

For a visualization of the resulting connectivity matrix of the 30-subject average, see figure 1a 101 

(below).  102 

2. Cortical laminar composition analysis 103 

Each IR EPI dataset and its corresponding MPRAGE were analyzed for cortical laminar 104 

composition using our original framework, according to the following four principal steps: 105 

a. IR decay function fit: the low resolution fast echo planar imaging inversion recovery (EPI IR) 106 

protocol was utilized for estimation of multiple T1 components per voxel using the following 107 

IR decay function fit (Lifshits et al. 2018): 108 
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M(TIi) = ∑ M0j ∙ (1 − 2e−TIi/T1j)7
𝑗=1                                                                                                              (1) 109 

Where: 110 

M(TIi)- Magnetization at the 𝑖𝑡ℎ inversion recovery image, in other words the magnetization 111 

measured for each specific T1 component 112 

M0j- Predicted magnetization at TI=0ms for each T1 component (j) in the voxel 113 

T1j- Longitudinal relaxation time for each T1 component 114 

j was set up to 7 for the low resolution experiments, indicating fit to seven individual 115 

exponential fits, based on the assumption that there are 7 T1 components in the tissue – 1 for 116 

CSF, 1 for WM and heavily myelinated layer of the cortex and additional 5 cortical layers.  117 

Normalization of each of the predicted magnetization values according to 
M0j

∑ M0j
j
i=1

 then 118 

represents the voxel contribution of each corresponding T1 component (j). 119 

b. T1 probabilistic classification: T1 values were then assigned to different brain tissues and 120 

utilized to extract the subvoxel composition of each T1 layer (Lifshits et al. 2018; Barazany 121 

and Assaf 2012; Peel et al. 2000; Shamir et al. 2019; Lotan et al. 2021). The T1 classification 122 

process involved fitting the T1 histogram to a probabilistic mixture model consisting of t-123 

distributions. The probability of each t-distribution in the voxel was calculated according 124 

Bayes' formula: 125 

𝑃𝑘 = ∑ 𝑓𝑖 ⋅
𝑝(𝑇1(𝑖)|𝑘)𝑝(𝑘)

𝑝(𝑇1(𝑖))
 7

𝑖=1                                                                                                                                                      (2) 126 

Where: 127 

𝑘- A specific t-distribution 128 

𝑇1(𝑖)- T1-value of the 𝑖𝑡ℎ component of the voxel 129 

𝑓𝑖- Partial volume of 𝑇1(𝑖) (normalized as show in previous section) 130 

𝑝(𝑇1)- General whole-brain probability of a 𝑇1-value 131 

𝑝(𝑘)- Probability of t-distribution k 132 

𝑝(𝑇1|𝑘)- Probability of the 𝑇1-value in t-distribution 𝑘 133 

Fit to 18 t-distributions was deemed satisfactory according to evaluation of the Bayesian 134 

information criterion for 1-20 t-distributions. Each resulting group of distributions then 135 

corresponds to various types of brain tissue:  136 

i. White matter (WM) characterized by low T1 values, represented by t-distribution 1-3. 137 
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ii. Gray matter (GM) characterized by mid-range T1 values, represented by t-distributions 4-138 

9, corresponding to 6 T1 layers. Since T1 is considered a measure of myelination (Clark 139 

et al. 1992), T1 layers with higher indices (or smaller T1 values), are more myelinated and 140 

are therefore located deeper in the cortical cross section. t-distributions 4,5,6,7,8, and 9 are 141 

then termed T1 layers 6,5,4,3,2 and 1 (respectively). 142 

iii. Cerebral spinal fluid (CSF) characterized by high T1 values, represented by t-distributions 143 

10-18. 144 

c. Cortical volume sampling: We then implemented a geometric solution to cortical sampling 145 

based on a system of virtual spheres dispersed throughout the entire cortex. A sphere was 146 

chosen as a robust alternative to cortical normals due to its symmetry and invariance to rotation 147 

(Shamir et al. 2019). The sampling process started with delineation of the inner, mid, and outer 148 

cortical surfaces using the FreeSurfer pipeline (Fischl 2012). The virtual spheres were then 149 

generated with centers on the mid surface and edges tangential to both the inner and outer 150 

cortical surfaces. Each hemispheric volume consists of ~75,000 spherical volumes with and 151 

average radius of ~1 mm.  152 

d. Data sampling: To sample the high resolution spheres in the low resolution T1 dataset 153 

( 33 𝑚𝑚3), a super-resolution solution was implemented. The solution involved partitioning 154 

each voxel into  103 subvoxels, each assigned location properties, primarily their location 155 

inside or outside of a given sphere. Spherical volume weights were then assigned to each 156 

sphere, corresponding to each voxel's contribution to its spherical volume, according to the 157 

following:  158 

Wvoxeli ,spherej
=

Nvoxeli,spherej

Nspherej

                                                                                                        (3)                                           159 

Where:  160 

Wvoxeli ,spherej
- Volume weight of voxel i per sphere j 161 

Nvoxeli,spherej
- Number of subvoxels from voxel i located inside sphere j 162 

Nspherej
- Total number of subvoxels located inside sphere j 163 

The cortical composition of each sphere was then estimated by multiplying the volume 164 

weights of each sphere by their corresponding voxel probability maps (see T1 probabilistic 165 
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classification). The process was repeated across all spheres, according to the following 166 

equation: 167 

P(tk/sphere) = ∑ ∑ Wvoxeli,spherej

7
k=2 ∙ P(tk/voxeli)

M
i=1                                                                        (4)  168 

Where: 169 

P(tk/sphere)- Probability of t-distribution k per sphere 170 

k- t-distributions 4,5,..,9, representing T1 layers 6,5,..,1 (respectively) 171 

M- Number of voxels within which sphere j lies 172 

Wvoxeli ,spherej
- Volume weight of voxel i per sphere j 173 

P(tk/voxeli)- Probability of t-distribution k in voxel i 174 

The resulting whole-brain cortical laminar composition is then simplified by grouping the 175 

layers into three laminar components:  176 

i. Supragranular (SG) laminar component, which includes T1 layers 1, 2, and 3. 177 

ii. Granular (G) laminar component, which includes granular T1 layer 4. 178 

iii. Infragranular (IG) component, which includes T1 layers 5 and 6. 179 

For a visualization of the resulting cortical laminar composition of the three laminar components, 180 

averaged across all 30 subjects, see figure 1b (below). 181 

3. Model of cortical laminar connectivity 182 

The multimodal MRI datasets were integrated using the data-derived, granularity-based model of 183 

cortical laminar connectivity (Shamir and Assaf 2021a, b). The model includes a set of whole-184 

brain laminar-level connectivity rules that integrate white matter connectomics on a macroscale 185 

and grey matter composition on a mesoscale, using a set of granularity-based connectivity rules. 186 

To implement the model rules, each region in the Brainnetome atlas was labelled according to its 187 

granularity index (see figure 1c below). The labelling process was conducted manually according 188 

a an adapted von Economo- Koskinas atlas (Solari and Stoner 2011; Beul and Hilgetag 2015), 189 

and similarly to the labelling by Shamir and Assaf (2021a).  190 

Each Brainnetome atlas region then holds three components, corresponding to its white matter 191 

connections, its grey matter laminar composition, and its granularity index. These components are 192 

crucial for the model application, since its rules use weighting of white matter tracts according to 193 
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Fig. 1 Average global white and gray matter datasets and estimated granularity indices across 210 

Brainnetome atlas regions: 211 

a- Average cortical connectivity (of all 30 subjects) across left (LH) and right (RH) hemispheres: 212 

average connectivity matrix, representing (log(number of tracts)) for connections that appear in at 213 

least 75% of subjects (color scheme adapted from Charles 2021) 214 

b- Average cortical laminar composition (of all 30 subjects) across left hemisphere: where: top row- 215 

supragranular layers (SG), middle row- granular layer (G), bottom row- infragranular layers (IG), 216 

and columns represent different viewpoints   217 

c- Granularity indices (left- 1) and Brainnetome atlas regions (right- 2) across left hemisphere, from 218 

several viewpoints: left side (a), right side (B), front (C), occipital (D), top (E), and bottom (F)  219 

Features in b and their respective counterparts in c correspond to unique granular presence (circled 220 

in red): features (i) and (ii): high presence of granular laminar component in V1 (in b), in 221 

correspondence with a high granularity index (in c); feature (iii): low presence of granular laminar 222 

component in M1 (in b), in correspondence with a low granularity index (in c) 223 
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the cortical laminar compositions of the connecting regions based on their respective granularity 224 

indices. The model then addresses two types of cortical connections:   225 

a. Tractography-based (long-range) connections: tractography-based connections represent 226 

most of the connections in the model, including relatively stronger connections between 227 

different cortical regions, as well as connections between the cortex and the subcortex. They 228 

are expanded to the laminar level according to the rule of connectivity that corresponds to the 229 

connecting regions, their granularity indices, and their laminar compositions.  230 

b. Assumed (short-range) connections: assumed connections include vertically-oriented 231 

connections between different laminar components within a single cortical region. They are 232 

modelled as relatively weaker connections in the model according to the laminar composition 233 

of each cortical region.  234 

For a comprehensive description of the model of cortical laminar connectivity and its data-derived origin, 235 

see (Shamir and Assaf 2021a). The resulting laminar connectome includes three times as many nodes as 236 

the standard connectome since each original regional node now consists of three laminar locations in that 237 

same specific region. A full visualization of the 30-subject average of the resulting model of laminar 238 

connectivity can be seen in figure 2 parts a-b (below). The source code of the average standard and 239 

laminar connectomes, as well as the complete code for modelling a laminar-level connectome, are freely 240 

available for noncommercial use (at github.com/ittais/Laminar_Connectivity).  241 

The variability of the resulting connectomes, representing both standard connectivity and laminar 242 

connectivity across subjects (N=30), are then evaluated (see figure 2 parts b-c). Subsequently, both 243 

connectomes are then explored via a set of neurobiologically meaningful complex network measures 244 

(Rubinov and Sporns 2010).   245 

4. Complex network analysis  246 

Once the standard connectome was extracted and the laminar connectome was modelled, we used tools 247 

for network analysis to explore their connectivity patterns and unique network features: 248 

a. Network complexity: both connectomes were initially tested for non-trivial topological features 249 

that occur in complex networks, such as a heavy tail in degree distribution, but do not occur in 250 

simple networks, such as random graphs (see figure 3 below).   251 

https://github.com/ittais/Laminar_Connectivity
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 265 

Fig. 2 30-subject average cortical laminar connectivity (top) and standard deviations for both 266 

connectomes (bottom) across Brainnetome atlas regions: 267 

a- Average supra-adjacency matrix, representing whole-brain laminar-level connections, where the 268 

following abbreviations correspond to laminar components: IG- infragranular, G- granular, SG- 269 

supragranular. Model results are displayed as log(number of tracts) for all connections that appear 270 

in at least 75% of subjects 271 

b- A closer look at the supragranular-supragranular component of the average supra-adjacency matrix 272 

c- Standard deviation of standard cortical connectomes  273 

d- Standard deviation of cortical laminar connectomes (color schemes adapted from Charles 2021) 274 

 275 

b. Network analysis: once the complexity of both networks was shown, we explored and compared 276 

the average standard connectome to the components of the average laminar connectome. Global 277 

connectivity measures, including global efficiency and connectivity density, were chosen for 278 

evaluating the cost-efficiency trade-off. Additionally, local connectivity measures of centrality were 279 

calculated, including node degree and strength. 280 

 281 
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 293 

Fig. 3 Degree distributions: 294 

Distributions of degrees for both the standard cortical connectome (a), as well as the cortical laminar 295 

connectome (b1), of the average connectomes for all connections that appear in at least 75% of subjects. 296 

Each of the two is presented against a random network with an equal number of nodes and edges 297 

(histogram outlines in green). For the laminar connectome, distributions for each laminar connectome 298 

are colored individually (b2): infragranular (IG)- red, granular (G)- green, supragranular (SG)- blue 299 

Notice the positive skew, or “heavy-tail”, in degree distributions in both cases and expressly in the 300 

laminar connectome  301 

For a schematic representation of our methodology for modelling and analyzing the laminar connectome, 302 

see Supplementary Material figure 1. 303 

Results 304 

After calculating average matrices for both standard cortical and cortical laminar connectomes, the 305 

variability of both connectomes was evaluated across all N=30 subjects (see figure 2 parts c-d). The 306 

standard connectome exhibits relatively higher standard deviation values, that correspond to the overall 307 

higher range of connectivity values. The subcorticocortical connections exhibit relatively higher standard 308 

deviation within each matrix, specifically in the granular to granular connections for the laminar 309 
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connectome. This can be attributed to the higher connection values of subcorticocortical connections, 310 

relative to corticocortical connections.  311 

Two measures of global network connectivity were calculated for both the average standard and average 312 

laminar connectomes: 313 

1. Global efficiency- an efficiency measure representing the average inverse shortest path length in 314 

the network. 315 

2. Connection density- a cost measure representing the number of edges in a network as a proportion 316 

of the maximum possible number of edges. 317 

The two measures where then plotted against one another to evaluate the cost-efficiency trade-off 318 

(Bullmore and Sporns 2012) in both connectomes (see figure 4).  319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

Fig. 4 Cost-efficiency trade-offs of both connectomes:  327 

Global efficiency and connection density values, fitted to a linear regression model (top), for all N=30 328 

subjects, including the standard cortical connectomes (a) and the cortical laminar connectomes (b)  329 

Examination of the cost-efficiency trade-off in the cortical laminar connectome shows that both the 330 

connection density as well as the global efficiency are reduced compared to the standard connectome. 331 

Connection density is a value inversely related to the maximum possible number of edges in the standard 332 

connectome: 𝑀𝑎𝑥𝑒𝑑𝑔𝑒𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 =
𝑁2−𝑁

2
, where N is the number of nodes in the standard connectome 333 

network. The number of nodes in the laminar connectome is 3 ∗ 𝑁, since the cortex is divided into three 334 

cortical components. Accordingly, the maximum possible number of edges in the laminar connectome 335 

for big networks (large enough N): 𝑀𝑎𝑥𝑒𝑑𝑔𝑒𝑠 𝑙𝑎𝑚𝑖𝑛𝑎𝑟~9 ∗ 𝑀𝑎𝑥𝑒𝑑𝑔𝑒𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 . Since the density is 336 

inversely related to the maximum possible number of edges, theoretically the ratio should be: 337 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑎𝑚𝑖𝑛𝑎𝑟~
1

9
∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑. In practice, the laminar connectome exhibits higher density than 338 
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expected that instead follows: 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑎𝑚𝑖𝑛𝑎𝑟~
1

3
∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (see density value range in figure 339 

4). Global efficiency is a value inversely related to the mean shortest path (MSP), where: 340 

𝑀𝑆𝑃𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝛼𝑁. Since the laminar connectome has 3 ∗ 𝑁 nodes, the efficiency of the laminar 341 

connectome should follow: 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑙𝑎𝑚𝑖𝑛𝑎𝑟~
1

3
∗ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑. In this case, the laminar 342 

connectome does roughly follow this ratio (see efficiency range in figure 4). Consequently, the efficiency 343 

to density ratio for the laminar connectome is slightly higher than for the standard connectome. 344 

To examine the connectivity patterns of both the standard connectome as well as the cortical laminar 345 

connectome, we conducted an analysis of a two neurobiologically meaningful network measures 346 

(Rubinov and Sporns 2010). The following two measures of centrality were included: 347 

1. Degree- the number of edges connected to a node (see figure 5, below). 348 

2. Strength- sum of all neighboring edge weights (see figure 6, below)  349 

For an exploration of additional measures, including clustering coefficient, local efficiency, and 350 

core/periphery, see Supplementary Material figure 2. 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

Fig. 5 Node degree: 362 

a- Distribution of degree values for the average standard connectome across cortical regions of the 363 

Brainnetome atlas, top view (a1) and lateral view (a2) 364 
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b- Whole-brain distributions of degree values for the average standard connectome (left column) 365 

compared to the average laminar connectome, including: infragranular (IG), granular (G) and 366 

supragranular (SG) components (3 right columns, left to right). Each connectome depicts cortical 367 

connections (top) and subcortical connections (bottom). For each laminar component, cortical 368 

connections include connections between the specified component and all other components (top), 369 

and subcortical connections include connections between the specified component and the 370 

subcortex (bottom) 371 

When examining the degree values across cortical regions of the standard connectome, a well-established 372 

pattern of node centrality appears in the occipital, temporal, and medial parietal cortices (Sporns 2009). 373 

When examining the degrees across both connectomes, subcortical regions (thalamus, caudate, putamen 374 

and hippocampus) alongside a set of cortical regions appear as hubs with high degree values, including: 375 

superior frontal regions (A9m, A10m), superior parietal regions (A7 subregions), superior occipital 376 

regions (msOccG) and the cuneus (rCunG). These hubs exhibit both high degree and high strength in the 377 

standard connectome, as well as cumulatively across components of the laminar connectome. The 378 

infragranular and supragranular components do not include the subcortex but include cortical hubs, while 379 

the granular component includes the subcortex and mainly non-frontal hubs such superior parietal and 380 

superior occipital regions.   381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

Fig. 6 Node strength: 394 
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a- Whole-brain distributions of strength values for the average standard connectome (left column) 395 

compared to the average laminar connectome, including: infragranular (IG), granular (G) and 396 

supragranular (SG) components (3 right columns, left to right). Each connectome depicts cortical 397 

connections (top) and subcortical connections (bottom). For each laminar component, cortical 398 

connections include connections between the specified component and all other components (top), 399 

and subcortical connections include connections between the specified component and the 400 

subcortex (bottom). Feature (i) (circled in red) shows high centrality of subcortical regions for the 401 

granular component of the laminar connectome  402 

b- Distribution of strength values for the granular (G) component of the laminar connectome across 403 

both left (L, top) and right (R, bottom) hemispheres, from lateral view (left) and sagittal view (right). 404 

Features (circled in red) show high strength values in the auditory cortex (ii), as well as the primary 405 

motor (iii) and primary visual (iv) cortices  406 

When examining the strength (weighted degree) values, a similar more generalized pattern appears. In 407 

the standard connectome, the subcortex overpowers the distribution across nodes and exhibits the highest 408 

strength values, followed by occipital and parietal regions. In the laminar connectome, the granular 409 

component exhibits high strength values in the subcortex. A closer examination of the granular 410 

component demonstrates high strength values in the auditory cortex, alongside the primary motor and 411 

primary visual cortices.   412 

Discussion 413 

In this study we model and explore the laminar connectome of N=30 healthy subjects using multimodal 414 

MRI imaging datasets. These datasets include both white matter connectivity and grey matter laminar 415 

composition, which are integrated using our novel model of cortical laminar connectivity (Shamir and 416 

Assaf 2021a, b). The resulting laminar-level connectome is then explored across the Brainnetome atlas 417 

regions (Fan et al. 2016) using a set of neurobiologically meaningful complex network measures 418 

(Rubinov and Sporns 2010), while focusing on comparison of the cortical laminar connectome to 419 

standard cortical connectome. 420 

When we examine both connectomes on a global scale, several similarities and other differences appear. 421 

On the similarity side, both connectomes exhibit a heavy tail in their degree distributions, which is even 422 
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more noticeable in the laminar connectome. A heavy tail in a degree distribution is a non-trivial 423 

topological feature that occurs in complex networks but does not occur in simple or random networks. 424 

This feature is also associated with higher network resilience to nodal removal (regional damage). On 425 

the difference side, the standard connectome exhibits relatively higher standard deviation values across 426 

subjects, relative to the laminar connectome. This higher variability corresponds to the overall higher 427 

range of connectivity values in the standard connectome. Nonetheless, both connectomes exhibit higher 428 

variability in subcorticocortical connections, which can once again be attributed to stronger connections 429 

relative to corticocortical connections. An additional difference between the two connectomes appears 430 

when exploring the cost-efficiency trade-offs, by plotting global efficiency against connection density. 431 

The laminar connectome exhibits higher connection density than expected based on the relative number 432 

of nodes in the network alone. With regards to efficiency, the laminar connectome exhibits a relatively 433 

lower global efficiency, as expected based on number of nodes alone. However, the efficiency to density 434 

ratio is maintained and even slightly elevated for the laminar connectome in comparison to the standard 435 

connectome.  436 

When we examine both connectomes on a local scale using complex network measures, we get a more 437 

nuanced image of connectivity patterns across the brain. Several features appear in the granular 438 

component of the laminar connectome, including high subcortical centrality on a whole-brain level, 439 

alongside high regional centrality in the auditory cortex, M1, and V1 on a cortical level. In addition, the 440 

distributions of degree and strength values in the standard connectome reestablish the notion of a rich-441 

club bihemispheric organization that includes subcortical regions (van den Heuvel and Sporns 2011, 442 

2013). The distribution of these values across components of the laminar connectome exhibits a 443 

cumulative nature, which is strengthened upon further examination of the core/periphery partitioning in 444 

the standard connectome (for an examination of inter-subject consistency, see Supplementary Material 445 

figure 3). The standard connectome displays a core of highly interconnected hubs across the cortex and 446 

subcortex, a subset of these hubs appears in each individual component of the laminar connectome. The 447 

infragranular component displays hubs across non-frontal cortical regions, the granular component 448 

displays hubs that include subcortical regions, and the supragranular component displays hubs that 449 

include frontal cortical regions.     450 
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This study presents an innovative exploration of a network model of the healthy human connectome on 451 

the laminar level. This model embodies a simplified set of laminar-level rules of connections, based on 452 

a systematic review of histological tract tracing studies (Shamir and Assaf 2021a). While this model has 453 

been corroborated ex-vivo in the macaque brain (Felleman and Van Essen 1991; Shamir and Assaf 454 

2021b), corroborating the results in-vivo in the human brain is a more nuanced task. However, our 455 

network analysis showcases several expected features, mainly concerning high centrality of granular 456 

connections to visual, motor, and auditory regions.   457 

The characterization of the healthy human laminar connectome presented here could support the 458 

investigating of pathologies that are assumed to involve abnormalities in layer-dependent cortical 459 

connectivity, such as schizophrenia and autism. Using the network modelling and analysis framework 460 

presented here, the patterns of connectivity behind such conditions could be further explored and 461 

elucidated.  462 
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