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Abstract 

Schizophrenia is a chronic mental illness that is amongst the most debilitating conditions 
encountered in medical practice. A recent landmark schizophrenia study of the protein-coding 
regions of the genome identified a causal role for ten genes and a concentration of rare variant 
signals in evolutionarily constrained genes1. This study -- and most other large-scale human 
genetic studies -- was mainly composed of individuals of European ancestry, and the 
generalizability of the findings in non-European populations is unclear. To address this gap in 
knowledge, we designed a custom sequencing panel based on current knowledge of the genetic 
architecture of schizophrenia and applied it to a new cohort of 22,135 individuals of diverse 
ancestries. Replicating earlier work, cases carried a significantly higher burden of rare protein-
truncating variants among constrained genes (OR=1.48, p-value = 5.4 × 10-6). In meta-analyses 
with existing schizophrenia datasets totaling up to 35,828 cases and 107,877 controls, this 
excess burden was largely consistent across five continental populations. Two genes (SRRM2 
and AKAP11) were newly implicated as schizophrenia risk genes, and one gene (PCLO) was 
identified as a shared risk gene for schizophrenia and autism. Overall, our results lend robust 
support to the rare allelic spectrum of the genetic architecture of schizophrenia being conserved 
across diverse human populations. 

 

Main 

Schizophrenia (SCZ) is a severe, chronic psychiatric illness associated with lifelong progression 
and early mortality 2-4. The genetic architecture of SCZ has been deeply characterized over the 
past fifteen years, with clear genetic contribution from common single-nucleotide polymorphisms 
(SNPs) 5, large copy number variants (CNVs) 6, and rare protein-truncating variants (PTVs) 1,7-14. 
Amongst the classes of genetic variation linked to SCZ, rare PTVs provide unique value by 
linking disease risk to individual genes unambiguously. Most recently, the Schizophrenia Exome 
Sequencing Meta-Analysis (SCHEMA) consortium increased the sequenced sample size to 
24,248 SCZ cases and 97,322 controls, consolidated the enrichment of rare PTVs in SCZ cases 
across genes under strong evolutionary constraint, and identified ten genes with excess burden 
of rare disruptive variants in cases compared to controls 1. When considered alongside earlier 
studies, these results suggest that with greater sample sizes additional genes will be found to 
harbor excess rare PTVs in SCZ. Whole-exome sequencing (WES) and whole-genome 
sequencing (WGS) allow a hypothesis-free approach to risk gene discovery. However, applying 
these methods at the scale required to achieve the power necessary to confidently link genes to 
disease remains cost prohibitive. Targeted sequencing of genes chosen through data-driven 
algorithms that take into account prior knowledge of the genic PTV burden provided by studies 
such as SCHEMA is an alternative approach to rapidly achieve the required sample size for 
novel risk gene discovery. 

 

The majority of large-scale human genetics research initiatives to date have failed to include 
diverse populations. Over 80% of genome-wide association studies (GWAS) participants are of 
European ancestry, despite this group comprising less than one-fourth of the total human 
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population 15,16. Studies of mental illness have contributed to this disparity with almost exclusive 
European GWAS cohorts despite roughly equal prevalence of psychiatric disorders worldwide 17. 
The limited evidence from SCZ GWAS and CNV studies of non-European populations suggests 
broadly shared genetic architecture with that of European populations, but ancestry-specific 
genetic risk factors are also present  18-23. So far, studies of rare PTVs of complex human traits 
have been largely consistent across ancestries 24-30, although no studies have yet shown this for 
SCZ. 

 

Here, to diversify the population profiled in rare PTV studies of SCZ and achieve the power 
needed to discover novel risk genes, we designed a custom sequencing panel of 161 putative 
SCZ risk genes and applied it to case-control cohorts totaling 22,135 individuals from diverse 
ancestries (40% non-European; Figure 1, Table S1). This study, outlined in Figure 1A and 
hereafter referred to as the Psychiatric Genomics Consortium Phase 3 Targeted Sequencing of 
Schizophrenia Study (PGC3SEQ), was limited to cohorts that were not part of earlier SCZ 
sequencing initiatives such as SCHEMA. A data-driven algorithm was used to construct the 
sequencing panel that considered all current knowledge of the genetic architecture of SCZ, 
including a preliminary version of the SCHEMA gene-level burden statistics 31,32, with the goal of 
enriching for genes likely to harbor excess rare PTVs in SCZ but did not reach exome-wide 
significance in earlier studies due to a lack of power. Specifically, this algorithm was based on 
gTADA 33,34, a Bayesian framework which prioritizes genes by integrating genic rare variant 
burden statistics (from SCHEMA) with gene membership in gene sets that have implicated in 
SCZ through a variety of approaches (e.g., GWAS, CNV studies) (Figure 1B, Table S2-S3). The 
exonic regions of the 161 prioritized genes were sequenced on the Ion Torrent platform and 
rigorous quality control procedures were carried out subsequently (Supplementary Figure S1-
S6). Analyses comparing SCZ to controls were limited to rare PTVs (stop-gain, frameshift indels, 
or essential splicing donor/acceptor) and deleterious missense (placed into tiers based on the 
MPC score 35 (tier 1: MPC>3; tier 2: MPC 2~3; non-damaging: MPC<2) variants, and 
synonymous variants were analyzed as a negative control. To maximize power, PGC3SEQ was 
meta-analyzed with SCHEMA data (available SCHEMA datasets summarized in Table S4 and 
Figure S7) and sequencing datasets for bipolar disorder and autism. Two broad types of 
analysis were performed: (1) global enrichment of all constrained genes on the targeted panel 
(n=80 genes) to demonstrate the overall role of rare disruptive variants in diverse ancestries 
and (2) gene-level burden test to identify novel SCZ risk genes. 
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Figure 1. Study design and cohort ancestry composition. (A) An overview of the study design. (B) Gene selection for
the targeted sequencing panel. Genes were selected based on a combination of prior association statistics
(SCHEMA), gTADA rankings, and GWAS associations. Specially, we included (1) genes in the top 100 based on the
gTADA rank and/or the top 100 based on SCHEMA p-value (Top 100 in SCHEMA&gTADA, Top 100 in SCHEMA
alone, Top 100 in gTADA alone, total = 133 genes); (2) genes with evidence for association with SCZ in both GWAS
and SCHEMA (special GWAS genes, n=4 genes); (3) an additional 24 genes which had the best 24 gTADA rankings
of the remaining genes with a burden p-value < 0.05, to fill up the target panel. X-axis, gene-level p-value using
SCHEMA interim data based on which the panel was constructed (different from the final published version); y-axis,
gTADA rank of genes. Only the top 500 genes are plotted for a clear display. Some highly ranked genes were
excluded (gray dots) due to logistic issues during panel construction. (C) PGC3SEQ samples include substantial non-
European ancestry. The first two principal components are plotted along the axes, colored by SCZ case control status
1000 Genome samples are colored by superpopulation. AFR: African, AMR: Admixed American, EAS: East Asian,
EUR: European, SAS: South Asian. 

 

PGC3SEQ SCZ cases carried a significantly higher burden of rare PTVs among the 80
constrained genes on the targeted sequencing panel after adjusting for counts of rare
synonymous variants and five genotype-derived ancestry PCs (OR=1.48, p-value=5.4 × 10-6,
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Figure 2A, Table S5), replicating in a large independent cohort the excess burden of rare PTVs 
observed in 3,063 constrained genes in SCHEMA. The higher effect size seen in PGC3SEQ 
compared to SCHEMA (ORPGC3SEQ =1.48 in 80 genes; ORSCHEMA=1.22 in 3063 genes) 
demonstrates the effectiveness of our gene prioritization strategy. Limiting SCHEMA data to the 
80 genes tested in PGC3SEQ showed that the enrichment in PGC3SEQ is much attenuated 
compared to SCHEMA (ORPGC3SEQ=1.48 vs ORSCHEMA=3.0, Figure 2A), indicating an effect 
overestimation in SCHEMA. Tier 1 and tier 2 missense variants were not significantly enriched 
in SCZ relative to controls in PGC3SEQ. This failure to replicate one of the primary SCHEMA 
findings may be due to a lack of power, as the effects in two studies were directionally 
consistent. The burden of rare synonymous variants, which were analyzed as a negative control, 
was significantly higher in SCZ relative to controls. Sensitivity analysis showed that this signal 
was due to an overall higher burden of any rare coding variants in SCZ relative to controls, 
rather than due to technical bias or variability between contributing cohorts (Methods, Figure 
S8). The global PTV enrichment remained significant after accounting for this overall higher 
baseline burden (OR=1.4, p-value = 1.2 × 10-4, Figure S8C, Table S5). 

 
Figure 2. Global enrichment in 80 panel genes under strong constraint (pLI>0.9). (A) Case-control enrichment 
of rare (minor allele count <=5) PTV, missense, and synonymous variants in all ancestries combined, PGC3SEQ 
results shown in red-orange. We conducted the same analysis in the SCHEMA samples (gray) which we had access 
to for comparison. The enrichment folds (OR) are on plotted on the y-axis, and bars represent the 95% CIs. P-values 
were calculated using Firth logistic regression controlling for five ancestry PCs and either rare synonymous variant 
count (for PTV and missense) or rare non-synonymous variant count (for synonymous variants) to control for 
potential unknown technical biases. (B) Ancestry-stratified rare variant (MAF<0.1%) enrichment in the meta-analysis 
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of PGC3SEQ and SCHEMA. Three groups of variants were analyzed: PTV + MPC>3 missense (combined to 
increase power); MPC 2~3 missense; and synonymous variants. 

 

Meta-analysis of PGC3SEQ and SCHEMA were performed to test whether the global 
enrichment signal was consistent across diverse ancestries (total N=57,323, N by ancestry in 
Figure 1A). Samples were assigned into five superpopulations used in the 1000 Genome 
Project (Methods). At the aggregate level, four of the five populations tested displayed a higher 
burden of rare disruptive variants (PTV + MPC>3 missense) in SCZ cases compared to controls 
at p-value<0.05 (Figure 2B left, Table S6). Although we did not find a nominally significant 
enrichment in the fifth population (SAS), the magnitude of enrichment was similar to that in the 
AFR population (OR=1.5), indicating that non-significance is likely due to a lack of statistical 
power (see power analysis in Methods, Figure S9). When considered separately, PGC3SEQ 
and SCHEMA provided independent support for the ancestry-stratified enrichments (all 
ancestries had OR>1 in both datasets, Table S6). Indeed, the PGC3SEQ alone showed 
nominal significance for AMR, EAS, and EUR, exempt from any potential effect overestimation 
in SCHEMA. Differences, if any, in the strength of enrichment between pairs of populations 
were not sizable enough to achieve statistical significance at the current sample sizes. Across 
five populations, burden of tier 2 missense variants was evaluated although not significant in 
most (ORs from 1.1 to 1.2, Figure 2B middle), whereas synonymous variants were not enriched 
in any (Figure 2B right).  

 

Having replicated the global rare PTV enrichment in PGC3SEQ and established its conservation 
across diverse populations, we then tested for individual genes for harboring excess burden of 
rare PTVs in SCZ relative to controls. In the PGC3SEQ data alone, none of the 161 genes 
sequenced were significant after Bonferroni correction (Table S7). The directions of effects of 
these 161 genes were consistent with the directions observed in SCHEMA (binomial test p-
value=0.016) and this observation became more pronounced when considering only those 44 
genes with a SCHEMA p-value < 0.01 (binomial test p-value=0.002). Of the ten significant 
genes identified in SCHEMA, nine were included in the PGC3SEQ panel (GRIA3 was not). 
There was an enrichment of rare PTVs on these nine genes collectively (OR=1.66, p=0.03, 49 
PTVs in cases vs 24 in controls), and two genes had a p-value<0.05 when considered 
individually (RB1CC1 and CUL1, Table 1). Notably, SETD1A, the gene with the strongest 
enrichment in SCHEMA, was not replicated in PGC3SEQ, suggesting that its effect size may 
have been overestimated in SCHEMA (ORPGC3SEQ=1.6 vs. ORSCHEMA=20.1). Another SCHEMA 
gene that PGC3SEQ did not support is CACNA1G, which among the nine SCHEMA genes on 
the PGC3SEQ panel had the largest number of PTV events in PGC3SEQ (n=19) yet had an OR 
of 0.42, directionally inconsistent with its effect in SCHEMA (ORSCHEMA=3.1). Despite some 
evidence of winner’s curse, altogether the gene-level replication tests in PGC3SEQ suggest 
many of the SCHEMA genes likely confer genuine disease risk, including those not yet reaching 
the exome-wide level, and their significance might be reached by increasing sample sizes 
and/or the incorporation of very recent mutations from family data. 
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Table 1: Attempted replication of the nine significant SCHEMA genes in PGC3SEQ 

Gene 

PGC3SEQ   SCHEMA 

# of 
PTV  

allele in 
case 

# of PTV  
allele in 

ctrl 

# of allele 
 in case 

# of 
allele 
 in ctrl 

OR 
(PTV) 

Fisher's 
exact  

test p-value 
 

OR 
(PTV) 

P-value 

SETD1A 9 5 23160 21110 1.64 0.431  20.1 2.00x10-12 

CUL1 6 0 23160 21110 Inf 0.032  36.1 2.01x10-9 

XPO7 5 0 23158 21110 Inf 0.064  52.2 7.18x10-9 

TRIO 3 3 23160 21110 0.91 1.000  5.0 6.35x10-8 

CACNA1G 6 13 23160 21110 0.42 0.105  3.1 4.57x10-7 

SP4 1 0 23150 21104 Inf 1.000  9.4 5.08x10-7 

GRIN2A 0 1 23152 21104 0.00 0.477  18.1 7.37x10-7 

HERC1 9 2 23160 21110 4.10 0.069  3.5 1.26x10-6 

RB1CC1 10 0 23148 21108 Inf 0.002   10.0 2.00x10-6 

 

 

Combining SCHEMA and PGC3SEQ (totaling 35,828 cases and 107,877 controls) via a p-value 
based meta-analysis of gene-level statistics identified two new disease genes at the exome-
wide significance threshold (Table 2, Table S7): SRRM2 (p-value=7.2 × 10-7) and AKAP11 (p-
value=4.2 × 10-7). In previous work, SRRM2 has been shown to play a role in the tauopathy of 
Alzheimer’s disease 36-38, and de novo mutations in this gene have been linked to 
developmental disorders 39. AKAP11 was suggested as a trans-gene linking to a SCZ GWAS 
signal in a recent study 40, which considered together with our results, adds to examples of 
convergence of common and rare variant associations on the same gene. A recent meta-
analysis of SCHEMA and a bipolar disorder (BD) dataset also found exome-wide significance 
for AKAP11 41, suggesting a role of this gene in the shared etiology of SCZ and BD. The current 
study consolidates the role of AKAP11 in SCZ independent of other psychiatric disorders.  

 

Table 2: Novel exome-wide significant SCZ genes 

Gene pLIa 
PGC3SEQ   SCHEMAb   Meta P-valuec 

# of 
PTV 

OR 
(PTV) P-value   OR 

(PTV) P-value   SCZ SCZ & 
Autism 

AKAP11 0.98 17 4.26 0.014  5.25 8.28x10-6  4.15x10-7 - 
SRRM2 1 10 9.12 0.013  7.14 1.53x10-5  7.19x10-7 - 
PCLO 1 8 5.01 0.024  4.02 9.36x10-4  1.06x10-5 5.84x10-8 
a Probability of loss-of-function intolerance 
b The SCHEMA p-values were retrieved from SCHEMA summary statistics and represent strength of evidence from 
both case-control and patient-proband trio (de novo mutation) data 
c Meta P-values were determined by Stouffer’s method and weighted by sample size. SCZ, meta of PGC3SEQ and 
SCHEMA; SCZ&Autism, further meta with Autism Sequencing Consortium WES 

 

Lastly, gene-level rare disruptive variant statistics from SCZ, autism spectrum disorder (ASD) 42 
and BD 41 were meta-analyzed to identify pleiotropic risk genes that are not detectable at the 
sample sizes attained by studies of any single disorder. This identified PCLO as a shared risk 
gene for SCZ and ASD for the first time (p-value=5.8 × 10-8, Table 2). PCLO was not significant 
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in the meta-analysis of SCZ and BD samples; however, this may be due to a lack of power in 
the BD study (ORBD=5.2, p-value=0.12). The association of PCLO reported here suggests this 
gene may be driving the common variant association at nearby loci reported in GWAS of SCZ 43 
and other psychiatric disorders 44-47.  

 

To date, the general lack of case-control exome sequencing studies of non-Europeans has 
made it difficult to assess the degree to which rare PTV associations are susceptible to the well-
known confounding effects of ancestry in GWAS and polygenic prediction studies 48-52. Without 
this knowledge, a complete view of the genetic architecture of complex diseases in human 
populations cannot be established. Here, we have addressed this gap in knowledge with 
respect to mental illnesses, showing that in SCZ rare PTV burden is conserved across diverse 
human populations, and therefore the biological processes disrupted by those genes are likely 
important in the pathogenesis of SCZ across populations. Larger sample sizes in diverse 
populations will be vital in further elucidating the rare and common genetic architecture of 
schizophrenia. 

 

There are limitations to the current study. An interim version of the SCHEMA results was used 
to construct the targeted sequencing panel, and subsequent changes in the SCHEMA analytical 
strategy led to differences in gene-level statistics used to build the panel and ultimately in the 
SCHEMA publication. Specifically, the interim SCHEMA statistics 31,32 at the time of panel 
design did not include de novo mutations from trios, used a different strategy to combine PTV 
and missense variants than that ultimately used in the SCHEMA publication, and were compiled 
before the incorporation of external Genome Aggregation Database (gnomAD) subjects that 
doubled the size of controls in SCHEMA (the case cohort in SCHEMA did not change between 
the interim and final version). Comparing the interim and the published SCHEMA results, gene 
ranks underwent nontrivial changes, with only 27 overlapping genes between the top 100 lists in 
the two versions of SCHEMA results. Consequently, our panel likely included more random 
noise than it would have if panel construction had waited until SCHEMA was complete (64% of 
panel genes dropped out of top 500 in the published version) and missed some important genes 
(e.g, GRIA3, originally ranked far below 161 yet later changed dramatically to be one of the 
significant ten). As whole-exome sequencing studies of other diseases approach the sample 
size achieved for SCHEMA and strategies are considered for how to increase power, the 
current report offers valuable lessons, and we note that results on datasets as large as 24,000 
cases and 50,000 controls can still change substantially as more samples are added. The 
possibility of such changes makes the targeted panel approach vulnerable, and perhaps WES 
and WGS as the safest strategies despite their cost. 

 

In summary, rare PTVs have a robust role in SCZ risk, and across ancestries their effect is 
consistently concentrated in genes under strong evolutionary constraint. The deconvolution of 
this overall contribution into individual genes, especially those that may display ancestry-specific 
effects, will require sequencing more individuals of diverse backgrounds. Achieving diversity in 
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human genetic research must be the top priority of the field in order to prevent health disparities 
from worsening as the findings from genetic research begin to be translated into clinical practice.  
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