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relatively electron dense particle with well-recognizable biomembrane (H), less electron dense particles 

with also less distinct biomembrane (I-K). Note that the partly granular and partly elongated RNP profiles 

are still visible. (L-O) Type 3 CoV particles have the electron density of type 1 or type 2 CoV particles, 

but show more bizarre shapes. (P-S) Type 4 CoV particles were defined as all extracellular particles 

next to infected cells; well preserved dark particle (P), some particles showed prominent “fuzzy” coats 

(Q), less electron dense (R) and deformed (S) particles. (T) Visualization of different particle types in 

QuPath; type 1 (blue), type 2 (red) and type 3 (green). 

See also www.nanotomy.org for internet browser-based open access pan-and-zoom analysis of the full 

resolution datasets and for our Supplementary Video demonstrating how large-scale electron 

microscopy facilitates ultrastructural analysis and visual pattern recognition. 
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Table 1. Recommendations for detection of SARS-CoV-2 proteins by IHC in formalin-fixed paraffin-

embedded (FFPE) human autopsy tissues 

1 
Determination of virus load by RT-qPCR may give an overestimated picture of the tissue burden; SARS-CoV-2 positive 

cells might be comparatively rare. 

2 
IHC is not suited to detect low virus amounts in cells due to unfavourable signal to background ratio in human autopsy 

tissues; positive cells in tissues carry a rather high virus protein load (see Figures 1,3; Supplementary Figures 3,5). 

3 
Always use positive/negative controls (e.g. infected versus un-infected FFPE cells (see Supplementary Methods for 

generation of cell blocks)). If using autopsy tissues control for fixation time and degree of inflammation. 

4 

Some antibodies are not recommended for detection of SARS-CoV-2 in human autopsy tissues. They either produce 

high background in control tissue or do not stain specifically for SARS-CoV-2 proteins (compare Figure 1; Supplementary 

Figures 1,3). 

5 

Home-made or novel antibodies need to be evaluated using FFPE cell blocks of SARS-CoV-2 infected versus un-infected 

cells and appropriate positive and negative control tissues. To improve comparability of different COVID-19 datasets, we 

recommend using one of the established antibodies in addition to the potential new one. 

6 

Consult an experienced pathologist to avoid misinterpretation of typical tissue artefacts (e.g. lipofuscin in neurons; carbon 

deposition in lung; formalin-induced artefacts). Use polarized light to identify formalin-induced artefacts in FFPE tissues 

(e.g. punctate or dark precipitates). 

7 

Nucleocapsid has a higher abundance in virus-protein positive cells, thus, usage of anti-nucleocapsid antibodies is 

recommended to increase the sensitivity of detection (see Figure 2; Supplementary Figure 4). Anti-spike antibodies are 

not recommended for detection, but are suitable as additional tools to confirm specificity in double stainings. 

8 

COVID-19 tissues often present with high inflammatory changes which are prone to produce higher background staining. 

Keep in mind that more (nonspecific) signal in tissues could be infection specific, but might not be a SARS-CoV-2 virus 

protein staining. It is highly recommended to employ a secondary antibody only control or isotype control in IHC.  

9 
We recommend to evaluate staining results on a microscope (possibility to focus in z-plane) and not on a scanned image 

to avoid misinterpretation of nonspecific staining artefacts on the tissue surface. 

10 
Some autopsy tissues provide exceptional high background staining such as kidney or placenta and should only be 

validated together with RT-qPCR results and comparable positive and negative tissues. 

11 Nucleocapsid staining is planar and intracellular, but does not produce single punctuate dots. 

12 
Fluorescence microscopy is more prone to background signal than chromogenic IHC due to autofluorescence in human 

autopsy tissues. Check tissues in several channels to exclude autofluorescent “dots”. 

 

Table 2. Recommendations for detection of intact SARS-CoV-2 particles using electron microscopy in 

human autopsy tissues 

Criteria for ultrastructural identification 

General 

considerations 

 

It is sufficient if all of these criteria are met by a group of closely associated and similar particles within 

one individual cell, but individual particles of different cells should not be combined. Identification of cell 

types in autopsy tissues is challenging and often not possible, complicated also by pathological and virus-

induced alterations that may mimick e.g. lamellar bodies of type 2 pneumocytes.  

1 Shape Round to oval. 

2 Size 50-180 nm (mean = 87 ± 13 nm; without spikes), with smaller particles in re-embedded FFPE material 

(mean = 73 ± 7 nm, 58-108 nm). In the range also described for cell culture 16,68 and autopsy lung 20. 

3 Membrane At least partially visible around the particle. 

4 Surface 

projections 

Thin stalk and a globular component (in total about 20 nm long 16), at least the globular component needs 

to be discernible with some distance from the biomembrane. The electron density is considerably lower 

than surface structures of e.g. coated vesicles and the particle surface usually is not entirely covered 16. 

Note that the visibility of surface projections may be heterogeneous within the sample and also depends 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.13.22269205doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.13.22269205


23 
 

on additives applied during tissue embedding such as en bloc treatment with tannic acid and uranyl 

acetate 16,32. 

5 Interior 

structure 

Inhomogeneous granular (never empty or homogeneous at low electron density), ribonucleoprotein 

(RNP) profiles are round/aggregated or oval/longitudinal structures. Based on our findings, the RNP 

profile diameter is generally between 3.6-13 nm (mean = 7.2 nm ± 1.6 nm), as published 20,23. 

6 Number Particles must be present at higher number and should often occur in groups within cells 8,21,35. 

7 Location Extracellular: individual particles or small groups, sometimes attaching to outer surface of membranes. 

Intracellular: within small compartments with e.g. 1 particle up to very large compartments with dozens 

of particles, sometimes attaching to the inner surface of the membranes, but compartments with more 

than 1 particle should be identifiable as different structures such as swollen mitochondria may produce a 

“one-particle within a membrane compartment” appearance. 

Recommendations for sampling and analysis 

General 

considerations 

Prioritize analysis of few, carefully selected samples with a high viral load. Controls are not required for 

virus identification, because EM allows a direct (label-free) proof of the respective particles.   

1 Sampling Analyse multiple blocks of the most strongly RT-qPCR-positive samples (see 3), facultatively at different 

levels to locate infection foci, even in apparently suboptimal samples, such as samples with a relatively 

long post mortem interval, or samples that have been frozen or paraffin embedded. Identify virus particles 

in the best specimen to get an internal “positive control”.  

2 Correlation: 

IHC/ISH 

Identify infection foci by using IHC or ISH and process corresponding FFPE regions via a punch biopsy 

or paraffin sections for EM as previously described 8,21,36. Serial paraffin sections may be processed to 

stain virus antigens and cell type markers and detect intact virus particles of the same cell. 

3 Correlation: 

RT-qPCR 

Try to roughly estimate the likelihood of finding virus particles based on RT-qPCR data as shown in our 

work with 0.006 or 500 expected particles per mm2 section area for low or high viral load, respectively. 

4 Structural 

preservation/ 

image 

quality  

Adjustment of fixation, embedding, sectioning and staining may be required for sufficient preservation of 

virus 11,53. Use adequate magnification to clearly resolve all relevant details of possible virus particles 

(0.2-1 nm pixel size) and adjust the respective EM settings correctly 53. 

5 Labelling 

techniques 

Pre-embedding or post-embedding techniques should be used and interpreted with caution, as structural 

preservation usually is negatively affected. Morphological features of virus particles should still be 

identifiable and adequate controls should be used. Additional conventional EM for virus detection should 

be used.  

6 Screening Screen individual sections systematically at a medium resolution at which groups of viruses are easily 

detected (as can be tested by our large-scale datasets), and in some regions also at higher resolution to 

avoid missing of single virus particles present in the cells.  

7 Pattern 

recognition 

Learn the visual pattern of virus particles in tissue samples by using correctly identified virus particles 

(see large-scale repository datasets on www.nanotomy.org).  

8 Figures Ensure adequate image size, resolution, color profile, brightness and contrast when publishing figures. 
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