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Abstract 

Vaccination-based exposure to spike protein derived from early SARS-CoV-2 sequences is the key 

public health strategy against COVID-19. Successive waves of SARS-CoV-2 infections have been 

characterised by the evolution of highly mutated variants that are more transmissible and that 

partially evade the adaptive immune response. Omicron is the fifth of these “Variants of Concern” 

(VOC) and is characterised by a step change in transmission capability, suggesting significant antigenic 

and biological change. It is characterised by 45 amino acid substitutions, including 30 changes in the 

spike protein relative to one of the earliest sequences, Wuhan-Hu-1, of which 15 occur in the receptor-

binding domain, an area strongly associated with humoral immune evasion. In this study, we 

demonstrate both markedly decreased neutralisation in serology assays and real-world vaccine 

effectiveness in recipients of two doses of vaccine, with efficacy partially recovered by a third mRNA 

booster dose. We also show that immunity from natural infection (without vaccination) is more 

protective than two doses of vaccine but inferior to three doses. Finally, we demonstrate fundamental 

changes in the Omicron entry process in vitro, towards TMPRSS2-independent fusion, representing a 

major shift in the replication properties of SARS-CoV-2. Overall, these findings underlie rapid global 

transmission and may alter the clinical severity of disease associated with the Omicron variant. 
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Introduction 

Protection against Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) associated disease 

(COVID-19) is currently reliant on a range of vaccine technologies that induce immunity to the spike 

protein of the virus that first emerged in Wuhan city, China in 2019. Such early variant vaccines have 

become the cornerstone of the global public health response to SARS-CoV-21 but are threatened by 

the successive emergence of Variants of Concern (VOC) displaying increased transmissibility and/or 

evasion of adaptive immunity2. The evolution of SARS-CoV-2 variants with high transmission rates, 

increase the risk of the generation of variants of the virus with novel properties that may compromise 

this crucial element of the public health response. The balance between transmission advantage and 

immune evasion has resulted in the evolution of five VOCs that display these characteristics to varying 

degrees.  The Beta (B.1.351 in Pango nomenclature) and, to a lesser extent, Gamma (P.1) variants 

were associated with immune evasion in vitro and spread locally but never dominated globally. In 

contrast, the Alpha (B.1.1.7) and Delta (B.1.617.2) VOCs attained a worldwide distribution and were 

responsible for significant waves of infections associated with an increase in reproduction number 

(R0). Both variants harbour mutations at position 681 within the polybasic furin cleavage site (a 

histidine in Alpha and an arginine in Delta); changes associated with enhanced cell entry that likely 

confer an intrinsic transmission advantage. Alpha displayed lower immune evasion properties 

compared to Beta but higher transmission. Alpha was in turn replaced by the Delta variant that 

displayed more significant immune evasion in addition to enhanced furin cleavage2–5.   

Omicron is the fifth variant to be named as a VOC by the World Health Organisation (WHO) and the 

third (after Alpha and Delta) to achieve global dominance. The Omicron lineage (B.1.1.529) was first 

detected in mid-November 2021 in Botswana, South Africa6 and quarantined travellers in Hong Kong7. 

It has split into three divergent sublineages (BA.1, BA.2 and BA.3) of which BA.1 has spread rapidly 

around the world. The BA.1 Omicron genome encodes 30 amino acid substitutions relative to Wuhan-

Hu-1 within the spike glycoprotein (Fig.1), 15 of which are in the receptor-binding domain (RBD) and 

9 within the receptor-binding motif (RBM), the RBD subdomain that interacts with the human ACE2 

receptor. Six of these mutations (G339D, N440K, S477N, T478K, Q498R and N501Y) enhance binding 

affinity to the human ACE2 receptor. Combinations such as Q498R and N501Y may enhance ACE2 

binding additively8. Overall, the Omicron RBD binds to the human ACE2 with approximately double 

the affinity (x2.4) of the Wuhan RBD9.  Seven Omicron RBD mutations (K417N, G446S, E484A, Q493R, 

G496S, Q498R and N501Y) are associated with decreased antibody binding, importantly falling in 

epitopes corresponding to the three principal classes of RBD-specific neutralising antibodies.  
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Three deletions (amino acids 69-70, 143-145 and 211) and an insertion (at site 214) are also present 

in the amino-terminal domain (NTD) of the Omicron spike glycoprotein. The 69-70 deletion is also 

found in the Alpha and Eta (B.1.525) variants and is associated with enhanced fusogenicity and 

incorporation of cleaved spike into virions10 . This deletion can also be used as a useful proxy for 

prevalence estimates in the population by S-gene target failure (SGTF) using the TaqPathTM (Applied 

Biosystems, Pleasanton, CA) diagnostic assay. Deletions in the vicinity of amino acids 143-145 have 

been shown to affect a range of NTD-specific neutralising antibodies11,12 .  Two mutations (N679K and 

P681H) at the S1/S2 furin cleavage site (FCS), have individually been found to enhance furin cleavage 

in other variants, contributing to enhanced infectivity, while a third (H655Y, also present in the Gamma 

VOC) occurs in the vicinity of the FCS13. The role of these changes in combination requires further 

investigation. Several mutations, such as the deletion at site 211, are not present at high frequency in 

other VOCs in the global sequencing data, suggesting historic negative selection14. Outside the spike 

protein, 15 amino acid substitutions are present and require further characterisation. For example, a 

deletion within NSP6 (105-107) may contribute to immune evasion through virus-induced cellular 

autophagy15. 

Critically, emerging data indicate that the Omicron variant evades neutralisation by sera obtained 

from people vaccinated with 1 or 2 doses of vaccine, especially when antibody titres are waning. 

Indicative studies have shown that 3 doses of Wuhan-strain based vaccines may provide only partial 

protection from infection with this variant, including unpublished data made available as a press 

release from Pfizer. Immune evasion by Omicron may have contributed to the extremely high 

transmission rates in countries with high vaccination rates or natural immunity (R0 of 3-5 in the UK)9,16–

25.  

In this study, we aimed to investigate the antigenic and biological properties of the Omicron variant 

that might underly immune evasion and increased transmission of the virus. We demonstrate that 

vaccine effectiveness is significantly reduced against the Omicron variant in association with 

neutralising antibody responses from dual and triple recipients of the BNT162b2 (Pfizer), ChAdOx1 

(Astra Zeneca) and mRNA-1273 (Moderna) COVID-19 vaccines. Further, using live virus culture and 

viral pseudotypes, we describe an altered entry pathway that favours endosomal fusion over the 

TMPRSS2-dependent, cell surface fusion utilised by all previous variants of SARS-CoV-2. In summary, 

Omicron exhibits significant antigenic and biological changes that underpin immune evasion and 

hyper-transmissibility and could affect the pathogenesis and clinical severity of disease.  
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Results 

The Omicron variant of SARS-CoV-2 displays substantial change within spike predicted to affect 

antigenicity and furin cleavage 

The Omicron variant is characterised by significant changes within the RBD of the spike glycoprotein, 

regions targeted by class 1,2 and 3 RBD-directed antibodies, and within the NTD supersite (Fig.1A).  

Deep mutational scanning (DMS) estimates at mutated sites are predictive of substantially reduced 

monoclonal and polyclonal antibody binding and altered binding to human ACE2 (Fig.1B)26.  Fourteen 

mutations (K417N, G446S, E484A, Q493R, G496S, Q498R and to a lesser extent, G339D, S371L, S373P, 

N440K, S477N, T478K, N501Y and Y505H) may be predicted to evade antibody binding based on a 

calculated escape fraction (a quantitative measure of the extent to which a mutation reduces 

polyclonal antibody binding by DMS). Seven Omicron RBD mutations (K417N, G446S, E484A, Q493R, 

G496S, Q498R and N501Y) have been shown previously to be associated with decreased antibody 

binding, importantly falling in epitopes corresponding to three major classes of RBD-specific 

neutralising antibodies. The mutations present in spike also involve key structural epitopes targeted 

by several monoclonal antibodies in current clinical use. Of these, seven bind to the RBM 

(bamlanivimab, cilgavimab, casirivimab, etesevimab, imdevimab, regdanvimab and tixagevimab) and 

neutralisation of Omicron has been shown to be negligible or absent. An eighth mAb, sotrovimab, 

targets a conserved epitope common to SARS-CoV-1 and SARS-CoV-2 outside the RBM and has only a 

small reduction (x3) in neutralisation potency27–29.  Two mutations at the furin cleavage site (N679K 

and P681H) are individually predicted to increase furin cleavage, although the combination of these 

changes and an adjacent change with unknown function (H655Y, also present in the Gamma VOC) is 

unknown. 

Emergence of the Omicron variant in the UK 

Despite high vaccination rates and levels of natural immunity following previous exposure in the UK, 

the Omicron variant has rapidly become dominant. The evolutionary relationships of SARS-CoV-2 

variants at a global level are shown in Fig.1C. The first 8 cases of Omicron were detected in the UK on 

the 27th and 28th November 2021 (2 in England and 6 in Scotland). Due to the rapid spread of Omicron, 

early genome sequences were highly related with an average genetic divergence between 1 and 7 

single nucleotide polymorphisms (SNPs) (Fig.1D). The phylogenetic relationship to Omicron sequences 

from other countries was consistent with multiple introductions associated with travel to South Africa 

followed by community transmission (discussed further in Supplementary Information). Within 

Scotland, 111 cases were detected in the first 10 days of the outbreak, spread across 9 separate Health 

Boards, the majority in NHS Greater Glasgow & Clyde (NHS GG&C).   
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Figure 1 - Spike amino acid changes typifying the Omicron variant. (A) Spike homotrimer in open conformation with 

locations of Omicron amino acid substitutions, deletions (Δ), or insertions (ins) highlighted as spheres with opaque surface 

representation. Colouring highlights mutations at residues with substitutions impacting RBD-specific antibodies of classes 1 

(green), 2 (yellow), and 3 (blue)30 , or that belong to the NTD antibody supersite (magenta)11, or that belong to the FCS 

(orange), with the remainder in grey. These are annotated on the monomer with an ‘up’ receptor-binding domain. The 

substitution D614G which is shared by common descent by all lineage B.1 descendants is italicised. The visualisation is made 

using a complete spike model31  which is in turn based upon a partial cryo-EM structure (RCSB Protein Data Bank (PDB) ID: 

6VSB32).  (B)  Aligned heatmaps showing properties of amino acid residues or of the specific amino acid substitution present 

in the Omicron variant, as appropriate (insertion not shown). Structure-based epitope scores33 for residues in the structure 

of the original genotype spike in closed and open conformations are shown. For RBD residues, the results of deep mutational 

scanning (DMS) studies show the escape fraction (that is, a quantitative measure of the extent to which a mutation reduced 

polyclonal antibody binding) for each mutant averaged across plasma (‘plasma average’) and for the most sensitive plasma 

(‘plasma max’)26. Each mutation is classified as having evidence for mutations affecting neutralisation by either mAbs)11,12,34–

36 or antibodies in convalescent plasma from previously infected or vaccinated individuals26,35–37. Membership of the furin 

cleavage site is shown. The distance to ACE2-contacting residues that form the receptor-binding site (RBS) is shown (RBS 

defined as residues with an atom <4Å of an ACE2 atom in the structure of RBD bound to ACE2 (RCSB PDB ID: 6M0J 38). Finally, 

ACE2 binding scores representing the binding constant (Δlog10 KD) relative to the wild-type reference amino acid from DMS 

experiments39. (C) Inferred evolutionary relationships of SARS-CoV-2 from NextStrain 

(https://nextstrain.org/ncov/gisaid/global) with the Variants of Concern labelled. The colours of the tree tips correspond to 

the number of mutations causing Spike amino acid substitutions relative to the SARS-CoV-2 original genotype (OG) reference 

strain Wuhan-Hu-1. (D) Inferred evolutionary relationships of the first 111 Omicron sequences in Scotland with NHS Scottish 

Health boards denoted: AA, Ayrshire and Arran; FF, Fife; FV, Forth Valley; GC, Great Glasgow and Clyde; GR, Grampian; HG, 

Highlands; LN, Lanarkshire; LO, Lothian; TY, Tayside, see key. 

 

Neutralising responses to Omicron (BA.1) are substantially reduced following double and partially 

restored following triple vaccination 

Levels of neutralising antibodies in patient sera correlate strongly with protection from infection40–43, 

and reductions in neutralising activity against the Alpha and Delta variants are consistent with an 

observed reduction in vaccine effectiveness2–5,44.  To investigate the likely effect of the mutations in 

the Omicron spike glycoprotein on vaccine effectiveness, sera collected from healthy volunteers at 

more than 14 days post-2nd dose vaccination with either BNT162b2, ChAdOx1 or mRNA-1273 were 

sorted into three age-matched groups (n=24 per group, mean age 45 years). Sera were first screened 

by electrochemiluminescence (MSD-ECL) assay for reactivity with SARS-CoV-2 antigens (Spike, RBD, 

NTD or nucleoprotein (N)). The antibody responses to RBD and NTD were significantly higher 

(p<0.0001) in the sera from individuals vaccinated with BNT162b2 or mRNA-1273 in comparison with 

the ChAdOx1 vaccinees (Fig. 2A, Supp. Table S1). In contrast, antibody responses to endemic human 

coronaviruses (HCoVs) (Supp. Fig. S1, Supp. Table S2) or influenza (Supp. Fig. S2, Supp. Table S3) were 
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similar, with the exception of coronavirus OC43, where responses in BNT162b2 and ChAdOx1 

vaccinees differed significantly, perhaps suggesting modulation (back-boosting) of pre-existing OC43 

responses by BNT162b2 vaccination.  

Next, the neutralising antibody responses against SARS-CoV-2 pseudotypes expressing the spike 

glycoprotein from either Wuhan-Hu-1, or Omicron (BA.1) were compared (Fig. 3B). Vaccination with 

mRNA-1273 elicited the highest neutralising antibody titres (mean titre Wuhan=21,118, 

Omicron=285), in comparison with those elicited by vaccination with either BNT162b2 (Wuhan=4978, 

Omicron=148.3) or ChAdOx1 (Wuhan=882.3, Omicron=61.9). Neutralising antibody titres against 

Wuhan differed significantly between the three study groups. Activity against Omicron was markedly 

reduced in comparison with Wuhan, reduced by 33-fold for BNT162b2, 14-fold for ChAdOX1 and 74-

fold for mRNA-1273 (Supp. Table S4). While the fold change in neutralisation was lowest in recipients 

of the ChAdOx1 vaccine and highest in recipients of the mRNA-1273 vaccine, absolute neutralisation 

values were highest in mRNA-1273 followed by BNT162b2 and ChAdOx1. Neutralisation was lowest in 

the ChAdOx1 group, however it is important to note that this was given to older patients during early 

vaccine rollout in the UK, especially to vulnerable patients in nursing homes and was not 

recommended in young adults less than 40 years. 

 

Figure 2 - Antibody responses elicited by two doses of SARS-CoV-2 vaccine.  Antibody responses were studied in three 

groups of individuals (n=24 per group) vaccinated with either BNT162b2, ChAdOx1 or mRNA-1273 by (A) MSD-ECL assay or 

(B) pseudotype-based neutralisation assay. (A) Responses were measured against full-length spike glycoprotein (Spike), 

receptor binding domain (RBD), N-terminal domain (NTD) and nucleoprotein (N) and are expressed as arbitrary units (AU/ml). 
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(B) Neutralising antibody responses were quantified against Wuhan or Omicron spike glycoprotein bearing HIV(SARS-CoV-2) 

pseudotypes. Each point represents the mean of three replicates, bar represents the group mean. In panel B, % neutralising 

refers to the % of serum samples that displayed neutralising activity. 

 

Next, samples were analysed from vaccine recipients at least 14 days post booster vaccination (third 

dose).  Participants had been primed with two doses of either ChAdOx1 or BNT162b2, followed by a 

third dose of either BNT162b2 or mRNA-1273 (half dose; 50µg). All sera reacted strongly with SARS-

CoV-2 antigens by MSD-ECL, with no significant differences between the four groups (Fig. 3A, Supp. 

Table S5). Antibody responses to HCoVs (Supp. Fig. S3, Supp. Table S6) or influenza (Supp. Fig. S4, 

Supp. Table S7) were similar, with the exception of influenza Michigan H1, where responses in 

ChAdOx1-primed and BNT162b2 or mRNA-1273-boosted groups differed significantly, likely reflecting 

co-administration of influenza booster vaccines during the booster campaign. Two vaccine recipients 

boosted with BNT162b2 displayed weak reactivity with nucleocapsid (Fig. 3A), suggesting previously 

undetected exposure to SARS-CoV-2. Sera from vaccine recipients primed with BNT162b2 and boosted 

with either BNT162b2 or mRNA-1273 displayed similar titres of neutralising antibody against Wuhan 

to the samples collected post-dose 2 (Fig. 3B). In contrast, vaccination of individuals primed with 

ChAdOx1 with a booster dose of either BNT162b2 or mRNA-1273 resulted in a marked increase in 

antibody titre (9.3-fold increase) against Wuhan relative to the low titres after dose 2 (Fig. 3B, Supp. 

Table S8). The marked increase in antibody titre in ChAdOx1-primed individuals (Supp. Fig. S5) 

emphasises the importance of the third dose booster in this population. Indeed, following boost with 

either BNT162b2 or mRNA-1273, anti-Wuhan neutralising antibody titres in the ChAdOx1-primed 

group were not significantly different from those primed with BNT162b2 (Supp. Table S8). 

Neutralising antibody titres against Omicron were lower in both booster study groups and did not 

differ significantly in titre (Supp. Table S8). However, absolute numbers displaying measurable 

Omicron neutralising activity were higher in the ChAdOx1-primed group (13/21, 62%) compared with 

the BNT162p2 primed group (5/20, 25%) (Fig. 3B). 
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Figure 3 - Antibody responses elicited by SARS-CoV-2 booster vaccines.  Antibody responses were studied in two groups of 

individuals primed with two doses of either BNT162b2 or ChAdOx1 and boosted with either BNT162b2 or mRNA-1273. 

Reactivity against SARS-CoV-2 antigens was measured by (A) MSD-ECL assay while neutralising activity (B) was measured 

using HIV (SARS-CoV-2) pseudotypes. (A) Responses were measured against full-length spike glycoprotein (Spike), receptor 

binding domain (RBD), N-terminal domain (NTD) and nucleoprotein (N) and are expressed as arbitrary units (AU/ml). (B) 

Neutralising antibody responses were quantified against Wuhan or Omicron spike glycoprotein-bearing HIV (SARS-CoV-2) 

pseudotypes. Each point represents the mean of three replicates, bar represents the group mean. Dose 3 sera from mRNA-

1273 booster are in red, while those from BNT162b2 booster are in yellow. Fold changes between marked groups are 

indicated. 

 

Vaccine effectiveness against infection with the Omicron variant is reduced compared to Delta 

We next used a logistic additive model with a test negative case control design to estimate relative 

vaccine effectiveness against becoming a confirmed case with Delta (2553 cases) and/or Omicron 

(1001 cases) in a population of 1.2 million people in the largest health board in Scotland, NHS GG&C, 

between 6th -12th December 2021. Demographic data is shown in Supp.Table S9 and Supp.Fig.S6. The 

timing of first doses of vaccination are shown in Fig.4A and the occurrence of sequenced/confirmed 

infections with different variants in vaccine recipients over time is shown in Fig.4B. Infection status 

for Omicron and Delta was modelled by number and product type of vaccine doses, previous infection 

status, sex, SIMD quartile, and age (to control for demographic bias). We ran two models, one with 

time since vaccination included, to estimate the protection provided by recent vaccination, and one 

without, to observe the current protection in today’s mixed and waned population. 

Immunosuppressed individuals were removed from the analysis to ensure case-positivity could be 
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attributed to vaccine escape rather than an inability to mount a vaccine response. Age and time since 

vaccination were each modelled as single smooth effects using thin plate regression splines45.   

In both models, we estimated the protection from vaccine-acquired and infection-acquired 

immunity as being markedly reduced against Omicron compared with Delta.  Estimates of vaccine 

effectiveness in recent recipients (at 14 days post-dose) were negative for full primary courses of 

ChAdOx1 against Omicron and only 16% against Delta. For two doses of mRNA vaccines, vaccine 

effectiveness was significantly lower for Omicron versus Delta; BNT162b2 (6.84% versus 56.53%) and 

mRNA-1273 (8.83% versus 60.07%) (Fig.4C). These responses increased significantly following a third 

booster dose of BNT162b2 or mRNA-1273 to 91.87% and 89.28% against Delta and 67.57% and 

71.15% against Omicron. These estimates are similar to those reported against symptomatic 

infection recently in England where vaccine effectiveness was estimated as 71.4% and 75.5% for 

ChAdOx1 and BNT162b2 primary course recipients boosted with BNT162b2, respectively18.   

Our estimates of protection in the current GG&C cohort, whose median time since most recent dose 

is 5 months, were notably lower (Fig.4D).  This waning of protection was evident for both variants, 

leading to very low levels of protection against Omicron in double vaccine recipients of ChAdOx1, 

BNT162b2 and mRNA-1273 (5.19%, 24.39% and 24.86% respectively). Our estimates for current 

protection against Omicron in recipients of a third booster dose of BNT162b2 or mRNA-1273 were 

much higher at 59.21% and 64.9%.  

We next estimated the additive protective effect of previous natural infection.  Infection-acquired 

immunity directed against other VOCs may be broader in nature and may wane more slowly than 

that induced by vaccines46–48. The level of protection following previous infection was 53.2% for 

Omicron, and 88.7% for Delta. This level of protection was greater than two doses of vaccine but did 

not reach levels attained by those who had never had natural infection and had received third dose 

boosters. These results collectively emphasise the importance of booster vaccines. The observation 

of waning protection indicates that in due course these may need to be repeated. Importantly, 

vaccine-mediated protection against severe disease is likely to be more durable than that against 

detected infection49.  
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Figure 4 - Vaccine deployment and vaccine effectiveness estimates. (A) Date of first administered vaccine dose by vaccine 

product for the population of NHS Greater Glasgow and Clyde (NHS GG&C) aged 18 and older. (B) Denominator plot showing 

populations of test positive and test negative cohorts in NHS GG&C, with VOC classification of sequenced cases overlaid. The 

widths of the grey bands represent the populations in each group at each time point. (C) and (D) Estimated vaccine 

effectiveness against testing positive for Delta and Omicron SARS-CoV-2 infection in the population of over 18s in NHS GG&C 

who were tested between 6th and 12th December 2021, with the waning effect of vaccination over time excluded (C) and 

included (D). The additive effect of infection-acquired immunity was calculated for the entire population and plotted for the 

unvaccinated cohort. *The interval estimate for vaccine effectiveness against Omicron for two doses of ChAdOx1 was 

negative (CI: -74.2% to -16.1%) for the model without the waning effect of vaccination. 
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Isolation of SARS-CoV-2 Omicron from clinical samples.  

We obtained nasopharyngeal swabs from 5 patients who were confirmed to be PCR-positive for 

infection with the SARS-CoV-2 Omicron variant.  We attempted virus isolation in BHK-21 cells stably 

expressing the human ACE2 protein (BHK-hACE2) and VERO cells stably expressing ACE2 and TMPRSS2 

(VAT69). The infected cells were incubated at 37oC and the cells monitored for signs of cytopathic effect 

(CPE) and the presence of viral progeny in the medium by RT-qPCR. While we observed no CPE in any 

of the infected cells, by RT-qPCR data at 5 days post-infection (dpi) we confirmed the presence of the 

virus derived from two of the five samples (referred from now on as 204 and 205) only in the medium 

of BHK-hACE2, but not VAT cells (Supp.Fig. S7A). An aliquot of the clarified medium containing 

approximately 4x104 viral genomes of the P0 stocks of samples 204 and 205 was used to infect VAT, 

BHK-ACE2 and Calu-3 cells. Again, no CPE was observed in any of the infected cells but virus replication 

was confirmed in BHK-Ace2 and Calu-3 by RT-qPCR. Supernatants (termed P1) from infected Calu-3 

cells at 3 dpi were collected and virus titrated by both focus forming assay and RT-qPCR. We found 

that the virus reached more than 100-fold higher titres in Calu-3 cells compared to BHK-hACE2 

(Supp.Fig. S7B). Further passage of sample 205-derived P1 virus in both Calu-3 and Caco-2 yielded 

equivalent genome copy numbers in both cell lines (Supp.Fig. S7B). We observed CPE at 3 dpi in both 

Calu-3 and Caco2 cells (not shown). The medium (termed P2) of infected Calu-3 and Caco2 cells was 

collected at 4 dpi, titrated and used in the experiments described below. 

Omicron does not induce cell syncytia 

Our data demonstrate that antigenic change in Omicron permits evasion of vaccine induced immunity,  

however, the constellation of spike mutations in Omicron suggest that functional change may also 

contribute to its rapid transmission (Fig.1A). Therefore, we investigated the virological properties of 

live Omicron isolated from a patient sample. SARS-CoV-2 particles can achieve membrane fusion at 

the cell surface following proteolytic activation of spike by the plasma membrane protease TMPRSS2. 

This property also permits spike-mediated fusion of SARS-CoV-2 infected cells with adjacent cells 

resulting in syncytia50; this feature has been associated with severe disease51. The SARS-CoV-2 Delta 

variant has been shown to exhibit enhanced fusion compared to the Alpha and Beta variants52. We 

used the split GFP cell-cell fusion system53 to quantify virus-induced cell fusion by Omicron, Delta and 

first wave Wuhan D614G virus (Fig. 5A). Cells expressing split GFP were infected with SARS-CoV-2 

Wuhan-D614G, Delta or Omicron and the levels of the reconstituted GFP signal following cell-cell 

fusion was determined in real time (Fig. 5B). In addition, infected cells were probed by indirect 

immunofluorescence assay to assess viral replication by the detection of the viral nucleocapsid protein 

(Fig. 5C). The Delta variant exhibited the highest levels of cell fusion followed by Wuhan D614G. 
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Interestingly, the Omicron variant failed to promote fusion. This failure was not due to lack of infection 

as immunofluorescent detection of nucleocapsid protein confirmed viral replication by Omicron, as 

well as the other two variants. By immunofluorescence, syncytia were clearly evident in Wuhan D614G 

and Delta-infected cells, consistent with other recent reports25.  

Reduced replication kinetics of Omicron in lung epithelial cells 

We next tested virus replication of Omicron, compared to Delta and Wuhan D614G in Calu-3, a human 

lung epithelial cell line. As shown in Fig. 5D, Wuhan D614G and Delta displayed comparable replication 

kinetics over a period of 72 hours, with visible CPE between 48-72hpi. The titres of the Omicron variant 

were instead at least an order of magnitude lower at each time point compared to the other two 

variants. This is consistent with attenuated replication of Omicron in lower respiratory tissues as 

recently reported25,54. 
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Figure 5. Reduced fusogenicity and replication kinetics by Omicron.  A. Schematic representation of the split GFP system, 

used in this study to quantify virus induced cell fusion. This system is based on co-culture of two different cell lines (GFP-10 

and GFP-11) expressing split GFP molecules. Upon virus-induced cell fusion, the intact GFP molecule is reconstituted and the 

resulting signal can be detected and quantified. B. GFP-10 and GFP-11 were co-cultured and infected with Wuhan D614G, 

Delta and Omicron and incubated in a CLARIOStar Plus (BMG LABTECH) at 37°C / 5% CO2. GFP signal was measured every 30 

min for 20h. Omicron infected cells showed only background levels of GFP signal.  C. GFP-10 and GFP-11 infected cells were 

also analysed in parallel by immunofluorescence at 22h post-infection. Virus replication was assessed by detecting viral 
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nucleocapsid (N) expression using the appropriate antiserum and secondary antibodies. N expression can be detected in 

both Wuhan D614G, Delta and Omicron infected cells. However, syncytia can only be observed in Wuhan (D614G) and Delta 

infected cells. D. Replication kinetics of Wuhan D614G, Delta and Omicron. Calu-3 cells were infected with Wuhan D614G, 

Delta and Omicron and supernatants were collected at the indicated times and assessed by RT-qPCR. Omicron display 

reduced replication kinetics compared to Wuhan D614G and Omicron.    
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Omicron spike has switched entry route preference 

Entry of SARS-CoV-2, and related coronaviruses, can proceed via two routes55. Cell surface fusion 

following proteolysis by TMPRSS2, as described above (Route 1; Fig. 6A), or fusion from the endosome 

after endocytosis and activation by the endosomal proteases Cathepsin B or L (Route 2; Fig. 6A). The 

ability of SARS-CoV-2 to achieve cell surface fusion is dependent on its S1/S2 polybasic cleavage site; 

this is absent from most closely related sarbecoviruses, which are confined to endosomal fusion56–58. 

Given the reduced fusogenicity and replication kinetics of Omicron, we used HIV pseudotypes to 

evaluate entry route preference. We evaluated Wuhan D614G, Alpha, Delta and Omicron spike and 

as a control we included Pangolin CoV (Guangdong isolate) spike, which exhibits high affinity 

interactions with human ACE2 but lacks a polybasic cleavage site and, therefore, enters via the 

endosome only59–62. 

Calu-3 cells predominantly support cell surface (Route 1) fusion, owing to their high endogenous 

expression of TMPRSS257,63; in these cells, Delta yielded the highest infection, being ~4 fold higher than 

Omicron (Fig. 6B). Pangolin CoV infection was low, indicating that Calu-3 cells do not support robust 

endosomal entry. On the contrary, HEK only support endosomal entry and in these cells Pangolin CoV 

had high infection. Notably, Omicron also achieved high infection in HEK cells, producing ~10 fold 

greater signal than Delta. This suggests that Omicron, like Pangolin CoV, is optimised for endosomal 

entry. All pseudotypes exhibited robust infection in A549 ACE2 TMPRSS2, where both entry routes are 

available64,65. 

Entry pathway preference was further investigated using protease inhibitors targeting either TMPRSS2 

(Camostat) or cathepsins (E64d)58. In Calu-3 cells, all SARS-CoV-2 pseudotypes were inhibited by 

Camostat, whereas only Omicron exhibited E64d sensitivity, indicating that a component of infection 

occurs via endosomal entry (Fig. 6C). In HEK cells all pseudotypes were inhibited by E64d, whereas 

Camostat was non-inhibitory; this confirms that only endosomal entry is available in these cells. 

Inhibitor treatment in A549 ACE2 TMPRSS2 provided the clearest evidence of altered entry by 

Omicron. D614G, Alpha and Delta were potently inhibited by Camostat, but not E64d. For Omicron, 

and Pangolin CoV, this pattern was completely reversed, suggesting a binary switch from cell surface 

to endosomal fusion; this conclusion was supported by titration of either inhibitor in A549 ACE2 

TMPRSS2 cells (Fig. 6D). 

These data indicate that, whilst Delta is optimised for fusion at the cell surface, Omicron preferentially 

achieves entry through endosomal fusion; this biological about-face may impact transmission, cellular 

tropism and pathogenesis. Moreover, this switch away from TMPRSS2-mediated activation offers a 

mechanistic explanation for reduced syncytia formation by Omicron infected cells.  
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Figure 6. Omicron spike has switched entry route preference. A. SARS CoV-2 entry can occur via two routes. Route 1 

permits rapid fusion at the cell surface following proteolytic processing by TMPRSS2. In Route 2 fusion occurs following 

endocytosis after processing by cathepsin B or L. Route 1 and 2 can be specifically inhibited using the protease inhibitors 

Camostat and E64d, respectively. B. SARS-CoV-2 pseudotype infection of the stated cell lines, data represent mean 

luciferase values from one representative experiment. In Calu-3 cells Route 1 entry predominates whereas HEK exclusively 

support Route 2, A549 ACE2 TMPRSS2 cells permit both routes. Pangolin CoV spike is included as a control; it can only 

achieve entry via Route 2. Pseudotypes without viral glycoproteins (No) are included as a negative control. C. Relative 

SARS-CoV-2 pseudotype infection (compared to untreated control) of cells treated with 10µM protease inhibitors. Data 

represent mean of four replicates, error bars indicate standard error of the mean, asterisks indicate statistical significance 

(ANOVA). D. Titration of Camostat and E64d against Delta, Omicron and Pangolin CoV in A549 ACE2 TMPRSS2 cells, data 

points represent mean relative infection, compared to untreated control.  
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Conclusions 

The Omicron variant represents a major change in biological function and antigenicity of SARS-CoV-2 

virus. In this study, we demonstrate substantial immune escape of this variant with clear evidence of 

vaccine failure in dual vaccinated individuals and partial restoration of immunity following a third 

booster dose of mRNA vaccine. In addition, we demonstrate a shift in the SARS-CoV-2 entry pathway 

from cell surface fusion, triggered by TMPRSS2, to cathepsin-dependent fusion within the endosome. 

This fundamental biological shift may affect the pathogenesis and severity of disease and requires 

further evaluation in population-based studies. 

Using sera from double vaccine recipients, we found that Omicron is associated with a drop in 

neutralisation greater in magnitude than that reported in all other variants of concern (including Beta 

and Delta). Boosting enhanced neutralising responses to both Wu-Hu-1 and Omicron, particularly in 

recipients of ChAdOx1, but did not completely overcome the inherent immune escape properties of 

Omicron. Importantly, we did not assess the impact of vaccination on clinical severity of disease which 

is likely to be much higher than detection of infection. Protection against severe disease is longer 

lasting than prevention of infection.  We also did not measure the impact of vaccination on T cell 

immunity which may be better preserved as only 14% of CD8+ and 28% of CD4+ epitopes are predicted 

to be affected by key Omicron mutations17.    

In order to evaluate the impact of reduced neutralisation responses in vaccine recipients, we next 

assessed vaccine effectiveness. The probability of infection with Omicron versus the preceding Delta 

variant was significantly higher in double vaccine recipients, in keeping with the neutralisation data. 

A third dose of mRNA vaccine substantially reduced the probability of infection but did not restore 

immunity fully.  

The observation of a highly transmissible variant that is associated with escape from vaccine-induced 

immune responses means that over time, Omicron-specific vaccines would be required if disease 

severity was high, either directed at the general population or vulnerable groups. Early indications in 

young people are that Omicron is 40-70% less severe than Delta66,67 – similar calculations in the most 

vulnerable part of the population over the age of 40 years are awaited.  

Genotypic change in new variants have previously been shown to alter viral phenotype by modulating 

innate immune responses as well as evasion of the adaptive immune response15,68. Additionally,  

mutations can alter spike functionality to impact transmission and pathogenesis. For example, a 

polybasic insertion at the S1/S2 spike junction that facilitates cleavage of the spike glycoprotein by 

furin during virus assembly13.  This may have provided a selective advantage in lung cells and primary 
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human airway epithelial cells for the original emergent SARS-CoV-2, and previous VOCs by permitting 

spike activation by the plasma membrane protease TMPRSS2, enabling rapid cell surface fusion55. In 

this study, we found that the Omicron variant has switched entry pathway to preferentially use 

endosomal fusion that is independent of TMPRSS2; a major change in the biological behaviour of the 

virus. This switching in the mechanism of fusion activation also manifests in reduced syncytia 

formation in infected cells, likely to reduce the cell-to-cell transmission characteristic of other variants.  

These properties have the potential to substantially change cellular tropism and pathogenesis of 

disease. Nonetheless, even a variant that is less virulent with a very high transmission rate may still 

present a substantial risk to older people and those with co-morbidities, especially those with 

immunosuppression. Moreover, our work demonstrates that SARS-CoV-2 exhibits high antigenic and 

functional plasticity; further fundamental shifts in transmission and disease should be anticipated. 

Methods 

Cells. Calu-3 are human lung adenocarcinoma epithelial cells. Caco-2 are an immortalized cell line 

derived from human colorectal adenocarcinoma, primarily used as a model of the intestinal epithelial 

barrier. A549 cells, a human alveolar adenocarcinoma line, were modified to stably express human 

ACE-2 and TMPRSS2. Human embryonic kidney (HEK293T) cells were used in pseudotype production. 

Baby Hamster Kidney clone 21 cells and Vero ACE-2 TMPRSS2 cells were used in the isolation of live 

Omicron SARS-CoV-2. All cell lines were maintained at 37°C and 5% CO2 in DMEM supplemented with 

10% foetal bovine serum (FBS), except for Calu-3 cells which were supplemented with 20% FBS. 

Generation of cell line expressing human ACE2 receptor. Lentiviral vectors encoding human ACE2 

(GenBank NM_001371415.1) were produced as described previously69 and BHK-21 transduced cells 

were selected with 200µg/ml of hygromycin B. 

Generation of cell lines used for fusion assays. Retrovirus vectors were produced by transfecting HEK-

293T cells with plasmid pQCXIP-GFP1-10 (Addgene #68715) or pQCXIP-BSR-GFP11 (Addgene 

#68716)53 and packaging vectors expressing MLV gal-pol and VSV-G using Lipofectamine 3000 

(Invitrogen) according to manufacturer’s instructions. Cell supernatants were harvested 24-48h post-

transfection, pooled, clarified by centrifugation and filtered. One mL of each supernatant was used to 

transduce A549-Ace2-TMPRSS2 (AAT) cells69 in presence of Polybrene (Merck). Two days post-

transduction, the supernatant was replaced with selection medium (DMEM 10% FBS 1µg/mL 

puromycin) and cells incubated until complete death of the untrasduced control cells were observed. 

The resulting puromycin-resistant cells (termed AAT-GFP1-10 and AAT-BSR-GFP11) were used in 

fusion assays. 
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Virus isolation from clinical sample. Nasopharyngeal swabs of patients infected with Omicron were 

collected with biorepository ethical approval (reference 10/S1402/33) in virus transport medium and 

resuspended in serum-free DMEM supplemented with 10 µg/ml gentamicin, 100 units/ml penicillin-

streptomycin and 2.5µg/ml amphotericin B to a final volume of 1.5ml. BHK-hACE2 cells previously 

seeded at a cell density of 3x10^5 cells in T25 flask were inoculated with 400-500µL of resuspended 

samples in 5ml of complete medium (DMEM 2% FCS supplemented with gentamicin, penicillin-

streptomycin and amphotericin B as above). After 20 hours, medium was replaced with fresh complete 

medium. Virus replication was monitored and confirmed over time by RT-qPCR since no clear 

cytopathic effect was observed. Culture supernatants (defined as P0) were harvested at day 4 post-

infection. The P0 supernatant was next passaged in Calu-3 cells and after 3-4 days post-infection 

supernatant (P1) was harvested and stored at -80°C after clarification (500g x 10min) and used as 

working stock. 

Measurement of SARS-CoV-2, HCoVs and influenza antibody response by 

electrochemiluminescence. IgG antibody titres were measured quantitatively against SARS-CoV-2 

trimeric spike (S) protein, N-terminal domain (NTD), receptor binding domain (RBD) or nucleocapsid 

(N), human seasonal coronaviruses (HCoVs) 229E, OC43, NL63 and HKU1; and influenza A (Michigan 

H1, Hong Kong H3 and Shanghai H7) and B (Phuket HA and Brisbane) using MSD V-PLEX COVID-19 

Coronavirus Panel 2 (K15369) and Respiratory Panel 1 (K15365) kits. Multiplex Meso Scale Discovery 

electrochemiluminescence (MSD-ECL) assays were performed according to manufacturer instructions. 

Briefly, 96-well plates were blocked for one hour. Plates were then washed, samples were diluted 

1:5000 in diluent and added to the plates along with serially diluted reference standard (calibrator) 

and serology controls 1.1, 1.2 and 1.3. After incubation, plates were washed and SULFO-TAG detection 

antibody added. Plates were washed and were immediately read using a MESO Sector S 600 plate 

reader. Data were generated by Methodological Mind software and analysed using MSD Discovery 

Workbench (v4.0). Results are expressed as MSD arbitrary units per ml (AU/ml). Reference plasma 

samples yielded the following values:  negative pool - spike 56.6 AU/ml, NTD 119.4 AU/ml, RBD 110.5 

AU/ml and nucleocapsid 20.7 AU/ml; SARS-CoV-2 positive pool - spike 1331.1 AU/ml, NTD 1545.2 

AU/ml, RBD 1156.4 AU/ml and nucleocapsid 1549.0 AU/ml; NIBSC 20/130 reference - spike 547.7 

AU/ml, NTD 538.8 AU/ml, RBD 536.9 AU/ml and nucleocapsid 1840.2 AU/ml. 

Measurement of virus neutralising antibodies using viral pseudotypes. Pseudotype-based 

neutralisation assays were carried out as described previously2,69,70 . Briefly, HEK293, HEK293T, and 

293-ACE269  cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 
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with 10% FBS, 200mM L-glutamine, 100µg/ml streptomycin and 100 IU/ml penicillin. HEK293T cells 

were transfected with the appropriate SARS-CoV-2 S gene expression vector (wild type or variant) in 

conjunction with p8.9171  and pCSFLW72  using polyethylenimine (PEI, Polysciences, Warrington, USA). 

HIV (SARS-CoV-2) pseudotypes containing supernatants were harvested 48 hours post-transfection, 

aliquoted and frozen at -80°C prior to use. S gene constructs bearing the WUHAN (D614G) and 

Omicron (B.1.1.529) S genes were based on the codon-optimised spike sequence of SARS-CoV-2 and 

generated by GeneArt (ThermoFisher). Constructs bore the following mutations relative to the 

Wuhan-Hu-1 sequence (GenBank: MN908947): WUHAN(D614G) – D614G; Omicron (BA.1, B.1.1.529) 

- A67V, Δ69-70, T95I, G142D/Δ143-145, Δ211/L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, 

N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, 

N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F.  293-ACE2 target cells were maintained 

in complete DMEM supplemented with 2µg/ml puromycin. 

Neutralising activity in each sample was measured by a serial dilution approach. Each sample was 

serially diluted in triplicate from 1:50 to 1:36450 in complete DMEM prior to incubation with HIV 

(SARS-CoV-2) pseudotypes, incubated for 1 hour, and plated onto 239-ACE2 target cells. After 48-72 

hours, luciferase activity was quantified by the addition of Steadylite Plus chemiluminescence 

substrate and analysis on a Perkin Elmer EnSight multimode plate reader (Perkin Elmer, Beaconsfield, 

UK). Antibody titre was then estimated by interpolating the point at which infectivity had been 

reduced to 50% of the value for the no serum control samples. 

Protease inhibitor studies. To selectively inhibit either cell surface or endosomal fusion of SARS-CoV-

2, cells were pre-treated for one hour with 10µM of either Camostat mesylate (referred to hence forth 

as Camostat) or E64d prior to inoculation with pseudotype. In these studies, spike proteins from Alpha 

and Delta VOCs, and Guangdong isolate Pangolin coronavirus (GISAID ref EPI_ISL_410721) were used 

as controls. 

Viral RNA extraction and RT-qPCR. Viral RNA was extracted from culture supernatants using the 

RNAdvance Blood kit (Beckman Coulter Life Sciences) following the manufacturer’s recommendations. 

RNA was used as template to detect and quantify viral genomes by duplex RT-qPCR using a Luna® 

Universal Probe One-Step RT-qPCR Kit (New England Biolabs, E3006E). SARS-CoV-2 specific RNAs were 

detected by targeting the N1 gene from the CDC panel as part of the SARS-CoV-2 Research Use Only 

qPCR Probe Kit (Integrated DNA Technologies) and the ORF1ab gene using the following set of primers 

and probes: SARS-CoV-2_Orf1ab_Forward 5’ GACATAGAAGTTACTGG&CGATAG 3’, SARS-CoV-

2_Orf1ab_Reverse 5’ TTAATATGACGCGCACTACAG 3’, SARS-CoV-2_Orf1ab_Probe 

ACCCCGTGACCTTGGTGCTTGT with HEX/ZEN/3IABkFQ modifications. SARS-CoV-2 RNA was used to 
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generate a standard curve and viral genomes were quantified and expressed as number of Orf1ab 

RNA molecules /ml of supernatant.  All runs were performed on the ABI7500 Fast instrument and 

results analysed with the 7500 Software v2.3 (Applied Biosystems, Life Technologies). 

Genome Sequencing and analysis. Sequencing was carried out by the UK public health agencies 

(UKHSA/PHE, PHS, PHW and PHNI) and by members of the COG-UK consortium using the ARTIC 

protocol as previously described.  

Sequences were aligned by mapping to the SARS-CoV-2 reference Wuhan-Hu-1 using Minimap2 

(https://doi.org/10.1093/bioinformatics/bty191). Prior to phylogenetic analysis 85 sites exhibiting 

high genetic variability due to data quality issues in overseas sequencing labs were excluded using a 

masking script in Phylopipe (https://github.com/cov-ert/phylopipe). The phylogenetic tree was 

constructed with the maximum likelihood method FastTree2 

(https://doi.org/10.1371/journal.pone.0009490) using a JC+CAT nucleotide substitution model.  

Replication curve. Calu-3 cells were seeded in a 96-well plate at a cell density of 3.5x10^4 cells per 

well. Cells were infected with the indicated viruses using the equivalent of 2x10^4 Orf1ab genome 

copies/well in serum-free RPMI-1640 medium (Gibco). After one hour of incubation at 37°C, cells were 

washed three times and left in 20% FBS RPMI-1640 medium. Supernatants were collected at different 

times post-infection and viral RNA extracted and quantified as described above.  

Fusion assay. AAT-GFP1-10 and AAT-BSR-GFP11 cells were trypsinized and mixed at a ratio of 1:1 to 

seed a total of 2x10^4 cells/well in black 96-well plate (Greiner) in FluoroBrite DMEM medium 

(Thermo Fischer Scientific) supplemented with 2% FBS. Next day, cells were infected with the 

indicated viruses using the equivalent of 10^6 Orf1a genome copies/well in FluoroBrite DMEM 2% 

FBS. GFP signal was acquired for the following 20 hours using a CLARIOStar Plus (BMG LABTECH) 

equipped with ACU to maintain 37°C and 5% CO2. Data were analysed using MARS software and 

plotted with GraphPad prims 9 software.  At 22 hs post-infection, cells were fixed in 8% formaldehyde, 

permeabilized with 0.1 % Triton X-100 and stained with sheep anti-SARS-CoV-2 N (1:500) antiserum73 

followed by Alexa Fluor 594 Donkey anti-sheep IgG (H+L) (1:500, Invitrogen) and DAPI (1:4000, Sigma). 

Cell imagines were acquired using EVOS Cell Imaging Systems (Thermo Fischer Scientific). 

Demographic data. Data for the EVADE study were available using the NHS Greater Glasgow and Clyde 

(NHS GG&C) SafeHaven platform and included vaccination status (dates and product names for each 

dose), demographic data (age, sex and Scottish Index of Multiple Deprivation (SIMD) quartile) 

comorbidity (shielding and immunosuppression status) and dates of positive and negative PCR tests, 

for 1.2 million inhabitants of the (NHS GG&C) area over 18 years of age, from 1st March 2020 up to 
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21st December 2021. Data were matched by CHI number and pseudonymised before analysis.   

Derogated ethical approval was granted by the NHS GG&C SafeHaven committee (GSH/21/IM/001). 

Vaccine effectiveness. We used a logistic additive regression model to estimate relative vaccine 

effectiveness against the Omicron variant as it emerged in a population of 1.2 million people in NHS 

Greater Glasgow & Clyde, the largest health board in Scotland. Infection status for Omicron and Delta 

was modelled by number and product type of vaccine doses, previous infection status, sex, SIMD 

quartile, age on 31st October 2021 and time since most recent vaccination.  

We identified Omicron infections using 3 data streams: confirmed S gene target failure (SGTF), allele 

specific PCR, and Pango lineage assignments from the sequencing data. SGTF samples with Delta 

lineage assignments were assigned as Delta infections. Samples for which the sequencing date was 

more than two weeks away from the first positive PCR were removed from the analysis.   

We removed a small number of individuals who received ChAdOx1 as a third dose or had their third 

dose before the first of September 2021 on the assumption that the majority were part of the COV-

BOOST clinical trial, the results of which are published elsewhere. We removed anyone with 

ambiguous vaccination status or whose brand was unknown due to data entry error.   

Serum samples. Serum samples were collected from healthy participants in the COVID-19 Deployed 

Vaccine Cohort Study (DOVE), a cross-sectional post-licensing cohort study to determine the 

immunogenicity of deployed COVID-19 vaccines against evolving SARS-CoV-2 variants. 308 adult 

volunteers aged at least 18 years and were recruited into the study 14 days or more after a second or 

third dose of vaccine. All participants gave written informed consent to take part in the study. The 

DOVE study was approved by the North-West Liverpool Central Research Ethics Committee (REC 

reference 21/NW/0073). 

Structural modelling. The file 6vsb_1_1_1.pdb containing a complete model of the full-length 

glycosylated spike homotrimer in open conformation with one monomer having the receptor-binding 

domain in the ‘up’ position was obtained from the CHARMM-GUI Archive [cite Woo et al. 2020, cite 

CHARMM-GUI 2021]. This model is itself generated based upon a partial spike cryo-EM structure (PDB 

ID: 6VSB). For visualisation, the model was trimmed to the ectodomain (residues 14-1164) and the 

signal peptide (residues 1-13) and glycans were removed. Using this structural model and the closed 

conformation equivalent (6vxx_1_1_1.pdb). Residues belonging to the receptor-binding site were 

identified as those with an atom within 4Å of an ACE2 atom in the bound RBD-ACE2 structure (PDB ID: 

6M0J38) and Alpha carbon-to-Alpha carbon distances between these residues in the ‘up’ RBD and all 
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other spike residues were calculated. Antibody accessibility scores for open and closed conformations 

were calculated using BEpro33. Figures were prepared using PyMol74. 
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 Supplementary Information 

Epidemiological description of the emergence of the Omicron variant in the UK 

On the 27th November 2021, the UK Health Security Agency detected 2 cases of Omicron in England, 

the following day 6 Scottish cases were detected by community (Pillar 2) sequencing. Over the next 

10 days (to 8th December 2021) a further 95 genome sequences were obtained. Due to the rapid 

spread of Omicron and low genetic diversity, the genome sequences are highly related with mean 

genetic divergence of 1 single nucleotide polymorphisms (SNPs) and maximum 7 SNPs.  

The phylogenetic relationship to Omicron sequences from other countries is consistent with multiple 

introductions associated with travel to South Africa followed by community transmissions within 

Scotland. Amongst the Scottish samples diverged from the tree backbone, there were a number 

identified that are genetically divergent, i.e., greater than 2 single nucleotide polymorphisms from the 

nearest Scottish sample (Figure 1D). Moreover, comparison to the wider international collection of 

Omicron samples revealed that they were more closely related to genomes from other countries than 

other Scottish samples. These samples therefore likely represent independent introductions to 

Scotland, but without more detailed epidemiological data, the number of introductions is unknown. 

Where there are indistinguishable samples in the phylogeny from Scotland and elsewhere in world, 

importation cannot be ruled out as a source of these samples in Scotland, rather than transmission 

from an established population circulating in Scotland.  

Within Scotland, cases are spread across 9 separate Health Boards and distributed throughout the 

phylogeny (Figure 1D).  Basal  Scottish genomes were sampled in 7 different Health Boards, most of 

them from NHS Greater Glasgow & Clyde (47%) and NHS Lanarkshire (25%). Notably, amongst these 

earliest samples are cases that were epidemiologically linked to early spreading events. All but one of 

these samples were found on this basal branch and are indistinguishable, and which is consistent with 

transmission at these events. 
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Supplementary Table S1. Comparison of SARS-CoV-2 antibody responses elicited by two doses of 

SARS-CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by 

ordinary one-way ANOVA. 
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Supplementary Table S2. Comparison of HCoV antibody responses elicited by two doses of SARS-

CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by ordinary one-

way ANOVA. 
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Supplementary Table S3. Comparison of influenza antibody responses elicited by two doses of SARS-

CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by ordinary one-

way ANOVA. 
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Supplementary Table S4. Comparison of neutralising antibody titres elicited by two doses of SARS-

CoV-2 vaccine. Neutralising antibody responses were quantified against Wuhan or Omicron 

spike glycoprotein-bearing HIV(SARS-CoV-2) pseudotypes. Data were analyzed in GraphPad Prism 

v8.4.3, groups were compared by ordinary one-way ANOVA. 
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Supplementary Table S5. Comparison of SARS-CoV-2 antibody responses elicited by a third dose of 

SARS-CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by 

ordinary one-way ANOVA. P= BNT162b2, AZ = ChAdOx1, M = mRNA-1273. 
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Supplementary Table S6. Comparison of HCoV antibody responses elicited by a third dose of SARS-

CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by ordinary one-

way ANOVA. P= BNT162b2, AZ = ChAdOx1, M = mRNA-1273. 
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Supplementary Table S7. Comparison of influenza antibody responses elicited by a third dose of 

SARS-CoV-2 vaccine. Data were analyzed in GraphPad Prism v8.4.3, groups were compared by 

ordinary one-way ANOVA. P= BNT162b2, AZ = ChAdOx1, M = mRNA-1273. 
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Supplementary Table S8. Effect of third dose of SARS-CoV-2 vaccine on neutralising antibody titres. 

Neutralising antibody responses were quantified against Wuhan or Omicron spike glycoprotein-

bearing HIV (SARS-CoV-2) pseudotypes. Data were analyzed in GraphPad Prism v8.4.3, groups were 

compared by ordinary one-way ANOVA. 
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Supplementary Table S9: Table of demographics, SARS-CoV-2 positivity status and vaccination 

status for the population of 34,641 people aged 18 and over, registered as living in NHS Greater 

Glasgow and Clyde and tested by PCR test for SARS-CoV-2 infection between 6th and 12th December 

2021, split by SARS-CoV-2 variant status. 

 Negative Delta Omicron 
Demographics 

Age on 31st October 2021 
Minimum 18.77 18.85 18.85 
1st Quartile 32.83 31.83 29.67 
Median 45.06 40.74 37.49 
Mean 47.27 41.56 40.17 
3rd Quartile 59.13 49.89 49.39 
Maximum 103.16 90.51 89.92 

Sex 
Female 20091 (91.37%) 1368 (6.22%) 529 (2.41%) 
Male 11016 (87.06%) 1165 (9.21%) 472 (3.73%) 

SIMD (2016) quartile 
1 12981 (90.78%) 998 (6.98%) 320 (2.24%) 
2 5951 (89.48%) 493 (7.41%) 207 (3.11%) 
3 4917 (89.92%) 365 (6.68%) 186 (3.40%) 
4 6653 (88.36%) 609 (8.09%) 267 (3.55%) 
Unknown 605 (87.18%) 68 (9.80%) 21 (3.03%) 

SARS-CoV-2 positivity status 
Date of 1st positive PCR test 

Minimum 12/03/2020 21/05/2020 19/04/2020 
1st Quartile 04/11/2020 07/12/2021 07/12/2021 
Median 18/01/2021 09/12/2021 09/12/2021 
Mean 22/02/2021 04/12/2021 18/11/2021 
3rd Quartile 20/07/2021 10/12/2021 11/12/2021 
Maximum 21/12/2021 12/12/2021 12/12/2021 

Previous confirmed SARS-CoV-2 infection status 
No previous infection 26974 (88.71%) 2496 (8.21%) 936 (3.08%) 
Had previous infection 4133 (97.59%) 37 (0.87%) 65 (1.53%) 

Vaccination status 
Most recent dose 

0 2014 (80.11%) 417 (16.59%) 83 (3.30%) 
1 820 (87.61%) 94 (10.04%) 22 (2.35%) 
2 15172 (85.38%) 1836 (10.33%) 761 (4.28%) 
3 13101 (97.61%) 186 (1.39%) 135 (1.01%) 

Most recent vaccine product name 
None 2014 (80.11%) 417 (16.59%) 83 (3.30%) 
ChAdOx1 5301 (80.89%) 955 (14.57%) 297 (4.53%) 
BNT162b2 18650 (92.95%) 930 (4.63%) 485 (2.42%) 
mRNA-1273 5142 (93.34%) 231 (4.19%) 136 (2.47%) 

Most recent vaccine dose by variant group and product name 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 3, 2022. ; https://doi.org/10.1101/2022.01.03.21268111doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.03.21268111
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

None 0 2014 (80.11%) 417 (16.59%) 83 (3.30%) 

ChAdOx1 
1 230 (88.12%) 26 (9.96%) 5 (1.92%) 
2 5071 (80.59%) 929 (14.76%) 292 (4.64%) 

BNT162b2 
1 389 (87.02%) 49 (10.96%) 9 (2.01%) 
2 8113 (87.89%) 746 (8.08%) 372 (4.03%) 
3 10148 (97.70%) 135 (1.30%) 104 (1.00%) 

mRNA-
1273 

1 201 (88.16%) 19 (8.33%) 8 (3.51%) 
2 1988 (88.51%) 161 (7.17%) 97 (4.32%) 
3 2953 (97.30%) 51 (1.68%) 31 (1.02%) 

Date of most recent dose 
Minimum 10/12/2020 16/01/2021 25/01/2021 
1st Quartile 03/07/2021 11/06/2021 18/06/2021 
Median 06/09/2021 08/07/2021 23/07/2021 
Mean 20/08/2021 11/07/2021 23/07/2021 
3rd Quartile 18/10/2021 07/08/2021 24/08/2021 
Maximum 21/11/2021 21/11/2021 21/11/2021 

Date of most recent dose by variant and dose number 
 Negative Delta Omicron 

 1 2 3 1 2 3 1 2 3 

Minimum 10/12/2020 08/01/2021 20/09/2021 23/01/2021 16/01/2021 24/09/2021 04/02/2021 25/01/2021 23/09/2021 

1st 
Quartile 

17/04/2021 29/05/2021 05/10/2021 21/05/2021 07/06/2021 02/10/2021 07/06/2021 14/06/2021 04/10/2021 

Median 23/06/2021 11/07/2021 20/10/2021 01/07/2021 03/07/2021 18/10/2021 31/07/2021 12/07/2021 19/10/2021 

Mean 25/06/2021 01/07/2021 20/10/2021 30/06/2021 01/07/2021 20/10/2021 20/07/2021 07/07/2021 21/10/2021 

3rd 
Quartile 

04/09/2021 10/08/2021 03/11/2021 26/08/2021 29/07/2021 06/11/2021 05/09/2021 06/08/2021 07/11/2021 

Maximum 21/11/2021 21/11/2021 21/11/2021 17/11/2021 19/11/2021 21/11/2021 16/11/2021 14/11/2021 21/11/2021 
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Supplementary Figure S1. HCoV reactivity following two doses of SARS-CoV-2 vaccine. 

Antibody responses were studied in three groups of individuals (n=24 per group) vaccinated 

with either BNT162b2, ChAdOx1 or mRNA-1273 by MSD-ECL assay. Responses were measured 

against full-length spike glycoprotein (Spike) from HCoVs 229E, OC43, NL63 and HKU1 and are 

expressed as MSD arbitrary units (AU/ml).  The response to OC43 was significantly higher in BNT162b2 

vaccinates than in ChAdOx1 vaccinates. 
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Supplementary Figure S2. Influenza reactivity following two doses of SARS-CoV-2 vaccine. 

Antibody responses were studied in three groups of individuals (n=24 per group) vaccinated 

with either BNT162b2, ChAdOx1 or mRNA-1273 by MSD-ECL assay. Responses were measured 

against haemagglutinins from influenza viruses; influenza A Michigan H1, Hong Kong H3 and Shanghai 

H7, and influenza B Phuket HA and Brisbane and are expressed as MSD arbitrary units (AU/ml). No 

significant differences were detected between the vaccine groups for each of the antigens. 
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Supplementary Figure S3. HCoV reactivity following third dose of SARS-CoV-2 vaccine. 

Antibody responses were studied in four groups of individuals primed with two doses of either 

ChAdOx1 or BNT162b2, followed by a booster of BNT162b2 or mRNA-1273. Responses were 

measured by MSD-ECL assay against full-length spike glycoprotein (Spike) from HCoVs 229E, OC43, 

NL63 and HKU1 and are expressed as MSD arbitrary units (AU/ml).  
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Supplementary Figure S4. Influenza reactivity following third dose of SARS-CoV-2 vaccine. 

Antibody responses were studied in four groups of individuals primed with two doses of either 

ChAdOx1 or BNT162b2, followed by a booster of BNT162b2 or mRNA-1273. Responses were 

measured by MSD-ECL against haemagglutinins from influenza viruses; influenza A Michigan H1, Hong 

Kong H3 and Shanghai H7, and influenza B Phuket HA and Brisbane and are expressed as MSD arbitrary 

units (AU/ml). * Significantly different p=0.0413. 
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Supplementary Figure S5. Effect of third dose of SARS-CoV-2 vaccine on neutralising antibody titres. 

Two groups of healthy volunteers vaccinated with two doses of either ChAdOx1 or BNT162b2, were 

sampled two weeks following a third dose of either BNT162b2 or mRNA-1273. Each point represents 

the mean of three replicates. Where dose 2 and dose 3 samples were available from the same 

individual, points are joined by a solid line. 
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Supplementary Figure S6: Plots of demographics, SARS-CoV-2 positivity status and vaccination 
status in NHS GG&C. Demographic data for the population of 34,641 people aged 18 and over, 
registered as living in NHS Greater Glasgow and Clyde and tested by PCR test for SARS-CoV-2 
infection between 6th and 12th December 2021, coloured by SARS-CoV-2 variant status.  (A) 
Histogram of age; (B) Barplot of sex; (C) Barplot of SIMD (2016) quartile; (D) Barplot of date of 
positive SARS-CoV-2 PCR test; (E) Barplot of previous confirmed SARS-CoV-2 infection at least 90 
days before most recent positive SARS-CoV-2 PCR test; (F) Barplots of most recent vaccine dose 
number, split by product name; (G) Barplot of most recent vaccine dose product name; (H) Barplots 
of time (days) since most recent vaccine dose, split by dose number and product name. 
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Supplementary Figure S7 Isolation of Omicron in cell culture. A. Vero ACE2 TMPRSS2 (VAT) and 
BHK-hACE2 cells were inoculated with diluted clinical samples. Viral progeny was quantified in the 
medium 5 dpi by RT-qPCR. B. Aliquots of the medium from samples named 204 and 205 were used 
to generate a P1 in BHK-hACE2 and Calu-3 cells and, limited to sample 205, a P2 in Calu-3 and Caco2 
cells. Viral stocks were quantified by RT-qPCR. 
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