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Accurate brain meningioma detection, segmentation and volumetric assessment are 

critical for serial patient follow-up, surgical planning and monitoring response to 

treatment. Current gold standard of manual labeling is a time-consuming process, 

subject to inter-user variability. Fully-automated algorithms for meningioma detection 

and segmentation have the potential to bring volumetric analysis into clinical and 

research workflows by increasing accuracy and efficiency, reducing inter-user 

variability and saving time. Previous research has focused solely on segmentation tasks 

without assessment of impact and usability of deep learning solutions in clinical 

practice. Herein, we demonstrate a three-dimensional convolutional neural network 

(3D-CNN) that performs expert-level, automated meningioma segmentation and volume 

estimation on MRI scans. A 3D-CNN was initially trained by segmenting entire brain 

volumes using a dataset of 10,099 healthy brain MRIs. Using transfer learning, the 

network was then specifically trained on meningioma segmentation using 806 expert-

labeled MRIs. The final model achieved a median performance of 88.2% reaching the 

spectrum of current inter-expert variability (82.6% - 91.6%) and compared to current 

workflows, reduced processing time by 99%. We demonstrate in a simulated clinical 

setting that a deep learning approach to meningioma segmentation is feasible, highly 

accurate and has the potential to improve current clinical practice. 
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Introduction 

Meningiomas are the most common primary intracranial neoplasms accounting for 37% of all 

primary brain tumors.1 They arise from the meninges and are benign in the vast majority of 

cases.2 Magnetic resonance imaging (MRI), and T1-weighted gadolinium contrast-enhanced 

sequences in particular, are the cornerstone of the diagnostic evaluation of meningiomas. A 

large number of scans are produced and examined throughout the life of any given patient for 

the purposes of initial diagnosis, clinical surveillance, surgical planning and post-operative 

assessment of residual tumor.3-5 Currently, assessment of meningioma imaging relies on 

manual techniques for tumor size and growth estimation, most commonly using 

unidimensional measurements in two or three orthogonal planes,6 which are often 

disregarded in favor of visual estimation of the tumor’s dimensions. Such approaches 

commonly lead to misjudgment of tumor growth and true dimensions and in some cases, due 

to their small dimensions, tumors are even completely missed. Manual volumetric 

segmentation is possible, typically with the help of third-party software, but is subject to 

considerable inter-rater variability7 and represents a time-consuming task that is often 

incompatible with the busy workflows of clinicians. 

 

Advances in computing power and a gradual refinement of algorithm architectures have 

resulted in increased use of machine learning (ML) and deep learning (DL) techniques in 

healthcare.8 A specific class of DL architectures known as deep convolutional neural 

networks (CNN), in particular, has revolutionized imaging analysis.9 The impressive success 

of these networks in disparate tasks, such as diabetic retinopathy or skin cancer 

classification,10,11 has sparked an intense interest in employing them for other medical 

applications.12 Although there has been a considerable body of research focusing on the 

implementation of CNN segmentation algorithms for a number of brain pathologies, most 
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notably glioblastoma,13,14 there is still a dearth of evidence in current literature on the 

application of end-to-end DL solutions for meningioma segmentation and management. 

Moreover, most brain tumor segmentation algorithms have focused on the algorithm’s 

labeling performance alone, and have not assessed the applicability and impact of such 

systems in real clinical scenarios.15,16 It is important to note that the readiness of a tumor 

segmentation algorithm for clinical use is not defined by 100% accuracy (which, though 

ideal, is extremely difficult to achieve), but rather by demonstrating performance at the same 

or higher level as the human experts who currently perform the task, taking into account the 

naturally occurring inter-expert variability. We therefore designed a study with the goal of 

developing a 3D-CNN algorithm able to automatically segment meningiomas from MRI 

scans at clinical expert level, and specifically offer objective measures of impact in a real-

world clinical setting, focusing on the accuracy of tumor segmentation, volume estimation 

and time saving compared to current gold standards. 

 

Results 

Dataset creation and algorithm design 

Our dataset consisted of 10,099 T1-weighted healthy brain MRIs, assembled from public and 

private sources, and 806 contrast-enhanced T1-weighted meningioma MRIs, representing 936 

unique tumors, from the radiological repositories of two major academic hospitals under 

institutional review board approval. Details on data extraction, preprocessing and tumor 

labeling are found in the Methods section. In brief, tumor-containing MRIs were screened 

based on radiological or histological evidence of meningioma; high resolution brain scans 

were independently segmented by two experts (AB, VK) and reviewed by a third (AS). Sixty 

MRIs containing a total of 67 tumors were randomly held out as a test set; the rest of the 

database was used for training. A three-dimensional U-Net was used as the underlying 
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architecture for our segmentation algorithm17 (Supplementary Fig. 1). The 10,099 normal 

brain MRIs served to train and validate the 3D-CNN for the task of brain extraction. The 

model was then fine-tuned via transfer learning to label brain meningiomas using 746 

meningioma scans. The algorithm tumor-labeling performance was assessed with standard 

metrics of tumor segmentation performance (i.e., Dice score, Hausdorff distance). Three      

experts (VK, TN, PJ) independently segmented the tumors of the test set      to provide a 

measure of inter-expert variability, while two experts (AB, AS) provided the time needed to 

perform manual segmentations.      

Algorithm performance 

The tumors in the test set had a mean volume of 13.11 cc (range 0.37 - 85.0 cc) and all 

intracranial locations commonly      harboring meningiomas were adequately represented: 

cranial vault (56.7%), skull base (25.3%), falx (13.4%), posterior fossa 

(4.5%)(Supplementary Fig. 2 and Supplementary Fig. 3). Five MRIs contained two tumors 

and one MRI contained three. The final model achieved a mean tumor segmentation Dice 

score      of 85.2     % (mean Hausdorff = 8.8 mm; mean average Hausdorff distance = 0.4      

) and a median of 88.2% (median Hausdorff = 5.0 mm; median average Hausdorff distance = 

0.2 mm     ) on the entire test set, comparable to the inter-expert variability in segmenting the 

same tumors with means ranging from 80.0     % to 90.3     % (Hausdorff distance means 

range = 5.5 to 14.6 mm; Average Hausdorff distance means range = 0.1 to 2.1 mm     ) and 

medians between 82.6% to 91.5     % (Hausdorff distance median range = 4.1 to 9.2 mm; 

Average Hausdorff distance median range = 0.1 to 0.2     ) (Table 1 and Supplementary 

Tables 1 and 2). With regards to detection ability     , the model missed two small tumors 

(volume < 1cc) whereas two out of three independent experts missed four each (sensitivities: 

model: 97%, VK:100%, TN:94%, PJ%94%). On the other hand, the algorithm segmented 
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additional 18 small vascular structures due to the similarity in contrast uptake and rounded 

shape whereas no expert segmented any normal anatomical structures. 

We identified the patients who would be most likely to benefit from the use of a 

segmentation algorithm, i.e. those with the need of close radiological monitoring or higher 

chance of undergoing surgical resection, as those with tumors larger than 2cc; this cutoff is 

significantly stricter compared to the size of a clinically relevant meningioma based on the 

literature (~4 cc).18-20 In this group of 41      patients, model and experts obtained equivalent 

performance, with the model demonstrating a mean tumor segmentation Dice score      of 

87.4     % (median 89.5) (mean and median Hausdorff distance = 9.9, 5.9 mm; mean and 

median average Hausdorff distance = 0.3, 0.1)and an inter-expert variability ranging between 

84.1 and 91.2% (median range: 86.9 - 92.5) (Table 1, Fig. 1).  Dice provides a measure of 

volumetric similarity.41 Hausdorff distance measures boundary similarity and is the greatest 

distance from the boundary of one object to the boundary of another object.42 Average 

Hausdorff distance is similar to Hausdorff distance but is less susceptible to outliers.43 There 

was a significantly positive correlation between tumor Dice scores and tumor volume with a 

steep performance increase in the 0-2 cc volume range (r=0.61, p<0.001, Fig. 2a). 

Measures of clinical impact 

     We designed a simulated clinical scenario to compare volume estimation accuracy and 

segmentation time based on current practice versus the use of our automated algorithm. In 

brief, two certified experts, one neuro-radiologist (AS) and one neurosurgeon (AB), were 

asked to manually segment each tumor in the test set while timing themselves, and tumor 

volumes were calculated with 2D/3D estimation techniques currently used in clinical practice 

(setting and details reported in the Methods section). Notably, the incorporation of our 

algorithm reduced segmentation time by 99% (two seconds per segmentation on average, 

p<0.001, Table 2), and produced tumor volume calculations with an almost perfect 
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correlation with the expert manual segmentations (r=0.98, p<0.001, Fig. 2b, Supplementary 

Tables 3 and 4), significantly more accurate compared to the gold standard 2D and 3D 

volume estimation techniques (r=0.88 p<0.001 and r=0.96, p<0.001, respectively, Fig. 2c, 2d, 

Supplementary Tables 3 and 4). Currently used 2D/3D estimation techniques were found to 

overestimate tumor volume by a minimum of 1.5 to a maximum of 7 times compared to the 

algorithm-based calculation (Supplementary Tables 4 and 5).  

 

Discussion 

Here, we demonstrate the development of an end-to-end DL solution for automated brain 

meningioma segmentation. The system was trained on the most heterogeneous MRI dataset 

of expert-labeled meningiomas available in the literature and found to have excellent 

detection and segmentation performance compared to human experts. The 3D-CNN 

algorithm performed at the same level of human experts while outperforming comparable 

automated or semiautomated segmentation algorithms.21-23 Specifically, the model has well 

surpassed current gold standards in tumor volume estimation while bringing the time needed 

for tumor segmentation virtually to zero. The Dice scores suggest that there is a high degree 

of overlap between the reference and the model output, and the relatively low Hausdorff 

scores indicate that the surfaces of the model outputs are similar to the surfaces of the 

reference labels. With regards to detection, while model’s ability to correctly detect tumors 

was comparable to human experts, the challenge remains to distinguish between tumoral and 

vascular structures due to the similarity in contrast uptake and rounded shape.       

 

Although others have described segmentation algorithms with good performance, these have 

been based on smaller datasets, which either only include patients with larger tumors 

(average volume 30 cc) and/or those undergoing surgical resection,22,23 thereby excluding 
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almost 50% of patients affected by meningiomas who normally undergo conservative MRI 

surveillance.24 Such inclusion criteria, alongside complex pre-processing pipelines, limit the 

implementation of these algorithms in a real-world clinical population. In order to optimize 

the applicability and generalizability of our system, we (1) limited the artificial curation of 

the dataset by keeping image pre-processing to a minimum, simply ensuring standardization 

between MRI scans produced by different machines (more details in the Methods section), 

(2) included MRIs with no restrictions on tumor number, size, and location and (3) included 

patients who underwent both conservative management or surgical treatment. These features 

make our dataset more representative of the variability inherent in the meningioma patient 

population. In addition, we report a 3D U-Net pre-trained on 10,000 non-clinical T1-

weighted MRI scans. The scale of the pre-training data makes our 3D U-Net a viable 

candidate for fine-tuning, and to the knowledge of the authors, this is the largest-scale 3D U-

Net that is publicly available for brain extraction and fine-tuning. This greatly reduces the 

barriers to deep learning for brain imaging groups, which often operate in low-data regimes.  

      

Some important limitations of this study should be highlighted: the inclusion of single, pre-

operative scans alone didn’t allow the evaluation of post-operative residuals,  tumor 

recurrence or tumor growth; with regards to tumor detection ability, while absolute numbers 

and sensitivity were reported, it was not possible to determine specificity at the tumoral level 

due to the difficulty to define the entirety of true negatives (normal anatomical structures); 

the real advantage in terms of work schedule streamlining would necessitate the inclusion of 

the algorithm in the software pipeline of the hospital informatic system which was not 

possible at the stage of the current study; while designed as a clinical simulation, the present 

study is retrospective in nature and will necessitate of prospective validation before 

considering real-world clinical applicability. 
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Despite a growing interest in the application of DL segmentation algorithms to medical 

imaging, few studies have evaluated the feasibility of applying these tools in daily clinical 

scenarios.25,26 Our goal was to bridge the gap between quantitative research and clinical 

practice. Thus, we chose to evaluate our system not purely based on its performance in the 

segmentation task but also with real-world metrics. With a tumor detection and segmentation 

performance comparable to that obtained by clinical experts, a superior volumetric 

calculation accuracy compared to current 2D/3D estimations and a rapid, completely 

automated process, our algorithm has the potential to improve brain meningioma workflow 

management (Supplementary Fig. 4).     . It could allow for more accurate tumor information 

acquisition and growth monitoring which would in turn improve clinical decision-making as 

well as monitoring of treatment response.  

 

As with all DL algorithms, performance and generalizability improve with enrichment of the 

dataset. In the context of this work, this will be accomplished through validation on data from 

other institutions to help control for any institutional biases in terms of MR acquisition and 

patient population. An additional step towards full implementation of our tool into clinical 

work-flow would entail the evaluation of the algorithm performance in segmenting residual 

or recurrent meningioma in the setting of early and late post-operative changes. Both these 

steps to optimize the algorithm are currently underway.  

 

In addition to the      relevance of a fully automated DL segmentation tool     , such models 

are important upstream components in more complicated ML pipelines that have the potential 

to assist in predicting parameters such as tumor consistency, histological grade, growth 

trajectory and probability of recurrence even before a therapeutic plan is made and discussed 
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with the patient.27-29 Such systems could enhance clinical decision-making strategies, patient 

counseling and follow-up in unprecedented ways. To ensure that the development of DL 

algorithms for medical imaging analysis is more translational in nature, the impact of these 

systems needs to be validated on simulations of actual clinical tasks in the setting of a well-

designed clinical trial. This will allow the selection and eventual implementation of the best 

performing algorithms which, with the necessary consideration of patient privacy and safety 

and the clearance provided by the dedicated certification and standardization pathways,30,31 

will be able to effectively advance medical care and improve patient outcomes.32,33 Most 

important, the medical community will have to be an active participant in this process, 

working alongside computer scientists in order to steer the development towards the most 

relevant clinical questions, guarantee the rigorous validation of these algorithms and their 

seamless integration in clinical practice. 

 

Methods 

Image acquisition and preprocessing 

Healthy brain dataset: A dataset of 10,099 high-resolution, T1-weighted MRI scans of 

normal human brains was assembled from public and private sources.34,35 This dataset 

contained images from a heterogenous human population and of varying acquisition quality. 

All scans were conformed to have 256 slices in each dimension and 1mm3 isotropic voxels 

using the image processing software FreeSurfer.36 FreeSurfer’s recon-all tool was used to 

generate parcellations and segmentations for brain structures in each scan. The dataset was 

separated into a training/validation set. 

 

Meningioma dataset: We screened all adult patients diagnosed with intracranial meningioma 

in two major US academic hospitals during the time period 2004-2018 for inclusion in our 
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study. Patients with no evidence of meningioma on MRI, unavailable pre-surgical MRI scans, 

radiation-induced meningioma, unavailable contrast-enhanced images, or no high-resolution 

sequences were excluded, resulting in a final cohort of pre-surgery 806 exams, containing a 

total of 936 tumors. The exams were downloaded in DICOM format and stored in an 

institutionally protected, HIPAA compliant shared drive. Per protocol, high resolution (at 

least 100 slices on axial plane), T1 contrast-enhanced sequences were identified from our 

final cohort and converted to NIfTI format in order to ensure patient de-identification.  

The meningioma dataset was divided into a training/validation set (746 scans) and a test 

dataset of 60 exams containing a total of 67 tumors. The test set was constructed in order to 

ensure adequate representation of all the most relevant tumor locations, sizes and shapes.  

All relevant ethical regulations were followed as part of the conduct of this study. We 

operated under institutional review board approval by the Partners Human Research 

Committee who granted permission for this research project (protocol number 

2015P002352). 

  

Ground truth tumor labeling 

We used the open-source image-processing software 3D Slicer to produce expert-level 

meningioma segmentations. 3D Slicer provides both manual and semi-automated labeling 

tools that the experts could choose from to perform the task. All tumors were segmented by 

two experts (AB is a fully trained neurosurgeon with 5 years’ experience in brain tumor 

segmentation; VK is a neurosurgery resident with extensive computational background and 2 

years’ experience in brain tumor segmentation) separately and inter-rater variability was 

calculated. The labels were reviewed by a third expert (AS is a fully trained neuro-radiologist 

with 5 years of clinical experience in evaluation of location, extension and features of brain 

tumor lesions) in order to produce the final dataset. The single final ‘ground truth’ was 
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determined after evaluating both segmentations sets. In case of tumors of particular 

complexity, all three experts independently segmented the lesion and jointly discussed the 

result in order to come up with a shared agreement on the ground truth. The segmentations 

were stored in an institutional shared drive and named using progressive numeration; the link 

between each exam and the corresponding patient was securely stored in a separate file. 

Location, size and number of tumors per scan were stored in a dedicated spreadsheet for 

subsequent analysis. 

 

CNN model design and evaluation 

Brain extraction network: A standard three-dimensional U-Net was used as the underlying 

architecture for our segmentation algorithm.20 Olaf Ronneberger et al. originally designed the 

UNet architecture for a bio-medical image segmentation problem. It has been observed to be 

more successful than other conventional CNN models, in terms of architecture and in terms 

pixel/voxel-based segmentations from convolutional neural network layers.37 

The U-Net architecture is primarily composed of an encoder and a decoder. The encoder can 

be seen as a contraction path - a stack of convolutional and max pooling layers which 

captures and encodes the contextual information present in the input. The decoder is an 

expansion path that is used to decode the accurate localization using the learned feature 

mapping from the input and up-convolutional layers (Supplementary Fig. 1). 

The model was initially trained with random weight initialization for a brain-extraction task 

on the dataset of 10,000 T1-weighted MRIs of healthy brains. To improve generalizability 

and robustness of the network, each pair of MRI and labels had a fifty-percent chance of 

being augmented using random rotation and translation (the transformation for pairs of 

features and labels was the same). The augmented MRIs were interpolated tri-linearly, and 

the augmented reference labels were interpolated using nearest neighbor. The voxels of each 
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MRI scan were standard scored. Due to the GPU computational limitations, the MRI scans 

and labels were separated into eight non-overlapping cubes of equal size per volume. Model 

training was done on these cubes in batches of six. The model was trained using the Adam 

optimizer38 with an initial learning rate of 0.00001 and Jaccard loss for five epochs across 

three NVIDIA GTX 1080Ti graphical processing units (GPUs). Each batch was distributed 

evenly to each GPU. The model was implemented using the Nobrainer framework, which 

wraps the Keras API of TensorFlow.39 The random augmentation and interpolations were 

implemented in the Nobrainer framework using TensorFlow. Dice similarity scores, 

Hausdorff distance and average distance were calculated and used to evaluate the algorithm’s 

performance in brain extraction. Dice was calculated using NumPy, and Hausdorff was 

calculated using SciPy. Average Hausdorff distances were calculated using the 

EvaluateSegmentation tool described by Taha and Hanbury.40 The model is publicly 

available in the Keras format at https://github.com/neuronets/nobrainer-

models/releases/tag/0.1. 

 

Meningioma extraction network: The refined brain-extraction network was re-trained for the 

specific task of meningioma segmentation. The meningioma training/validation dataset 

underwent the same preprocessing pipeline as the normal brain scans, with the only 

difference that the tumor-containing scans were not randomly augmented. The MRI scans 

and labels were separated into eight non-overlapping cubes of equal size per volume. The 

cubes of the MRI scans that did not contain any meningioma voxels were excluded from the 

training set. To prevent large deviations from the pre-trained weights, L2 regularization with 

coefficient 0.001 was applied to the weights of each layer and a low initial learning rate of 

0.00001 was used. The model was trained using the Adam optimizer38 and the Jaccard loss 

for 194 epochs with a batch size of two cubes using a single NVIDIA GTX 1080Ti GPU. 
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Validation on whole MRIs was performed by standard-scoring the MRI voxel values, 

separating the MRI into eight non-overlapping cubes of equal size, running a forward pass of 

the model on each cube, and combining the eight cubes of predictions into a complete 

volume. The algorithm’s segmentation performance was assessed by computing the Dice 

coefficient between the tumor model prediction and the expert label for each MRI in the test 

set.  

An experimental attempt was also done to train a model using the meningioma dataset alone 

from random weight initialization with no implementation of transfer learning. The attempt 

was abandoned at its early stage due to its clear inferiority in the segmentation performance 

compared to the algorithm adopting transfer learning described in this work. 

 

Expert segmentation variability range 

Three different experts (     VK, TN is a fully trained neurosurgeon and fellow in advanced 

brain imaging, PJ is a research fellow in advanced brain imaging with computational 

background and 2 years of experience in brain tumor segmentation and brain tractography) 

were given the task to independently segment the tumors of the test set      in order to obtain a 

segmentation variability range. Mean and median tumor segmentation results were calculated 

for each expert and used to create a range of expert segmentation variability compatible with 

a real-world clinical scenario. The model performance was compared to the obtained range of 

values. 

 

Clinical simulation 

To obtain the most clinically meaningful metrics as to whether our deep learning 

segmentation algorithm can effectively impact the current clinical practice by improving 

physicians’ accuracy in calculating meningioma volume and reducing the time needed to 
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produce high-quality, readily usable tumor segmentations, we      simulated a clinical 

scenario. In the trial we put the algorithm against currently accepted methods of tumor 

volume assessment and measured the difference in time between clinical experts and our 

algorithm to produce volumetric tumor segmentations (described below). 

 

Tumor volume estimation: We compared our algorithm’s volume estimation accuracy to the 

two most widely employed tumor volume estimation techniques, based on 2-dimensional 

(2D) and 3-dimensional (3D) tumor volume calculation. The 2D technique is based on the 

selection of the MRI axial slice containing the largest tumor cross-section, followed by 

measurement of the tumor’s two largest diameters, called tumor length and tumor width, 

respectively. The volume is then calculated as follows: 

 

V = L * W * W / 2 

 

where V is the estimated tumor volume, L is the tumor length and W is the tumor width.  

In the 3D-based technique, three slices containing the largest tumor cross-section in the three 

traditional MRI visualization planes (sagittal, axial, coronal) are chosen and the largest 

diameter on each plane is measured, called length, width and height of the tumor, 

respectively. The volume is then calculated as follows:  

 

V = pi / 6 * L * W * H 

 

Where V is the tumor volume, L is the largest sagittal diameter, W is the largest axial 

diameter, and H is the largest coronal diameter. These two techniques were applied to each 

MRI scan of the test set through a dedicated software tool for the detection of the longest 
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diameter in each of the orthogonal planes.      The tumor volumes from the algorithm’s output 

labels on the same test set were calculated as well. The volumes resulting from these three 

methods were compared to those obtained from the ground truth labels and the correlation 

between each pair of volumes was calculated using the r statistic (2D to ground truth, 3D to 

ground truth, algorithm-volume to ground truth).  

 

Segmentation time analysis: Two certified experts (AB and AS)      who regularly work with 

brain MRIs containing meningiomas for diagnostic, surgical planning and patient follow-up 

purposes were given the task of timing themselves in producing an accurate, readily usable 

meningioma label starting from an unedited MRI scan for each exam included in the test set. 

They were instructed to open the exam and work on the segmentation of the lesion as they 

would normally do, with the software tools they were most comfortable with (brush, region-

growing tool, pencil and eraser). Once they finished with an exam, they would save the file, 

close it, and proceed to the next one. Each event was timed from the moment the exam was 

opened and ready in the viewing software (i.e., 3D Slicer) until the segmentation was 

considered complete by the expert. Concurrently, our algorithm was used to produce the 

tumor labels of the same MRI scans and the related run time was stored. The average time 

difference was calculated between each expert and the algorithm. Given the non-normal 

distribution of the three sets of measurements, the Wilcoxon signed-rank test was applied to 

assess statistical significance.  
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Supplementary Fig. 1. Deep Neural Network Architecture. The architecture of our deep 

neural network consisted of a 3D-UNet structured with an encoder and a decoder arm. The 

network accepts 3D MRI data as input and outputs a 3D segmentation map. 

 

Supplementary Fig. 2. Tumor location distribution. Bar plot showing tumor location 

distribution (% of the total) in the whole meningioma dataset and test set. All the main 

anatomical locations are adequately represented both in the general dataset and in the test set. 

 

Supplementary Fig. 3. Left. Histogram showing the volume distribution of meningiomas in 

the training set. Right. Histogram showing the volume distribution of meningiomas in the test 

set. 

 

Fig. 1. Example of meningioma segmentation algorithm output. Sagittal and coronal 

views (a and b) of a brain MRI scan containing two distinct meningiomas, one located in the 

convexity at the midline, the other located on the anterior skull base. Display of expert label 

vs computer-generated segmentation respectively of the meningioma of the convexity (c and 

e) and the meningioma of the skull base (d and f). Display of the mismatch between the 

expert label and the computer-generated segmentation on the meningioma of the convexity 

(g) and the meningioma of the skull base (h). 

 

Fig. 2. Algorithm’s tumor segmentation and volume estimation accuracy. (a) Scatter plot 

showing the algorithm’s segmentation performance expressed as Dice scores on the test set as 

a function of the tumor volume. The Dice score correlated with the size of the tumor, quickly 

reaching a mean of 0.87 and median of 0.89 for tumors > 2cc. (b, c, d) Volume estimations 

by the algorithm, and the 2-D and 3-D traditional estimation techniques, respectively. The 
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algorithm’s predicted volumes constitute almost perfect approximations of the real tumor 

volumes with a correlation of 0.98, p<0.001 (b), whereas the 2D and 3D techniques present 

lower values of respectively 0.88 (c) and 0.96 (d) p<0.001, with evidence of overestimation. 

 

Supplementary Fig. 4. Current clinical workflow and clinical workflow implementing 

automatic tumor segmentation. Red light: Volumetric tumor mask is not available; Green 

light: Volumetric tumor mask is available. Above: Volumetric tumor segmentation is 

currently implemented manually and only for surgical planning purpose, while tumor shape 

and volume information are not routinely available. Below: The implementation of an 

automated, expert-level tumor segmentation algorithm provides a tumor mask with accurate 

shape and volume information at each point of patient care, from the day of the first MRI 

scan in the radiology suite to the operating room, to each radiologic and clinical follow-up 

patient encounter. 
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Table 1. Algorithm performance and inter-expert variability. Comparison of tumor 

segmentation performance (Dice scores) between algorithm output, ground truth and clinical 

experts (Expert_1(VK), Expert_2(TN), Expert_3(PJ)), expressed as mean and median for all 

tumors and tumors of volume >2cc. 

  > 2cc tumors All tumors 
Pairs for 
comparison 

Mean Dice 
score (%) 

Median Dice 
Score (%) 

Mean Dice 
score (%) 

Median Dice 
Score (%) 

          
Performance         
Model/Ground 87.7 89.6 84 88.2 
Model/Expert_1 86.9 88.7 82.7 86.4 
Model/Expert_2 87 90.2 83.6 88 

Model/Expert_3 85.2 89.3 80 85.1 

          
Inter-Expert 
Variability 

        

Ground/Expert_1 87.6 89.1 85.7 86.8 
Ground/Expert_2 91.2 92.5 89.9 91.6 

Ground/Expert_3 89.5 90.5 86 89.5 

Expert_1/Expert_2 86.9 88.9 84.6 86 
Expert_1/Expert_3 84.1 86.9 79.5 82.6 
Expert_2/Expert_3 90.1 92.7 87 89.7 
Ground: Ground truth 
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Table 2. Manual versus automated tumor segmentation times. Comparison between the 

average time needed by experts (Manual 1 and Manual 2) and our algorithm (Automated) 

to produce high-quality tumor segmentations. The algorithm saved 98% of time on average 

and the difference between the algorithm and each expert in each tumor group reached 

significance (p<0.001). 

  Mean (s) SD (s) Time reduction (%) p value 

All tumors     

Manual 1 142.4 93.9 98.7 < 0.001 

Manual 2 299.8 274.9 99.4 < 0.001 

Automated 1.88 0.001 - ref 

      

>2cc     

Manual 1 178.2 96.2 98.9 < 0.001 

Manual 2 391.5 296.9 99.5 < 0.001 

Automated 1.88 0.001 - ref 

      

<2cc     

Manual 1 70.9 17.3 97.3 < 0.001 

Manual 2 116.4 23.6 98.3 < 0.001 

Automated 1.88 0.001 - ref 
s: seconds, ref: reference 
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