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Abstract 66 

Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with an increasing 67 

prevalence in industrialized, ageing populations. AD susceptibility has an established genetic basis 68 
which has been the focus of a large number of genome-wide association studies (GWAS) published 69 
over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e. case vs. 70 
control classification, as outcome phenotypes, without the use of biomarkers. An alternative and 71 

potentially more powerful study design is afforded by using quantitative AD-related phenotypes as 72 
GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized 73 
genotype and phenotype data from n=931 individuals collected under the auspices of the European 74 
Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-75 

AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five 76 
magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, 77 
longitudinal data from at least two timepoints were available in addition to cross-sectional 78 
assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations 79 

for the neuropsychological performance measures, in particular those assayed longitudinally. Among 80 
the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on 81 
chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall in a memory 82 
performance test. On the X chromosome, which is often excluded in other GWAS, we identified a 83 

genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; 84 
Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs 85 
highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not 86 
show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights 87 

the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and 88 
nominates several new loci not previously implicated in cognitive decline.  89 

 90 

1 Introduction 91 

Alzheimer's disease is the most common neurodegenerative disease in humans and the most common 92 
form of dementia. In 2018, estimates were published that 50 million dementia patients exist 93 
worldwide, about two-third of whom were diagnosed with AD (Patterson, 2018). Pathologically, AD 94 
is characterized by the accumulation of extracellular amyloid β (Aβ) peptide deposits (“plaques”) and 95 

intracellular hyperphosphorylated tau protein aggregates (“tangles”) in the brain, leading to synaptic 96 
dysfunction, neuroinflammation, neuronal loss, and, ultimately, onset of cognitive decline (Sperling 97 
et al, 2014; Mattsson et al., 2015). Genetically, AD is a heterogeneous disorder with both monogenic 98 
and polygenic forms. The former is caused by highly penetrant but rare mutations in three genes 99 

encoding the amyloid beta precursor protein (APP) and presenilins 1 and 2 (PSEN1/PSEN2), which 100 
only make up a small fraction (<<5%) of all AD cases (Cacace et al., 2016). Most patients, however, 101 
suffer from “polygenic AD”, which is determined by the action (and interaction) of numerous 102 
independent genomic variants, likely in concert with nongenetic factors, such as environmental 103 

exposures (e.g., head trauma) and lifestyle choices (e.g., alcohol consumption and cigarette smoking) 104 
(Bertram and Tanzi, 2020). Based on results from the currently most recent and largest genome-wide 105 
association study (GWAS) performed in AD, there are now 38 independent loci showing genome-106 
wide significant association with disease risk (Wightman et al., 2021). The most strongly and most 107 

consistently associated AD risk gene is APOE, which encodes apolipoprotein E, a cholesterol 108 
transport protein that has been implicated in numerous amyloid-specific pathways, including amyloid 109 
trafficking, as well as plaque clearance (Holtzman et al., 2012). Although the heritability of 110 
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polygenic AD is estimated to be around 60-80% (Gatz et al., 2016), APOE and the other currently 111 
known 37 independent risk loci explain only part of the disease’s phenotypic variance (Wightman et 112 

al., 2021). While most AD GWAS only consider clinically diagnosed “probable AD” cases and 113 
cognitively unimpaired controls, involving a risk for mis-diagnosis of patients and inclusion of 114 
preclinical AD cases as controls, additional information about the genetic architecture of AD and 115 
additional statistical power is also afforded by using “endophenotypes” related to AD, ideally 116 

measured on a quantitative scale such as biomarker data, imaging, or neurocognitive performance 117 
(Gottesman and Gould, 2003; MacRae and Vasan, 2011; Zhang et al., 2020).   118 

In our study, we expand earlier work from our group (Hong et al., 2020; Hong et al., 2021) derived 119 
from European Medical Information Framework Alzheimer’s Disease Multimodal Biomarker 120 

Discovery (EMIF-AD MBD) sample (Bos et al., 2018). Specifically, in two previous GWAS we set 121 
out to identify variants underlying variation in several cerebrospinal fluid (CSF) phenotypes, such as 122 
levels of CSF Aβ and tau protein (Hong et al., 2020), or neurofilament light (NfL) chain, chitinase-3-123 
like protein 1 (YKL-40), and neurogranin (Ng), which reflect axonal damage, astroglial activation, 124 

and synaptic degeneration, respectively (Hong et al., 2021). However, the EMIF-AD MBD dataset 125 
features several other quantitative phenotypes, including cross-sectional MRI measurements and 126 
cross sectional and longitudinal neuropsychological tests, which are used as outcome traits in the 127 
current study. Specifically, we performed GWAS and polygenic score (PGS) analyses on seven 128 

neuropsychological (using both cross-sectional and longitudinal data) and five brain imaging 129 
phenotypes (using cross-sectional data from MRI scans). In the 19 performed GWAS scans (which 130 
also included the X chromosome), we identified a total of 13 genome-wide significant loci 131 
highlighting several novel genes showing association with the analyzed traits. While we do not see a 132 

noteworthy overlap in the genetic architectures underlying our “endophenotypes” and AD by 133 
polygenic score (PGS) analysis, we did observe significant correlations in PGS constructed from 134 
earlier GWAS on hippocampal volume (Hibar et al., 2017) and general cognitive function (Davies et 135 
al., 2018) with the respective phenotypes in EMIF-AD MBD. Taken together, our novel results 136 

pinpoint several new genetic loci potentially involved in AD-related pathophysiology. 137 

 138 

2 Materials and Methods 139 

2.1 Sample description 140 

Analyses were based on the EMIF-AD MBD dataset which was collected across eleven different 141 
European study centers (Bos et al., 2018). In total, this dataset included 1221 (563 [46%] female; 142 
mean age = 67.9 years, SD=8.3) individuals from three diagnostic stages: normal controls (NC), 143 
subjects with mild cognitive impairment (MCI) and subjects with a clinical diagnosis of AD. An 144 

overview of the quantitative phenotypes investigated in this study is provided in Table 1. Due to 145 
partially missing phenotype data (in the neurocognitive domain), the effective sample sizes vary for 146 
the different GWAS analyses (see Table 1). The local medical ethical review boards in each 147 
participating recruitment center had approved the study prior to commencement. Furthermore, all 148 

subjects had provided written informed consent at the time of inclusion in the cohort for use of data, 149 
samples and scans (Bos et al., 2018). 150 

2.2 MRI phenotypes description 151 

The five MRI phenotypes were collected for 862 subjects. Brain MRIs were used to assess 152 

hippocampal volume (mm³, left and right hemisphere, and sum of both; all adjusted for intracranial 153 
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volume), whole brain cortical thickness (in mm), and white matter lesions (WML; using the Fazekas 154 
scale) (Ten Kate et al., 2018). The Fazekas scale categorizes WMLs into 4 categories: Level 0 (no or 155 

almost no lesion), level 1 (multiple punctate lesions), level 2 (early confluent WML), and level 3 156 
(presence of large confluent WML). Details on the scanning procedures and data harmonization 157 
across centers can be found in Bos et al. (2018) and Ten Kate et al. (2018). 158 

2.3 Neuropsychological phenotypes description 159 

Cross-sectional (and follow-up) data were available for the following seven neuropsychological 160 
domains within the EMIF-AD MBD dataset: global cognition (Mini Mental State Examination, 161 
MMSE), attention, executive function, language, memory (immediate and delayed) and 162 
visuoconstruction. For each cognitive domain, a primary test was selected by Bos et al. (2018). If the 163 

preferred test were not available, an alternative priority test from the same cognitive domain was 164 
chosen. More details on the neuropsychological tests used for generating these phenotypes can be 165 
found in Bos et al. (2018). Raw data on these tests were normalized with the help of a z-166 
transformation, so that the data were comparable within a cognitive domain despite representing 167 

partially different tests across centers. For the cross-sectional GWAS analyses, the z-scores derived 168 
from baseline data were used. The number of subjects used for each test can be found in the 169 
Supplementary Material. For all seven neuropsychological domains, follow-up data from at least one 170 
additional time point were available for each individual and used to construct a longitudinal 171 

phenotype using the following formula (which estimates the relative change in cognitive performance 172 
per time interval [here: years]): 173 

Scorelast– Scorefirst
Scorelast +Scorefirst

2
∗ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

 174 

When calculating longitudinal phenotypes, this formula was applied separately for each 175 

neuropsychological test. Outlying scores were determined using false discovery rate (FDR) <0.05 176 
estimations and were excluded from all subsequent analyses. Only the most frequently used tests per 177 
cognitive domain were included in the final phenotypes. For more information, see Supplementary 178 
Material. Both baseline and longitudinal phenotypes were adjusted for age at baseline.  179 

2.4 DNA extraction, genotype imputation and quality control 180 

A detailed description of the genotyping procedures, quality control (QC) and subsequent data 181 
processing can be found in Hong et al. (2020) and in the Supplementary Material. Here, the same 182 
genotype data were used for the GWAS analyses. Briefly, 936 DNA samples were subjected to 183 

genome-wide SNP genotyping using the Infinium Global Screening Array (GSA) with Shared 184 
Custom Content (Illumina Inc.). Imputation was then performed using Minimac3 (Das et al., 2016). 185 
Extensive post-imputation QC resulted in 7,464,105 autosomal SNPs with a minor allele frequency 186 
(MAF) ≥0.01 in 888 individuals of European ancestry. More details can be found in the 187 

Supplementary Material. 188 

For the X chromosome, QC was performed separately for male and female subjects for non-189 
pseudoautosomal regions, using slightly different criteria compared to the autosomes (see 190 
Supplementary Material). In contrast, pseudoautosomal regions (PAR1 and PAR2) were treated 191 

analogously to the autosomal SNPs. After QC, imputations were performed on the Sanger Institute 192 
imputation server (https://imputation.sanger.ac.uk/) using the extended HRC reference panel 193 
(McCarthy et al., 2016). After imputation, we used the same QC criteria as for the autosomal SNPs 194 
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but performed these separately for female and male data sets, except the HWE test (P<1.0E-4) which 195 
was performed on all samples combined as recommended previously (Graffelmann and Weir, 2016) 196 

and implemented in PLINK2. For males, markers were coded as 0 vs. 2 (instead of 0 vs. 1), to adjust 197 
for the missing second X chromosome (as recommended in Smith et al. [2021]). 198 

2.5 GWAS and post-GWAS analyses 199 

SNP-based association analyses were performed assuming an additive linear model (command: --200 

glm) using allele dosages (to account for imputation uncertainty) in PLINK2 (Purcell et al., 2007). 201 
The covariates included in the analyses were sex, diagnostic status and the first three principal 202 
components from a principal component analysis (PCA) to adjust for population-specific differences. 203 
Generally, we excluded SNPs from the GWAS analyses with MAF<0.01. However, due to 204 

differences in the effective sample sizes across phenotypes this threshold was adapted upward (up to 205 
0.04) to prevent inflation of test statistics owing to low frequency SNPs (see Table 1 for more 206 
details). Diagnostic status was coded with two dummy variables as follows: NC = (0,0), MCI = (0,1), 207 
AD = (1,1). For four longitudinal cognitive phenotypes an additional dummy variable was introduced 208 

to code for the neuropsychological test used, in cases where two different tests were used for 209 
generating these phenotypes. Details can be found in the Supplementary Material. 210 

To explore associations on the X chromosome that were potentially driven by genetic sex, we 211 
additionally conducted the analyses separately in females and males. We then combined these two 212 

additional sets of results in a meta-analysis using Stouffer’s method as implemented in METAL 213 
(Willer et al., 2010). As we found no noteworthy differences in the results using Stouffer’s method, 214 
only the results from the linear regression analysis in the combined sample are shown. 215 

The FUMA platform (http://fuma.ctglab.nl/; Watanabe et al., 2017) was used for post-GWAS 216 

analyses, including gene-based association analyses (via MAGMA (de Leeuw et al., 2015)) and to 217 
annotate and visualize the GWAS results. To this end, we defined genome-wide significance at 218 
α<5.0E-08 for the SNP-based analyses while genome-wide suggestive evidence was set at α<1.0E-219 
05. For the gene-based analyses, we adjusted for the number of protein-coding genes examined 220 

(19,485) using the Bonferroni method, resulting in a threshold of α<2.566E-06.  221 

In FUMA, both the SNP annotation and the Combined Annotation Dependent Depletion (CADD) 222 
score (Rentzsch et al., 2021) are provided. The main GWAS results are reported only for 223 
“independent significant” SNPs, as defined by FUMA. These represent SNPs that are not highly 224 

correlated with one another using a threshold of r2<0.6 (using reference data from the 1000 Genomes 225 
Project). 226 

Subsequently, the top SNPs, i.e., those with the smallest P values per respective phenotype, were 227 
examined in more detail using additional tools. First, the Variant Effect Predictor on Ensembl (VEP, 228 

http://grch37.ensembl.org/Tools/VEP; McLaren et al., 2016) was used to determine a possibly 229 
functional effect due to changes in the coding sequence, e.g. missense variants. Second, SNPs were 230 
examined using data from the RegulomeDB database (https://regulomedb.org/regulome-search; 231 
Boyle et al., 2012) to assess possible effects on gene expression. Third, we used data from the 232 

Genotype-Tissue Expression (GTEx, V8) project portal (https://www.gtexportal.org/home/; Lonsdale 233 
et al., 2013) to assess whether SNPs represent expression / splicing quantitative trait loci 234 
(eQTLs/sQTLs). While GTEx provides data on gene expression in 54 tissues, we laid particular 235 
emphasis in genes expressed in brain. Lastly, we interrogated the GWAS catalogue 236 

(https://www.ebi.ac.uk/gwas/home; Buniello et al., 2019) to assess whether any of the top SNPs were 237 
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previously reported to show association with other phenotypes by GWAS. To this end, we considered 238 
genes and loci within a 1 Mb region (± 500,000 bp) around the SNP of interest. In case SNPs not 239 

identical to our “top SNP” were reported to show association with an AD-relevant phenotype (brain 240 
imaging, cognition, etc.), the LDlink platform (Machiela and Chanock, 2015) was used to determine 241 
pairwise LD to top SNPs (https://ldlink.nci.nih.gov/?tab=ldpair). In this context we defined relevant 242 
LD using a threshold of r2>0.6. 243 

2.6 Polygenic score (PGS) analysis 244 

In addition to the primary GWAS analyses described above, we also calculated polygenic scores 245 
(PGS) to estimate the extent of genetic correlation with the GWAS results for three other phenotypes. 246 
To this end, we used the summary statistics of a GWAS on AD risk (Jansen et al., 2019) as 247 

comparison to both phenotypic domains (MRI and neurocognitive performance) of our study, and the 248 
GWAS on general cognitive function (Davies et al., 2018) as comparison to the GWAS on 249 
neuropsychological phenotypes. Finally, the GWAS on hippocampal volume (Hibar et al., 2018) 250 
served as comparison to our GWAS analyses on MRI phenotypes. PGS calculations were performed 251 

using PRSice-2 software (Choi and O’Riley, 2019). Statistical analyses fitted general linear 252 
regression models with PGS as predictor adjusting for the same covariates as in the primary GWAS 253 
analyses: sex, diagnostic status, and PC1-3 (and type of cognitive test, where applicable). To adjust 254 
for multiple testing of this arm of our study, we used a conservative threshold based on Bonferroni 255 

adjustment (α<5.0E-03 = 0.05 / 5*2 for the MRI phenotypes, and α<1.8E-03 = 0.05 / 14*2 for the 256 
neuropsychological phenotypes). However, given the (at least partial) correlation between 257 
phenotypes, we note that the true threshold is likely somewhere between 0.05 and these Bonferroni-258 
adjusted values.  259 

 260 

3 Results 261 

3.1 GWAS on MRI phenotypes 262 

The genomic inflation factor λ ranged between 1.004 and 1.012 in all five SNP-based analyses, 263 

indicating that the results of the MRI GWAS analyses were not affected by substantial inflation of 264 
the test statistics. In the actual association analyses of the five quantitative MRI phenotypes, we 265 
identified no genome-wide significant (P<5.0E-08) signals but observed 385 variants with at least 266 
suggestively significant (P<1.0E-05) evidence of association (Supplementary Tables 15-19). The 267 

lowest P value was observed with SNP rs16829761 for the Fazekas phenotype (P=5.08E-08; 268 
Supplementary Figure 31), which only fell slightly above the genome-wide significance threshold. 269 
According to VEP (McLaren et al., 2016), this variant is located in an intron of the genes IQCJ 270 
(protein: IQ motif containing J) and SCHIP1 (protein: schwannomin-interacting protein 1). In the 271 

GTEx database (Lonsdale et al., 2013), the lead-SNP identified here (rs16829761) is not listed as 272 
eQTL or sQTL, which may be due to the comparatively low MAF (0.01). The CADD score, i.e., the 273 
in silico predicted deleteriousness, of rs16829761 is also low at approximately 0.074. In addition, 274 
none of the gene-based GWAS analyses using MAGMA revealed any genome-wide significant 275 

signals (P<2.566E-06) using the MRI traits analyzed. The genomic inflation factor λ ranged between 276 
0.984 and 1.060 in these five gene-based analyses. 277 

3.2 GWAS on neuropsychological phenotypes 278 



   GWAS in EMIF-AD MBD dataset 

 
8 

 

Across the 14 GWAS performed on cross-sectional and longitudinal neuropsychological phenotypes 279 
available in EMIF-AD MBD, there were a total of 13 genome-wide significant loci, two of which 280 

were identified via the gene-based analyses using MAGMA (de Leeuw et al., 2015). Three of the 281 
genome-wide significant signals were observed in the analyses of cross-sectional phenotype data and 282 
ten with longitudinal outcomes. Overall, none of the sets of GWAS results in this arm of our study 283 
appeared to be strongly affected by inflation of the genome-wide test statistics as evidenced by 284 

genomic inflation factors near 1 (range: 0.969-1.012 in the SNP-based analyses and 0.922-1.036 in 285 
the gene-based analyses). Table 2 provides a detailed summary of these genome-wide significant 286 
loci, and Figure 1 shows multi-trait Manhattan (MH) plots of the SNP-based GWAS results for cross-287 
sectional (Figure 1A) and longitudinal (Figure 1B) analyses (for corresponding QQ plots: see 288 

Supplementary Figures 1 and 2). The following two paragraphs highlight the most interesting results 289 
in either the analyses of cross-sectional or longitudinal neuropsychological traits. 290 

Analyses of cross-sectional data. The most interesting finding in this domain was elicited by markers 291 
in EHBP1 which showed genome-wide significant evidence of association with the delayed recall 292 

memory phenotype in the gene-based analysis (P=1.17E-07; Table 2; Supplementary Figure 20). The 293 
lead SNP (rs6705798) in this region only missed the genome-wide significance threshold by a small 294 
margin (P=8.78E-08; Table 2; Figure 1A). EHBP1 is located on chromosome 2p15 and encodes EH 295 
domain binding protein 1. 296 

Analyses of longitudinal data. The strongest signal in the longitudinal analyses was elicited by a 297 
locus on chromosome 6q27 (rs73045836; P=7.50E-11; Table 2; Figure 1B; Supplementary Figure 298 
25) in the analysis using an immediate memory recall paradigm. This SNP is located in an intron of 299 
SMOC2 coding for secreted modular calcium-binding protein 2, which, among other functions, 300 

promotes extracellular matrix assembly (Gao et al., 2019). It needs to be noted that with an MAF 301 
~2% this SNP is rather infrequent which may increase the possibility of representing a false-positive 302 
finding. Perhaps more interesting is the association signal observed near SNP rs5943462 (MAF 303 
~0.05) and the visuoconstruction phenotype on the X chromosome (P=1.06E-09; Table 2; Figure 1B; 304 

Supplementary Figure 29). This SNP is an intronic variant located in IL1RAPL1 encoding interleukin 305 
1 receptor accessory protein‐like 1, which belongs to a class of molecules that regulate synapse 306 
formation (Montani et al., 2019). The third highlighted signal in this domain relates to the genome-307 
wide significant variant rs74381761 (MAF ~0.05) on chromosome 8p23.1 (P=1.89E-08; Table 2; 308 

Figure 1B; Supplementary Figure 5) which shows association with the longitudinal MMSE 309 
phenotype. The lead SNP is located in an intergenic region near TNKS (gene-based P=4.87E-04; 310 
Table 2). This gene encodes the protein tankyrase, which belongs to a class of poly (ADP-ribose) 311 
polymerases and is involved in various processes in the body, such as telomere length regulation, the 312 

Wnt/β-catenin signaling pathway, or glucose transport (Damale et al., 2020). The last featured signal 313 
relates to the association observed near SNP rs9652864 (MAF ~0.22) on chromosome 17q24.1 314 
(P=3.20E-08; Table 2; Figure 1B; Supplementary Figure 21) and the delayed recall test. This variant 315 
is located in an intron of CEP112, which encodes centrosomal protein 112. Overall, there were eight 316 

correlated SNPs in this locus all showing strongly association (Supplementary Table 10).  317 

Comparison of cross-sectional vs. longitudinal GWAS results. After completion of the separate 318 
GWAS on cross-sectional and longitudinal outcomes, we assessed whether the results of these two 319 
analysis arms showed any overlap. To this end, we followed two approaches: First, we performed a 320 

look-up of top results from one paradigm in the equivalent other. Specifically, we checked whether a 321 
genome-wide significant SNP from the cross-sectional analyses also had a low P value in the 322 
corresponding longitudinal GWAS and vice versa. The lowest corresponding P value was 0.015 (at 323 
baseline) for rs73045828, which attained P=5.65E-09 in the longitudinal GWAS for immediate 324 
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memory (Supplementary Table 21). No further signal overlaps were observed across corresponding 325 
cross-sectional and longitudinal phenotypes. Second, we took a more comprehensive approach by 326 

comparing a larger set of SNPs across both phenotypic domains. To this end, we constructed PGS 327 
from the summary statistics of the cross-sectional GWAS (as an approximate measure of “aggregated 328 
SNP effects”) and used these PGS as independent variables in a linear model predicting longitudinal 329 
outcomes. Effectively, this allowed us to determine how much phenotypic variance in the 330 

longitudinal data can be explained by top SNPs of the matching cross-sectional GWAS. Overall, 331 
these analyses did not reveal a substantial correlation in genetic results for corresponding phenotypes 332 
(Supplementary Table 22), in agreement with the look up of individual SNPs (see above). The best 333 
model fit was observed with the PGS for executive function and visuoconstruction, where the GWAS 334 

top SNPs from the cross-sectional data used in the PGS explained 4-9% of the phenotypic variance of 335 
the corresponding longitudinal outcomes, respectively (Supplementary Table 22). We note, however, 336 
that the PGS method was not designed for computing genetic correlations of non-independent 337 
samples (as is the case here), so this analysis must be considered “exploratory”, and the reported 338 

results represent no more than “upper bounds” of the potential genetic correlations. 339 

3.3 Role APOE in GWAS on MRI and neuropsychological performance 340 

Given the substantial role that variants in APOE play in the genetic architecture of AD, we present 341 
findings for this locus separately, i.e. the results for SNP rs429358 (which defines the ε4 allele) and 342 

rs7412 (which defines the ε2 allele). In relation to the common genotype ε3/ε3, the risk to develop 343 
AD is increased by a factor of ~3.2 for genotype ε3/ε4, while two ε4 alleles (genotype ε4/ε4) show 344 
ORs around 10-12 when compared to normal controls (Neu et al., 2017). The minor allele at 345 
rs429358 (ε4) is overrepresented in the EMIF-AD MBD dataset with an MAF ~29% (the MAF in the 346 

general Northern European population is ~16%), which is due to the special design of participant 347 
recruitment (see Bos et al. (2018)). For the neuropsychological phenotypes, the P values of rs429358 348 
are unremarkable except for the domain “delayed memory”, where P values of 0.0005 and 0.0042 349 
were observed for the baseline and longitudinal analyses, respectively (Supplementary Table 20). In 350 

the MRI analyses, the only association signal observed with rs429358 was with hippocampal volume 351 
(Supplementary Table 20). Interestingly, this was driven by an association with the volume of the left 352 
(P=0.0002) hippocampus, while no association was observed with the corresponding data of the right 353 
hemisphere (P=0.2956). We note that for both traits, i.e. delayed memory and left hippocampal 354 

volume, the effect direction the corresponding β coefficient is consistent with the deleterious effect of 355 
the minor (T/ε4) allele at rs429358 known from the literature (Neu et al., 2017). For the minor allele 356 
at rs7412 (ε2) we observed no noteworthy association signals in any of the analyses performed in this 357 
study (Supplementary Table 20), although power for this variant was much reduced owing to its 358 

lower MAF (4.6% here, 7.5% in the general western European control population).  359 

3.4 Polygenic score (PGS) analyses using published GWAS results 360 

In these analyses we aimed to estimate the degree of genetic overlap between the MRI and 361 
neuropsychological outcomes available in EMIF-AD MBD and other relevant traits from the 362 

literature, such as AD risk, using published GWAS summary statistics.  363 

PGS analyses with MRI phenotypes. As expected, the strongest overlap was observed with a prior 364 
GWAS also using MRI outcomes. Specifically, we used GWAS results by the ENIGMA group 365 
(Hibar et al., 2017) who studied 26 imaging traits in n=33,536 individuals. Here, the best overlap was 366 

seen with each of the three hippocampal MRI traits (up to 2.7% variance explained, P=6.0E-06; 367 
Table 3; Supplementary Table 24). In contrast, in PGS analyses using SNPs associated with AD risk 368 
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(Jansen et al., 2019), we found only one moderate correlation with white matter damage (measured 369 
by the Fazekas score). For this trait the AD SNPs explained 1.4% variance (P=3.7E-03; Table 3; 370 

Supplementary Table 24). 371 

PGS analyses with neuropsychological phenotypes. As for the MRI data, the best fit in the PGS 372 
analyses with the neuropsychological phenotypes was observed with a GWAS that also used 373 
neurocognitive performance as outcome (Davies et al., 2018). Specifically, this study defined a PCA-374 

derived factor for “general cognitive function” which was analyzed in >300,000 individuals. In 375 
EMIF-AD MBD, associations with four of the 14 calculated PGS fell below the multiple testing 376 
threshold of 1.8E-03 (Table 3). The strongest association was observed with the longitudinal 377 
attention function for which the GWAS results from Davies et al. (2018) explained 2.3% of the 378 

phenotypic variance (P=1.79E-03, Table 3; Supplementary Table 23). The next best associations 379 
were seen with longitudinal executive functioning (r2=0.028; P=9.79E-03; Supplementary Table 23) 380 
and visuoconstructional abilities (r2=0.058; P=3.08E-03; Supplementary Table 23). However, these 381 
latter two associations do not survive multiple testing correction (Table 3). Interestingly and similar 382 

to the MRI-based results, we did not find strong evidence for a genetic overlap between the 383 
neurocognitive outcomes tested here and AD risk based on Jansen et al. (2019) (Supplementary 384 
Table 23). This included the various phenotypes measuring components of “memory” performance, 385 
regardless of whether or not they were ascertained cross-sectionally or longitudinally.  386 

 387 
4 Discussion 388 

This study extends previous GWAS analyses from our group utilizing phenotypic data from the 389 
EMIF-AD MBD study (Hong et al., 2020; Hong et al., 2021). The overarching goal of this work was 390 

to decipher the genetic architecture of AD-related MRI and neuropsychological (endo)phenotypes to 391 
better understand AD pathophysiology. Both previous EMIF-AD MBD GWAS focused on AD 392 
biomarkers measured in CSF and, among other findings, identified variants in TMEM106B as trans-393 
pQTLs of CSF neurofilament light (NfL) levels (Hong et al., 2021). Interestingly, the same locus was 394 

subsequently highlighted as a novel AD risk locus in a GWAS on >1.1 million individuals 395 
(Wightman et al. 2021), showcasing the power of the quantitative biomarker GWAS approach that 396 
was also followed in this study. In the current work, we focused on biomarkers / phenotypes derived 397 
from brain imaging and neuropsychological testing in the same EMIF-AD MBD individuals. Overall, 398 

we performed 19 individual GWAS and identified a total of 13 genome-wide significant loci 399 
highlighting several novel genes that are potentially involved in contributing to AD pathophysiology. 400 
Our study represents one of few GWAS in the literature to also include the X chromosome, where we 401 
identified a genome-wide significant association between markers near IL1RAPL1 and longitudinal 402 

visuoconstructive ability. Interestingly, neither APOE nor the other recently described AD GWAS 403 
loci appear to have a major impact on the traits analyzed in our study. In summary, our extensive 404 
genome-wide analyses nominate several novel loci potentially involved in neurocognitive 405 
functioning. Some of these may prove informative to better understand the genetic forces underlying 406 

AD and related phenotypes. 407 

In the remainder of this section, we discuss the potential role of five loci, which we consider the most 408 
interesting findings of our study. The strongest GWAS signal was elicited by SNP rs73045836 409 
(P=7.50E-11; Table 2; Figure 1B; Supplementary Figure 25) showing genome-wide significant 410 

association with the longitudinal data of the immediate recall memory phenotype. The gene 411 
annotated to the associated region on chromosome 6q27, SMOC2, encodes secreted modular 412 
calcium-binding protein 2. SMOC2 is an extracellular matrix protein from the secreted protein, acidic 413 



   GWAS in EMIF-AD MBD dataset 

 
11 

and rich in cysteine (SPARC) family (Gao et al., 2019) recently linked to age-dependent bone loss in 414 
humans (Morkmued et al., 2020). Despite performing careful literature and database searches, we 415 

could not pinpoint any obvious mechanistic connection of this locus to cognitive functioning or other 416 
AD-relevant phenotypes.  417 

The second strongest association signal was observed near SNP rs5943462 (MAF ~0.05) on the X 418 
chromosome (P=1.06E-09; Table 2; Figure 1B; Supplementary Figure 29) with the longitudinal data 419 

of the visuoconstruction phenotype. The SNP is located in an intron of  IL1RAPL1. This gene encodes 420 
interleukin 1 receptor accessory protein‐like 1, which belongs to a class of molecules that regulate 421 
synapse formation. IL1RAPL1 is mostly expressed in brain areas that are involved in memory 422 
development, such as hippocampus, dentate gyrus, and entorhinal cortex, suggesting that the protein 423 

may have a specialized role in physiological processes underlying memory and learning abilities 424 
(Montani et al., 2019). Even small changes in the expression and function of these proteins can 425 
provoke major alterations in synaptic connectivity, resulting in cognitive damage (Montani et al., 426 
2019). Moreover, IL1RAPL1 was nominated as a candidate gene for X-linked mental retardation 427 

(Raymond, 2006). Although the GWAS on longitudinal visuoconstruction included only 149 428 
individuals, we believe this signal to be plausible and very interesting because of the well-established 429 
role of IL1RAPL1 on human brain function. 430 
 431 

The third highlighted signal relates to the association between variant rs74381761 (MAF ~0.05) on 432 
chromosome 8p23.1 (P=1.89E-08; Table 2; Figure 1B; Supplementary Figure 5) and longitudinal 433 
MMSE measurements. This SNP is located in an intergenic region near TNKS. This gene encodes the 434 
protein tankyrase, which belongs to a class of poly (ADP-ribose) polymerases and is involved in 435 

various processes in the body, such as telomere regulation, Wnt/β-catenin signaling pathway or 436 
glucose transport (Damale et al., 2020). According to GTEx (Lonsdale et al., 2013), TNKS is highly 437 
expressed in brain (mostly in cerebellum). Moreover, SNPs annotated to TNKS were associated with 438 
brain white matter hyperintensity (WMH) measurements (Armstrong et al., 2020; Sargurupremraj et 439 

al., 2020; Zhao et al., 2021) and cortical surface area measurements (Grasby et al., 2020) according 440 
to the GWAS catalog (Buniello et al., 2019). With a gene-based P value of 4.87E-04 and the strong 441 
functional link to brain function, we consider the signal around TNKS as plausible and very 442 
interesting. 443 

The last highlighted finding from the longitudinal analyses relates to the genome-wide significant 444 
association observed between SNP rs9652864 and the delayed recall memory phenotype (P=3.20E-445 

08; Table 2; Figure 1B; Supplementary Figure 21). This variant (MAF=0.218) attained a P value of 446 
6.73E-04 in the GWAS of Davies (2018) on cross-sectional cognitive performance, lending 447 
additional support to our finding. The SNPs is located in an intron of CEP112 which encodes 448 
centrosomal protein 112. Centrosomal proteins are known as the components of the centrosome 449 

involved in centriole biogenesis, cell cycle progression, and spindle-kinetochore assembly control 450 
(Mazaheri Moghaddam et al., 2021). Despite showing only low levels of expression in the central 451 
nervous system (CNS) according to GTEx, SNPs in this gene have been associated with cortical 452 
surface area by neuroimaging in two independent GWAS (Grasby et al., 2020; van der Meer et al., 453 

2020) according to the GWAS catalog (Buniello et al., 2019). However, none of these neuroimaging 454 
SNPs is in relevant LD (r2>0.6) to the lead variant identified here. Notwithstanding, given that 455 
variants in this gene have shown genetic links to both cognitive function and structural brain 456 
imaging, we consider this finding as plausible and highly interesting. 457 

In the GWAS analyses of the cross-sectional neurocognitive phenotypes, we observed three genome-458 
wide significant signals, of which we consider the gene-based association with EHBP1 as the most 459 
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interesting finding (P=1.17E-07; Table 2; Figure 1A; Supplementary Figure 20). This protein 460 
interacts with Eps15-homology domain-containing protein 1/2 (EHD1/2) that plays a central role in 461 

GLUT4 transport and couples endocytic vesicles to the actin cytoskeleton (Rai et al., 2020). It is 462 
highly expressed in many tissues, including the brain, according to GTEx (Lonsdale et al., 2013). 463 
While there does not appear to be an obvious link between EHBP1 and brain function in the literature 464 
(e.g. in the GWAS catalog [Buniello et al., 2019]), we note that this gene is located within 5kb of 465 

OTX1 (orthodenticle homeobox 1; gene-based P=1.19E-05), which acts as transcription factor and 466 
plays a role in brain and sensory organ development in Drosophila and vertebrates, including humans 467 
(Omodei et al., 2009). Our lead SNP in this region, i.e. rs6705798, falls just short of attaining 468 
genome-wide significance (P=8.78E-08; Table 2; Figure 1A) and is reported to represent an eQTL of 469 

both OTX1 and EHBP1 in various human tissues according to GTEx (Lonsdale et al., 2013). 470 

In addition to searching for novel genetic determinants of the neuroimaging and neurocognitive traits 471 
analyzed in this study, we also investigated the overlap with known GWAS findings. First and 472 
foremost, this relates to two commonly studied alleles in the APOE gene, which appear to only play a 473 

minor role in this setting. Specifically, SNP rs429358, which defines the ε4 allele in APOE, does not 474 
even reach genome-wide suggestive significance (P<1.0E-05) in any of the 19 GWAS investigated 475 
here. The strongest associations with this allele were seen with MRI-based hippocampus volume (left 476 
volume P=0.0002, summed volume P=0.0005; Supplementary Table 20) and with the delayed recall 477 

memory test (baseline P=0.0005, longitudinal P=0.0042; Supplementary Table 20). The effect 478 
directions of these associations are consistent with the deleterious influence of rs429358 on AD (Neu 479 
et al., 2017). These at best marginal associations are in line with the literature: In the GWAS on 480 
cognitive function by Davies (2018), APOE ε4 also only showed marginal association (P=2.2E-04), 481 

while it was not reported to show any evidence of association with hippocampal volume in the 482 
GWAS by Hibar (2017). These findings are different from our earlier GWAS in the EMIF-AD MBD 483 
dataset, where the ε4 allele showed very pronounced evidence of association in CSF and imaging 484 

markers related to A (Hong et al., 2020). Extending the comparison to additional genetic variants 485 

associated with AD risk in the GWAS by Jansen et al. (2019) did also not show any noteworthy or 486 
consistent overlap with the GWAS results generated in this study. In contrast, highly s ignificant 487 
overlaps by PGS analysis were observed upon using GWAS results from Davies et al. (2018) for the 488 
neuropsychological and Hibar et al. (2017) for the MRI phenotypes, which is not surprising given 489 

that very similar neuropsychological and neuroimaging traits were used as outcomes in these studies. 490 
Collectively, the PGS results of this and previous work show that there is only very limited overlap in 491 
the genetic architecture (at least when studying common SNPs) between AD on the one and 492 
neuropsychological performance or structural brain imaging on the other hand. We note that this does 493 

not preclude the possibility that certain molecular pathways targeted by the genes highlighted in this 494 
GWAS may be shared with AD pathophysiology. 495 

While our study has several noteworthy strengths (e.g. the use of highly standardized procedures in 496 
generating and harmonizing both the genotype and phenotype data of our study, use of both cross-497 

sectional and longitudinal neurocognitive performance data, inclusion of the X chromosome in the 498 
GWAS), it may also have been negatively affected by some limitations. First and foremost, we note 499 
that the sample size used for the present analyses is comparatively small for “GWAS standards” and 500 
was well under 1,000 in some instances (Table 1). Accordingly, the statistical power of these 501 

analyses was low. This limitation is at least partially countered by the quantitative nature of nearly all 502 
analyzed phenotypes: it is well established that quantitative trait association analyses are more 503 
powerful than those using binary phenotypes, e.g. in a case-control setting (Bush and Moore, 2012). 504 
Second, in addition to resulting in low power, small sample sizes also increase the possibility of 505 

false-positive findings, especially for infrequent variants (i.e. those with an MAF <5%). In this 506 
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context we note that eight of our thirteen genome-wide significant signals were elicited by such 507 
variants. Thus, independent replication – ideally in larger datasets – is needed to confirm the main 508 

findings of our GWAS before any further-reaching conclusions can be reached. Third, we note that 509 
the phenotype data used as outcome traits in our GWAS analyses were collected at different 510 
participating centers at times using different types of examinations (e.g. different tests to study the 511 
same overarching neuropsychological domain). To alleviate potential bias resulting from this 512 

inherent phenotypic heterogeneity, all clinical data were processed, quality-controlled and 513 
harmonized (e.g. by normalizing most variables within centers) centrally by an experienced team of 514 
researchers (see Bos et al. (2018) for more details). We emphasize that this potential heterogeneity 515 
does not apply to the genetic data as these were generated in one laboratory experiment and 516 

subsequently processed jointly in one analytical framework, minimizing the emergence of potential 517 
batch effects. Last but not least, we emphasize that owing to its particular ascertainment design (Bos 518 
et al., 2018) the EMIF-AD MBD dataset does not (attempt to) constitute a representative sample 519 
from the “general population”. Accordingly, the results presented here cannot be generalized to the 520 

general population.  We note that the same is true for many GWAS in this and other fields, which 521 
typically use clinic-based ascertainment which is not representative of the population as a whole. 522 

In conclusion, our study delivers an entirely novel set of GWAS results from participants of the 523 
EMIF-AD MBD dataset. We nominate several novel and functionally interesting genetic association 524 

signals with phenotypes related to neurocognitive function and structural brain imaging. Even though 525 
independent replication is still needed, our results may prove informative to better understand the 526 
genetic forces underlying AD and related phenotypes.  527 
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Data Availability Statement 778 

GWAS summary statistics for the top (P value < 1.0E-05) results are listed in the Supplementary 779 

Tables. Full GWAS summary statistics are available from the authors upon request. Clinical data and 780 
genome-wide genotyping data are stored on an online data platform using the “tranSMART” data 781 
warehouse framework. Access to the genome-wide genotyping data can be requested from the 782 
corresponding author of this study who will forward each request to the EMIF-AD data access team. 783 

All scripts used to generate the primary GWAS and PGS analyses are available from the authors 784 
upon request. 785 

Figure legends 786 

Figure 1: Multi-trait Manhattan plots for the SNP-based GWAS results on neuropsychological 787 

phenotypes (A: cross-sectional; B: longitudinal). For details on the analyzed traits see Methods and 788 
Supplementary Material.   789 



Tables 790 

Table 1: Description of EMID-AD MBD datasets analyzed per phenotype. 791 

"MAF filter" denotes the applied MAF filter for each GWAS. For cross-sectional MMSE we used an MAF threshold of 0.02 due to residual 792 

inflation of the GWAS test statistics. Information on tests used for generating baseline and longitudinal phenotypes can be f ound in the 793 
Supplementary Material. MMSE = Mini Mental State Examination. "n.a." = not available. 794 

    Baseline Longitudinal 

Category Phenotype  Sample size  MAF filter  Sample size  MAF filter  

Neuropsychological 

MMSE  867  0.02  520  0.02  

Attention  806  0.01  402  0.02  

Executive functioning  686  0.01  234  0.02  

Language  849  0.01  409  0.02  

Memory Delayed  729  0.01  337  0.02  

Memory Immediate  797  0.01  345  0.02  

Visuoconstruction  429  0.02  149  0.04  

MRI 

Fazekas score 606  0.01  n.a. n.a. 

Cortical thickness  560  0.01  n.a. n.a. 

Left Hippocampus volume  605  0.01  n.a. n.a. 

Right Hippocampus volume  605  0.01  n.a. n.a. 

Summed Hippocampus volume  605  0.01  n.a. n.a. 

  795 



   GWAS in EMIF-AD MBD dataset 

 

21 

Table 2: Genome-wide significant associations observed in GWAS of cognitive phenotypes. 796 

Bold font indicates genome-wide significant (on SNP- or gene-level) results (see Methods section for details). "Chr" and "Position" 797 
according to GRCh37/hg19. "A1" denotes the effect allele. "P (SNP)" is the P value of the lead SNP at this locus. "P (Gene)" is the P value 798 

belonging to "Nearest gene". Top results from these GWAS analyses can be found in the Supplementary Tables.  MMSE = Mini Mental State 799 
Examination. "n.a." = not available. 800 

Study arm Phenotype Lead variant Chr Position Nearest gene A1 A2 Beta MAF P (SNP) P (Gene) 

Cross-sectional 

MemoryDelayed rs6705798 2p15 63259881 EHBP1 C T -0.32739 0.358 8.78E-08 1.17E-07 

MMSE rs2122118 2q33.3 207252439 AC017081.2 G A -2.82266 0.022 3.03E-09 n.a. 

Visuoconstruction rs113492235 4q34.2 177252900 SPCS3 T C -2.17956 0.022 1.51E-08 0.15674 

Longitudinal 

MemoryImmediate rs73045836 6q27 169062739 SMOC2 G T -0.36094 0.020 7.50E-11 0.0035373 

MMSE rs74381761 8p23.1 9389761 TNKS C G -0.08453 0.048 1.89E-08 0.00048716 

Attention rs116900143 10q23.31 92588290 HTR7 C T -0.35173 0.023 1.95E-08 0.019663 

MemoryImmediate rs11217863 11q23.3 120293138 AP002348.1 A G -0.16626 0.080 7.81E-08 8.91E-07 

Attention rs111959303 12q14.3 66844015 GRIP1 T C 0.37459 0.022 2.52E-08 0.81478 

Attention rs34736485 16q23.2 79272611 RP11-679B19.2 T G 0.31924 0.022 1.59E-08 n.a. 

MemoryDelayed rs9652864 17q24.1 63741645 CEP112 A T 0.29184 0.218 3.20E-08 0.016339 

MemoryImmediate rs146202660 18q21.1 45022937 CTD-2130O13.1 T G -0.29342 0.029 4.63E-08 n.a. 

Executive rs16982556 20q13.32 57801889 ZNF831 T C -0.29752 0.062 1.26E-08 0.0025565 

Visuoconstruction rs5943462 Xp21.3 28823154 IL1RAPL1 G C -0.14082 0.051 1.06E-09 0.006719 

  801 
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Table 3: Summary of PGS results significant after multiple testing correction. 802 

"Threshold" refers to P value cut-off used for PGS construction in prior GWAS summary statistics and “Number of SNPs” refers to the LD-803 
pruned SNPs passing this threshold that are included in PGS calculations. "R2" denotes the phenotypic variance explained by the SNPs of 804 

the prior GWAS in the EMIF-AD MBD dataset. A full listing of results from these PRS analyses can be found in Supplementary Material. 805 
MMSE = Mini Mental State Examination. 806 
 807 

Prior GWAS Phenotype Threshold Number of SNPs R2 P value 

Hibar et al. (2017) 

Hippocampus volume sum 0.0001 127 0.027 6.06E-06 

Hippocampus volume left 0.0001 127 0.026 9.98E-06 

Hippocampus volume right 0.0001 127 0.024 2.48E-05 

Jansen et al. (2019) Fazekas 0.17075 22269 0.014 3.72E-03 

Davies et al. (2018) 

Baseline MMSE 0.248 63792 0.016 1.66E-06 

Baseline executive functioning 0.0014 4469 0.018 1.98E-05 

Baseline language 0.0061 9031 0.010 1.25E-03 

Longitudinal attention 5.0E-08 163 0.023 1.79E-03 

 808 




