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Abstract

Mortality rates during the COVID-19 pandemic have varied by orders of magnitude across

communities in the United States1. Individual, socioeconomic, and environmental factors

have been linked to health outcomes of COVID-192,3,4,5. It is now widely appreciated that

the environmental microbiome, composed of microbial communities associated with soil,

water, atmosphere, and the built environment, impacts immune system development and
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susceptibility to immune-mediated disease6,7,8. The human microbiome has been linked to

individual COVID-19 disease outcomes9, but there are limited data on the influence of the

environmental microbiome on geographic variation in COVID-19 across populations10. To

fill this knowledge gap, we used taxonomic profiles of fungal communities associated with

1,135 homes in 494 counties from across the United States in a machine learning analysis

to predict COVID-19 Infection Fatality Ratios (the number of deaths caused by COVID-19

per 1000 SARS-CoV-2 infections1; ‘IFR’). Here we show that exposure to increased fungal

diversity, and in particular indoor exposure to outdoor fungi, is associated with reduced

SARS-CoV-2 IFR. Further, we identify seven fungal genera that are the predominant drivers

of this protective signal and may play a role in suppressing COVID-19 mortality. This rela-

tionship is strongest in counties where human populations have remained stable over at least

the previous decade, consistent with the importance of early-life microbial exposures11. We

also assessed the explanatory power of 754 other environmental and socioeconomic factors,

and found that indoor-outdoor fungal beta-diversity is amongst the strongest predictors of

county-level IFR, on par with the most important known COVID-19 risk factors, including

age12. We anticipate that our study will be a starting point for further integration of en-

vironmental mycobiome data with population health information, providing an important

missing link in our capacity to identify vulnerable populations. Ultimately, our identification

of specific genera predicted to be protective against COVID-19 mortality may point toward

novel, proactive therapeutic approaches to infectious disease.

Introduction

During the first eighteen months of the global COVID-19 pandemic, more than 176 million

people were infected with SARS-CoV-2 wich resulted in 3.8 million deaths13,14. However, the

toll of COVID-19 has varied greatly through both time and across geographical locations: for

instance, case-fatality ratios across counties in the United States varied by over four orders

of magnitude during the first eight months of the pandemic15,16,13. Although some of this

variation can be explained by demographic, climatic, or social factors, other factors likely

also contribute substantially to area-level variation in COVID-19 disease outcomes1,17,18.

Identifying these other factors would be of value for forecasting trajectories of this and future

pandemics, informing non-pharmaceutical interventions, and potentially indicating research

directions towards novel therapeutic and immunological strategies.

In addition to interactions with pathogenic microbes that cause disease, humans interact

constantly throughout their lives with a myriad of non-pathogenic microbes (e.g., bacteria

and fungi) in the environment19,20. These interactions may significantly modulate disease

outcomes – for instance, mitigating respiratory illnesses including asthma and allergic dis-

ease21,7,22. While the mechanisms of action vary, beneficial effects of environmental microbes

on health outcomes often share the following characteristics: (i) the environmental microbes

that have beneficial effects often originate from soils, freshwater environments, plants, and
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other non-anthropogenic sources, as opposed to the built environment, potentially reflecting

a history of human evolutionary adaptation to them11,7,23,24,25; (ii) environmental microbes

reduce disease severity by stimulating immune system development6,26,11; and (iii) exposure

to a diversity of environmental microbes rather than a single taxon is necessary to confer

beneficial effects7,23,25.

Functional immune response has been reported to be essential for moderating the severity

of COVID-19 infection27,28. Prompted by the observations that the environmental micro-

biome influences immune system development and function6,29, and that COVID-19 severity

correlates with hospital microbiome composition30 and with dysbiosis of the lung and31 the

gut microbiome32,33, we hypothesized that the environmental microbiome, specifically the en-

vironmental mycobiome, is an important factor determining area-level variation in COVID-19

mortality.

Results and Discussion

To investigate the link between COVID-19 mortality and environmental fungi, we leveraged

data on the taxonomic compositions of fungal communities from 1,135 homes across the

United States (Figure E1)34,35 and data on COVID-19 from across the United States13,36.

Each home had paired samples from indoors and outdoors, allowing comparison of the indoor

and outdoor fungal communities. Using a novel approach, we also estimated SARS-CoV-2

IFR for each county across the United States, and consequently for each home for which fungal

data were available (Supplementary Information). In addition, we extensively explored the

influence of demographic, sociological, climate, and soil factors, some of which are known to

influence IFR, fungal community composition, or both.

Most people in the United States interact primarily with microbes indoors, spending an

average of 87% of their time in their homes and other constructed environments37. For

fungi, in particular, important differences exist between primarily non-pathogenic outdoor

species (which are sometimes also found indoors), and pathogenic or opportunistic species

that proliferate in damp indoor environments38. Hence, we hypothesized that the presence

of outdoor fungi in the built environment may be associated with reduced SARS-CoV-2

IFR. To test this hypothesis, we employed a two-tiered strategy. Firstly, we looked for

association between relative fungal abundances (at the genus level) and SARS-CoV-2 IFR

using a machine learning approach – iterative Random Forests (iRF). Secondly, we employed

a quantile regression strategy to test the prediction that fungal indoor-outdoor beta diversity

is most strongly associated with the upper quantiles of IFR – the most severely impacted

counties.

The iRF analysis found marginal impact of the relative abundances of fungal genera

or indoor-outdoor beta diversity after taking into account 754 demographic, sociological,

climate, and soil factors (Supplementary Information). An ablation analysis revealed that

after accounting for an expansive collection of other, alternative factors, the impact of fungal
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genera relative abundances had a statistically significant, albeit small (≈ 1%) effect on mean

IFR (Table E1, Figure E7). However, our quantile regression analysis revealed that the

75% and all quantiles above of SARS-CoV-2 IFR were strongly dependent on indoor-outdoor

beta diversity. Indeed, indoor-outdoor beta-diversity is associated with reduced SARS-CoV-2

IFR (4.7 or fewer mortalities per 1000 infections; 90th percentile), while dissimilar indoor and

outdoor communities (reduced indoor-outdoor beta diversity) are associated with elevated

SARS-CoV-2 IFR (12.4 mortalities per 1000 infections; 90th percentile; Figure 1A-B). Hence,

while the signal influencing mean IFR is relatively weak, the upper quantiles reveal strong

and highly significant associations. These results remained qualitatively the same when

the samples from each United States state and Census Division were individually omitted

(Figures E2 - E4; Supplementary Information), indicating that the associations we detect

are not driven by any single geographic region. Therefore, when accounting for the effects

of confounding variables (below), high diversity of outdoor fungi present indoors appears to

be associated with suppressed COVID-19 mortality, while lower diversity does not appear to

confer these benefits.

Multiple lines of evidence indicate that the association between fungal beta-diversity and

SARS-CoV-2 IFR suppression may be causal; that is, that the aforementioned associations

are driven by the fungi themselves, rather than other confounding factors, such as demo-

graphic and climate variables. First, SARS-CoV-2 IFR early in the pandemic (April 2020

- November 2020) is positively associated with fungal indoor-outdoor beta-diversity – when

pharmaceutical interventions were unavailable, but the association is weaker later in the pan-

demic (December 2020 - January 2021) when vaccination began and other pharmaceutical

interventions were widely administered (Figure 1C). Second, the differences between indoor

and outdoor fungal communities that are associated with SARS-CoV-2 IFR is explained pri-

marily by soil edaphic factors – particularly pH – accounting for over 40% of the variance,

while other factors that are known to be related to COVID-19, such as demographic and

other non-climate factors, explain less than 30% of the variance combined (Figure 1D). This

is intriguing, as it consistent with a causal model where soil edaphic factors affect COVID-19

severity by affecting microbial distributions, which are well-documented to be driven by soil

characteristics, including pH39,40. Third, causal inference incorporating both fungal indoor-

outdoor beta-diversity, demographic, climate, and other predictors indicate a causal link

between indoor-outdoor fungal beta-diversity and SARS-CoV-2 IFR even when these other

potentially confounding variables are considered (p < 0.001, Supplementary Information).

To better understand the components of the fungal communities that contribute to the

signal indicating suppression of SARS-CoV-2 IFR we employed a novel, beta-diversity cor-

relation partitioning method (Supplementary Information). At least four of the following

fungal genera play a key role in suppressing SARS-CoV-2 IFR: Alternaria, Aspergillus, Epic-

occum, Eurotium, Toxicocladosporium, and Wallemia spp., and a novel Mycosphaerellaceae

genus (some of these genera have correlated distributions making effects of individual genera

indistinguishable; Figure 2A and 2C). High relative abundance of three of these genera both

indoors and outdoors is necessary to detect SARS-CoV-2 IFR suppression: high relative
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Figure 1: COVID-19 mortality is suppressed in homes where outdoor fungi occur indoors.

(A) In United States homes where indoor and outdoor fungal communities are similar (low

beta-diversity), COVID-19 mortality is reduced by over a factor of two compared to homes

where the communities are dissimilar (high beta-diversity). Each point represents a United

States county; shading indicates point density. Although the 90th percentile is sensitive

to spatial autocorrelation, these trends are not driven by a single state or region of the

United States (Figures E2 - E4). (B) The reductions in COVID-19 mortality (as measured

by the standardized effect size, SES) are greatest in the upper quantiles of the COVID-19

mortality distribution, suggesting that outdoor fungi are sufficient but not necessary to reduce

COVID-19 mortality. (C) The association between COVID-19 mortality and fungal beta-

diversity is strongest early in the pandemic, before December 2020 when vaccination began.

Circles with black outlines indicate significant associations (SES> 3). (D) Fungal beta-

diversity is a strong predictor of suppression of SARS-CoV-2 IFR relative to other variables

[column graph; points represent individual variables, columns show means; correlations give

the association between the given variable and the windowed 75th percentile of IFR (see

Supplementary Information)]. Moreover, fungal beta-diversity is most strongly associated

with soil pH and other environmental variables (inset bar graph), suggesting that it is not a

proxy for demographic and other variables that are known to effect COVID-19 mortality.
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abundance of Alternaria, Epicoccum, and Mycosphaerellaceae spp. just indoors – consistent

with a primarily indoor origin – or outdoors – consistent with low indoor exposures – is

insufficient (Figure 2B and Figure E5).

Our results pointing to beneficial effects of these seven genera for reducing COVID-19

mortality are novel. Different species from the same genus can have differential effects based

on context, for example host genetics and age41, health status42, and interactions with other

microbial exposures43. In many contexts, these genera are known to affect health negatively:

for example, Alternaria, Wallemia, and Aspergillus spp. have been associated with increased

rates of Irritable Bowel Syndrome, Ulcerative Colitis, and Keratitis, respectively44,45 (Table

E2). Moreover, two species of Aspergillus can worsen outcomes of COVID-1944. However,

environmental and endemic microbes may also reduce COVID-19 incidence and positively

effect COVID-19 outcomes46,47,48, and fungi from three aforementioned genera can also im-

prove health outcomes for disease including oral cancer, Clostridium difficile-related diseases,

and Seborrheic dermatitis, respectively44 (Table E2). The mechanism by which fungal ele-

ments may reduce infection risk could be through induction of trained immunity49,29,50. Fully

understanding the context-dependence of the effects of environmental fungi on COVID-19

and other human disease outcomes is an area requiring further study.

In a general context, immune system development has been documented to be promoted

by synergistic effects from the exposure to diverse microbes, as opposed to the effects of

exposure to individual or a few microbes7,23,25. Consistent with these observations, the seven

genera that we identified reveal positive synergistic effects: indoor-outdoor differences in

relative abundance for genera individually tend to be poor predictors of SARS-CoV-2 IFR

suppression (cross validation R2 between 0 and 0.07, median 0), while the beta-diversity of

these genera taken together is strongly predictive (cross validation R2 between 0.02 and 0.43,

median 0.19; Figure 2C).

We hypothesized the association between fungal diversity and SARS-CoV-2 IFR suppres-

sion will be strongest in regions where the human population has been stable for the last

ten years or more, because people will have been more consistently exposed to the fungi in

these regions6,11,51. Consistent with this prediction, in locations where the human popula-

tion remained stable from 2010 to 2017, fungal beta diversity is more strongly associated

with SARS-CoV-2 IFR suppression than in regions where it has fluctuated due to population

turnover (Figure 3).

Collectively, these results accurately map locations where the occurrence of outdoor fungi

in the indoor environment is forecast to most strongly suppress COVID-19 mortality in the

United States: the Desert Southwest, Intermountain West, and Upper Midwest; a region

that broadly corresponds with part of the country where soils are more alkaline, the primary

predictor of indoor-outdoor fungal beta-diversity in our analysis (Figure 4). Soil pH is known

to correlate with microbial diversity; it is also related to the water balance of ecosystems

(mean annual precipitation relative to mean annual potential evapotranspiration)52, which

in turn predicts fine dust aerosolization53. Thus along with climate32, pH may serve as a

signature of microbial composition and propensity for microbial transport into homes via
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Figure 2: The occurrence of at least four outdoor fungal genera indoors suppresses COVID-

19 mortality. (A) Seven prevalent genera significantly increase the predictiveness of indoor-

outdoor fungal beta-diversity on COVID-19 mortality. Abbreviations are L: Alternaria, S :

Aspergillus, P : Epicoccum, U : Eurotium, T : Toxicocladosporium, W : Wallemia, M : My-

cosphaerellaceae genus. (B) For some of these genera, including Alternaria spp., high relative

abundance both outdoors and indoors is necessary for suppressed COVID-19 mortality. (C)

However, the full beneficial effects result from synergistic effects of multiple genera: vertices

represent sets of genera (colored by predictive power), while edges represent interactions

when sets of genera are considered jointly as predictors (colored by interaction strength).

Genera with correlated relative abundances are grouped together (e.g., LM : Alternaria and

Mycosphaerellaceae genus). The graphs around the edges show examples of predictive power

and interactions; gray lines demarcate null (randomized) expectations plus or minus one

standard deviation. Except for when the full set of genera is considered (top right vertex),

super-additive effects dominate, pointing to synergistic effects.
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Figure 3: The occurrence of outdoor fungi indoors is more predictive of COVID-19 mortality

in locations where people have been less transient from 2010-2017 than in regions where there

are many new residents.

dust.

To reduce fatalities and limit the socioeconomic impact of the COVID-19 and future pan-

demics, a comprehensive understanding of factors affecting area-level variation in COVID-19

disease outcomes is essential5. We develop a novel strategy to address challenges in estimat-

ing SARS-CoV-2 IFR (as opposed to the case fatality ratio and other measures of COVID-19

severity), to identify factors driving SARS-CoV-2 IFR at large spatial scales. Here we find

that environmental fungal communities, particularly indoor-outdoor beta diversity, are pre-

dictive of geographic variation in COVID-19 infection fatality ratios, above and beyond many

other social and environmental factors. Our analyses indicate that exposure to high levels

of outdoor fungi in homes is protective. If, as supported by our analysis, there is a causal

relationship between long-term fungal exposures and SARS-CoV-2 IFR, then the environ-

mental mycobiome constitutes an important missing link in our capacity to identify human

populations that are vulnerable to poor outcomes from COVID-19. If, on the other hand,

despite our extensive survey of environmental and socioeconomic predictors, we are missing

as-yet unidentified confounding factors, our study underscores the utility of the environmen-

tal mycobiome as a biosensor54. Widespread beneficial effects of environmental fungi may

not be specific to COVID-19; limited data support similar findings for childhood allergic

disease and other viral diseases55,56,57, and it may be relevant for other autoimmune and

immune-mediated diseases. Our results provide a foundation for research on the role of fungi

and fungal interactions on the immune system, an important addition to a body of litera-

ture that has focused primarily on bacteria to date58,59. Recent advances in sequencing and

classification of environmental fungi will enhance future efforts in this area60, and underscore

the importance of biosurveillance for this and future pandemics.
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Figure 4: Fungal suppression of COVID-19 mortality varies regionally. In regions where soils

tend to be basic (red background shading), indoor-outdoor fungal beta-diversity tends to

be low, and fungal suppression of SARS-CoV-2 IFR is high (red dots). By contrast, the

opposite trend holds in regions with acidic soils (blue background shading and dots); here,

where fungal suppression of SARS-CoV-2 IFR is lessened, SARS-CoV-2 IFR can be high or

low depending on whether other factors (e.g., climate, demographics) reduce SARS-CoV-2

IFR.
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Methods

Details of all methods are provided in Supplementary Information.
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